Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
1.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675620

RESUMO

Breast cancer is a major global health issue, causing high incidence and mortality rates as well as psychological stress for patients. Chemotherapy resistance is a common challenge, and the Aldo-keto reductase family one-member C3 enzyme is associated with resistance to anthracyclines like doxorubicin. Recent studies have identified celecoxib as a potential treatment for breast cancer. Virtual screening was conducted using a quantitative structure-activity relationship model to develop similar drugs; this involved backpropagation of artificial neural networks and structure-based virtual screening. The screening revealed that the C-6 molecule had a higher affinity for the enzyme (-11.4 kcal/mol), a lower half-maximal inhibitory concentration value (1.7 µM), and a safer toxicological profile than celecoxib. The compound C-6 was synthesized with an 82% yield, and its biological activity was evaluated. The results showed that C-6 had a more substantial cytotoxic effect on MCF-7 cells (62%) