RESUMO
Antimicrobial resistance is an emerging threat to public health around the world. The study employs computational and biophysical methods to investigate the properties of cefotaxime and meropenem's binding to various beta-lactamases like TEM-1, SHV-1, KPC-2, and Amp-C. The enzyme kinetics of purified proteins revealed an increase in Michaelis constant (Km) value in the presence of meropenem and cefotaxime, indicating a decrease in enzyme affinity for nitrocefin. Proteins interact with meropenem/cefotaxime, causing quenching through complex formation. All proteins have one binding site, and binding constant (Kb) values are 104, indicating strong interaction. The study found that meropenem and cefotaxime had high fitness scores for Amp-C, KPC-2,TEM-1 and SHV-1, with binding energy ranging from -7.4 to -7.8, and hydrogen bonds between them. Molecular Dynamic simulation of protein-ligand complexes revealed cefotaxime-binding proteins have slightly lower Root Mean Square Deviation(RMSD) than meropenem-binding proteins, indicating stable association antibiotics with these proteins.
Assuntos
Cefotaxima , Meropeném , Simulação de Dinâmica Molecular , Ligação Proteica , beta-Lactamases , Meropeném/química , Meropeném/farmacologia , Meropeném/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Cefotaxima/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Sítios de Ligação , Cinética , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ligação de Hidrogênio , Tienamicinas/química , Tienamicinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/químicaRESUMO
The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.
Assuntos
Arsênio , Arsenitos , Humanos , Arsênio/farmacologia , Arsênio/metabolismo , Arsenitos/farmacologia , Arsenitos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias , Metais/farmacologia , Metais/metabolismo , Resistência Microbiana a Medicamentos , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Tetraciclinas/metabolismo , Tetraciclinas/farmacologiaRESUMO
CTX-M ß-lactamases are a widespread source of resistance to ß-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 ß-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A ß-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.
Assuntos
Domínio Catalítico , Cefalosporinas , Resistência a Medicamentos , Escherichia coli , beta-Lactamases , Ampicilina/metabolismo , Ampicilina/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Catálise , Domínio Catalítico/genética , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Cefalosporinas/metabolismo , Cefalosporinas/farmacologia , Resistência a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Mutagênese , Penicilinas/metabolismo , Penicilinas/farmacologia , beta-Lactamas/metabolismo , Modelos Moleculares , Estrutura Terciária de ProteínaRESUMO
Gram-negative porins are the main entry for small hydrophilic molecules. We studied translocation of structurally related cephalosporins, ceftazidime (CAZ), cefotaxime (CTX) and cefepime (FEP). CAZ is highly active on E. coli producing OmpF (Outer membrane protein F) but less efficient on cells expressing OmpC (Outer membrane protein C), whereas FEP and CTX kill bacteria regardless of the porin expressed. This matches with the different capacity of CAZ and FEP to accumulate into bacterial cells as quantified by LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry). Furthermore, porin reconstitution into planar lipid bilayer and zero current assays suggest permeation of ≈1,000 molecules of CAZ per sec and per channel through OmpF versus ≈500 through OmpC. Here, the instant killing is directly correlated to internal drug concentration. We propose that the net negative charge of CAZ represents a key advantage for permeation through OmpF porins that are less cation-selective than OmpC. These data could explain the decreased susceptibility to some cephalosporins of enterobacteria that exclusively express OmpC porins.
Assuntos
Cefalosporinas , Enterobacteriaceae , Cefepima/metabolismo , Cefotaxima/metabolismo , Ceftazidima , Cefalosporinas/farmacologia , Cromatografia Líquida , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Monobactamas/metabolismo , Porinas/química , Porinas/metabolismo , Espectrometria de Massas em TandemRESUMO
At the single-cell level, protein kinase activity is typically inferred from downstream transcriptional reporters. However, promoters are often coregulated by several pathways, making the activity of a specific kinase difficult to deconvolve. Here, we present modular, direct, and specific sensors of bacterial kinase activity, including FRET-based sensors, as well as a synthetic transcription factor based on the lactose repressor (LacI) that has been engineered to respond to phosphorylation. We demonstrate the utility of these sensors in measuring the activity of PrkC, a conserved bacterial Ser/Thr kinase, in different growth conditions from single cells to colonies. We also show that PrkC activity increases in response to a cell-wall active antibiotic that blocks the late steps in peptidoglycan synthesis (cefotaxime), but not the early steps (fosfomycin). These sensors have a modular design that should generalize to other bacterial signaling systems in the future.
Assuntos
Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Bactérias Gram-Positivas/enzimologia , Repressores Lac/genética , Fosforilação , Análise de Célula ÚnicaRESUMO
A biophysical understanding of the mechanistic, chemical, and physical origins underlying antibiotic action and resistance is vital to the discovery of novel therapeutics and the development of strategies to combat the growing emergence of antibiotic resistance. The site-specific introduction of stable-isotope labels into chemically complex natural products is particularly important for techniques such as NMR, IR, mass spectrometry, imaging, and kinetic isotope effects. Toward this goal, we developed a biosynthetic strategy for the site-specific incorporation of 13C labels into the canonical ß-lactam carbonyl of penicillin G and cefotaxime, the latter via cephalosporin C. This was achieved through sulfur-replacement with 1-13C-l-cysteine, resulting in high isotope incorporations and milligram-scale yields. Using 13C NMR and isotope-edited IR difference spectroscopy, we illustrate how these molecules can be used to interrogate interactions with their protein targets, e.g., TEM-1 ß-lactamase. This method provides a feasible route to isotopically labeled penicillin and cephalosporin precursors for future biophysical studies.
Assuntos
Antibacterianos/metabolismo , Isótopos de Carbono/química , beta-Lactamas/metabolismo , Antibacterianos/química , Sítios de Ligação , Cefotaxima/química , Cefotaxima/metabolismo , Cefalosporinas/metabolismo , Descoberta de Drogas , Resistência Microbiana a Medicamentos , Penicilina G/química , Penicilina G/metabolismo , Penicillium/metabolismo , Conformação Proteica , beta-Lactamases/metabolismo , beta-Lactamas/químicaRESUMO
Tilletia foetida causes wheat common smut disease with severe loss of yield production and seed quality. In this study, a low-cost, rapid, and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for T. foetida mutagenesis was constructed: Transformants were screened with hygromycin B at 100 µg/ml, cefotaxime sodium concentrations with 200 µg/ml, Acetosyringone (AS) concentration at 200 µmol/l, 1 × 106 T. foetida hypha cells/ml, co-cultivation at 22 °C with 24 h and culture was incubated at 16 °C up to day 7. Fourteen transformants were randomly selected and confirmed using the specific primers to amplify the fragment of hygromycin phosphotransferase gene. At the same time, PCR analysis was performed to detect Agrobacterium tumefaciens Vir gene to eliminate false positives. The transformants were cultivated up to 8 generations on hygromycine B-containing complete medium (CM) and confirmed by PCR. The results indicated that 80% of T. foetida transformants were hygromycine B resistant. In conclusion, our analyses identified an efficient T-DNA insertion system for T. foetida and the results will be useful for further understanding the pathogenic mechanism via generation of the insertional mutants.
Assuntos
Acetofenonas/análise , Agrobacterium tumefaciens/genética , Basidiomycota/genética , Cefotaxima/análise , Higromicina B/análise , Transformação Genética/genética , Acetofenonas/metabolismo , Cefotaxima/metabolismo , Biblioteca Gênica , Higromicina B/metabolismo , Mutagênese Insercional/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças das Plantas/microbiologia , Triticum/microbiologiaRESUMO
Carbapenem-hydrolyzing class D ß-lactamases (CHDLs) are a diverse family of enzymes that are rapidly becoming the predominant cause of bacterial resistance against ß-lactam antibiotics in many regions of the world. OXA-48, an atypical member of CHDLs, is one of the most frequently observed in the clinic and exhibits a unique substrate profile. We applied X-ray crystallography to OXA-48 complexes with multiple ß-lactam antibiotics to elucidate this enzyme's carbapenemase activity and its preference of imipenem over meropenem and other substrates such as cefotaxime. In particular, we obtained acyl-enzyme complexes of OXA-48 with imipenem, meropenem, faropenem, cefotaxime, and cefoxitin, and a product complex with imipenem. Importantly, the product complex captures a key reaction milestone with the newly generated carboxylate group still in the oxyanion hole, and represents the first such complex with a wild-type serine ß-lactamase. A potential hydrogen bond is observed between the two carboxylate groups from the product and the carbamylated Lys73, representing the stage immediately after the breakage of the acyl-enzyme bond where the product carboxylate would be neutral. The placement of the product carboxylate also illustrates the approximate transient location of the deacylation water that has long eluded structural characterization in class D ß-lactamases. Additionally, comparing the product complex with the acyl-enzyme intermediates provides new insights into the various mechanisms by which specific side chain groups hinder the access of the deacylation water to the acyl-enzyme linkage, especially in meropenem. Taken together, these data offer valuable information on the substrate specificity of OXA-48 and the catalytic mechanism of CHDLs.
Assuntos
Modelos Moleculares , beta-Lactamases/química , beta-Lactamases/metabolismo , Domínio Catalítico , Cefotaxima/química , Cefotaxima/metabolismo , Cristalografia por Raios X , Hidrólise , Imipenem/química , Imipenem/metabolismo , Meropeném/química , Meropeném/metabolismo , Especificidade por SubstratoRESUMO
In recent years dendrimers have fascinated the investigators towards targeted drug delivery because of their versatile framework and exhibit immense potentiality in entrapping drug moieties through host-guest interactions and serve as a promising vector in biological applications. The current investigation is focused on developing pegylated citric acid cefotaxime dendrimers through the divergent method and its characterization through spectroscopic, microscopic, thermal and microscopic techniques. Among the spectroscopic techniques, 1H NMR and 13C NMR elucidated the key functional groups at various chemical shifts while ESI-MS pointed out the molecular weight of cefotaxime sodium in various generations. Similarly, FTIR, DSC, and AFM investigations detailed that the generations are devoid of incompatibilities, structural deformities and can be opted for targeted drug delivery. The drug entrapment studies and in-vitro drug release studies highlight CFTX G5 containing 92.4% entrapment efficacy and 83.8% drug release in 48â¯h and specifies a sustain release characteristics. In connection to the above, the in-vivo studies reveal a potent antibacterial activity against various gram-positive and gram-negative microorganisms with a decreased hemolysis and cytotoxicity effects and reflect a high margin of safety regarding pegylated CFTX dendrimers. Further, the antibacterial activities are supported through confocal microscopy that clarified the cellular uptake of dendritic molecules and their internalization.
Assuntos
Cefotaxima/química , Ácido Cítrico/química , Dendrímeros/química , Nanoestruturas/química , Células A549 , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Meia-Vida , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanoestruturas/toxicidade , Polietilenoglicóis/químicaRESUMO
Class D ß-lactamases, enzymes that degrade ß-lactam antibiotics and are widely spread in Gram-negative bacteria, were for a long time not known in Gram-positive organisms. Recently, these enzymes were identified in various non-pathogenic Bacillus species and subsequently in Clostridioides difficile, a major clinical pathogen associated with high morbidity and mortality rates. Comparison of the BPU-1 enzyme from Bacillus pumilus with the CDD-1 and CDD-2 enzymes from C. difficile demonstrated that the latter enzymes have broadened their substrate profile to efficiently hydrolyze the expanded-spectrum methoxyimino cephalosporins, cefotaxime and ceftriaxone. These two antibiotics are major contributors to the development of C. difficile infection, as they suppress sensitive bacterial microflora in the gut but fail to kill the pathogen which is highly resistant to these drugs. To gain insight into the structural features that contribute to the expansion of the substrate profile of CDD enzymes compared to BPU-1, we solved the crystal structures of CDD-1 and its complex with cefotaxime. Comparison of CDD-1 structures with those of class D enzymes from Gram-negative bacteria showed that in the cefotaxime-CDD-1 complex, the antibiotic is bound in a substantially different mode due to structural differences in the enzymes' active sites. We also found that CDD-1 has a uniquely long Ω-loop when compared to all other class D ß-lactamases. This Ω-loop extension allows it to engage in hydrogen bonding with the acylated cefotaxime, thus providing additional stabilizing interactions with the substrate which could be responsible for the high catalytic activity of the enzyme for expanded-spectrum cephalosporins.
Assuntos
Clostridioides difficile/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cefotaxima/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato , beta-Lactamases/genéticaRESUMO
BACKGROUND: Tuberculosis (TB) caused 1.8 million deaths worldwide with increased multiple drug resistance (MDR) cases estimated 4.8 lakhs in the year 2015. ß-Lactam antibiotics could be a hope for TB treatment. Therefore, in this study, uniformity in the biochemical and molecular nature of ß-lactamases was analyzed to evaluate the potential of ß-lactam antibiotics as a treatment regimen against Mycobacterium tuberculosis (MTB). MATERIALS AND METHODS: ß-Lactamase enzymes in 233 MTB clinical isolates along with control H37Rv strain were characterized by enzyme kinetic using nitrocefin and cefotaxime as a substrate, isoelectric points by isoelectric focusing electrophoresis (IEF) and by PCR and Southern blotting. RESULTS: Enzyme kinetics showed Km and Vmax for nitrocefin in the range of 56-69µM and 7.00-11IU/lit respectively, for cefotaxime in the range of 0.35-0.59µM and 18-25IU/lit respectively. ß-Lactamase showed high affinity for clavulanic acid an inhibitor of Extended-Spectrum ß-lactamase enzymes (ESBLs). The pIs of 4.9 and 5.1 were observed for all the MTB clinical isolates and control H37Rv. Southern blotting confirmed the presence of blaC sequence in MTB chromosomal DNA. CONCLUSION: This confirmed that MTB ß-lactamase enzymes belong to the Class A, group 2be Extended Spectrum ß-Lactamases with no biochemical or molecular polymorphism. ESBLs are mainly responsible for resistance against ß-lactam antibiotics in MTB. Thus ESBLs could be the potential therapeutic target for TB treatment using ß-lactam antibiotics in combination with ß-lactamase inhibitors like sulbactam and sodium clavulanate.
Assuntos
Antibacterianos , Mycobacterium tuberculosis , beta-Lactamases , beta-Lactamas , Humanos , Antibacterianos/metabolismo , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Southern Blotting , Cefotaxima/metabolismo , Cefalosporinas/metabolismo , Ácido Clavulânico/metabolismo , Focalização Isoelétrica , Cinética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Reação em Cadeia da Polimerase , Tuberculose/microbiologiaRESUMO
Carbapenems are "last resort" ß-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-ß-lactamases (MßLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all ß-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MßLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MßLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different ß-lactams in all MßLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MßLs.
Assuntos
Antibacterianos/química , Ceftazidima/química , Imipenem/química , Meropeném/química , Zinco/química , beta-Lactamases/química , Sequência de Aminoácidos , Antibacterianos/metabolismo , Domínio Catalítico , Cefepima/química , Cefepima/metabolismo , Cefotaxima/química , Cefotaxima/metabolismo , Ceftazidima/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imipenem/metabolismo , Cinética , Meropeném/metabolismo , Modelos Moleculares , Piperacilina/química , Piperacilina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/metabolismo , Resistência beta-Lactâmica , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
Cephalosporin residues in the environment are a great concern, but bioremediation options do exist. Bacillus clausii T reached a removal rate of 100% within 8â¯h when challenged with a mixture of cefuroxime (CFX), cefotaxime (CTX), and cefpirome (CPR). The co-culture of B. clausii T and B. clausii O/C displayed a higher removal efficiency for the mixture of CFX, CTX and CPR than a pure culture of B. clausii O/C. B. clausii T alleviated the biotoxicity of CFX and CPR. What's more, the biotoxicity of for CFX and CPR transformation products released by the co-culture of B. clausii T and B. clausii O/C was lower than that in pure cultures. Real-time PCR was applied to detect the changes in the expression levels of the relevant antibiotic-resistance genes of B. clausii T during CFX and CPR degradation. The results indicated that CFX and CPR enhanced the expression of the ß-lactamase gene bcl1. Hydrolysis, deacetylation and decarboxylation are likely the major mechanisms of CTX biodegradation by B. clausii. These results demonstrate that B. clausii T is a promising strain for the bioremediation of environmental contamination by CFX, CTX, and CPR.
Assuntos
Antibacterianos/metabolismo , Bacillus clausii/metabolismo , Cefotaxima/metabolismo , Cefuroxima/metabolismo , Cefalosporinas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Probióticos/metabolismo , CefpiromaRESUMO
New Delhi metallo-ß-lactamase-1 exhibits a broad substrate profile for hydrolysis of the penicillin, cephalosporin and 'last resort' carbapenems, and thus confers bacterial resistance to nearly all ß-lactam antibiotics. Here we address whether the high catalytic efficiency for hydrolysis of these diverse substrates is reflected by similar sequence and structural requirements for catalysis, i.e., whether the same catalytic machinery is used to achieve hydrolysis of each class. Deep sequencing of randomized single codon mutation libraries that were selected for resistance to representative antibiotics reveal stringent sequence requirements for carbapenem versus penicillin or cephalosporin hydrolysis. Further, the residue positions required for hydrolysis of penicillins and cephalosporins are a subset of those required for carbapenem hydrolysis. Thus, while a common core of residues is used for catalysis of all substrates, carbapenem hydrolysis requires an additional set of residues to achieve catalytic efficiency comparable to that for penicillins and cephalosporins.
Assuntos
Carbapenêmicos/metabolismo , Domínio Catalítico , Cefalosporinas/metabolismo , Farmacorresistência Bacteriana/genética , Penicilinas/metabolismo , beta-Lactamases/genética , Ampicilina/metabolismo , Cefotaxima/metabolismo , Códon , Escherichia coli , Sequenciamento de Nucleotídeos em Larga Escala , Imipenem/metabolismo , Mutação , beta-Lactamases/metabolismoRESUMO
The esterase B (EstB) from Sphingobium sp. SM42, which was previously reported to be active towards dibutyl phthalate, can cleave some small aromatic ring side chains from cephalosporin derivatives. A new name, de-arenethiolase, has been proposed to represent this activity. We present the in vitro characterization of the activity of purified EstB toward cephalosporin substrates. Interestingly, EstB was highly active against cefoperazone and cefazolin resulting in 83 and 67% decreases in killing zone diameter, respectively. EstB also demonstrated a moderate activity towards ceftriaxone (18%) and cefotaxime (16%) while exhibiting no activity against cephalosporin C and cefixime. HPLC analysis indicated that EstB catalyzed the cleavage of the C-S bond found in cephalosporin derivatives to release the corresponding free aromatic ring side chains.
Assuntos
Cefalosporinas/metabolismo , Serina Endopeptidases/metabolismo , Sphingobacterium/enzimologia , Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Cefotaxima/metabolismo , Ceftriaxona/metabolismo , Cefalosporinas/antagonistas & inibidores , Especificidade por SubstratoRESUMO
ß-Lactam antibiotics that inhibit penicillin-binding proteins (PBPs) have been widely used in the treatment of bacterial infections. However, the molecular basis underlying the different inhibitory potencies of ß-lactams against specific PBPs is not fully understood. Here, we present the crystal structures of penicillin-binding protein D2 (PBPD2) from Listeria monocytogenes, a Gram-positive foodborne bacterial pathogen that causes listeriosis in humans. The acylated structures in complex with four antibiotics (penicillin G, ampicillin, cefotaxime, and cefuroxime) revealed that the ß-lactam core structures were recognized by a common set of residues; however, the R1 side chains of each antibiotic participate in different interactions with PBPD2. In addition, the structural complementarities between the side chains of ß-lactams and the enzyme were found to be highly correlated with the relative reactivities of penam or cephem antibiotics against PBPD2. Our study provides the structural basis for the inhibition of PBPD2 by clinically important ß-lactam antibiotics that are commonly used in listeriosis treatment. Our findings imply that the modification of ß-lactam side chains based on structural complementarity could be useful for the development of potent inhibitors against ß-lactam-resistant PBPs.
Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamas/metabolismo , Ampicilina/metabolismo , Cefotaxima/metabolismo , Cefuroxima/metabolismo , Cristalografia por Raios X , Humanos , Listeria monocytogenes/efeitos dos fármacos , Penicilina G/metabolismoRESUMO
Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 µm (surface area 7.2 m2/g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h-1). While an opposite trend was observed for the excipient of size range < 63 µm (surface area 55.4 m2/g). The rate of degradation at moisture content < 3% was 0.4547 h-1, almost two times higher than that (0.2594 h-1) at moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h-1). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.
Assuntos
Compostos de Cálcio/metabolismo , Cefotaxima/metabolismo , Quitina/metabolismo , Silicatos/metabolismo , Água/metabolismo , Compostos de Cálcio/química , Cefotaxima/química , Quitina/química , Estabilidade de Medicamentos , Excipientes/química , Excipientes/metabolismo , Cinética , Silicatos/química , Água/químicaRESUMO
OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced â¼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of ß-lactam drugs.
Assuntos
Acinetobacter baumannii/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/química , Carbapenêmicos/química , Cefotaxima/química , Imipenem/química , beta-Lactamases/química , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/metabolismo , Carbapenêmicos/farmacologia , Domínio Catalítico , Cefotaxima/metabolismo , Cefotaxima/farmacologia , Clonagem Molecular , Cristalografia por Raios X , Doripenem , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Imipenem/metabolismo , Imipenem/farmacologia , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , beta-Lactamases/genética , beta-Lactamases/metabolismoAssuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , Bulgária , Enterobacteriáceas Resistentes a Carbapenêmicos/classificação , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Carbapenêmicos/metabolismo , Cefotaxima/metabolismo , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/urina , Feminino , Humanos , Imipenem/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genéticaRESUMO
A novel ß-lactamase, CTX-M-190, derived from CTX-M-55 by a single substitution of Ser for Thr at position 133 (Ser133Thr), was identified in a natural Escherichia coli clinical isolate. CTX-M-190 exhibited potent hydrolytic activity against cefotaxime, with a kcat/Km ratio of 14.5 µM-1 s-1, and was highly resistant to inhibition by the ß-lactamase inhibitors tazobactam and sulbactam, whose 50% inhibitory concentrations were 77- and 55-fold higher, respectively, for CTX-M-190 than for CTX-M-55. blaCTX-M-190 was located within the genetic platform ISEcp1-blaCTX-M-orf477, which was harbored by a 70-kb IncI1 plasmid.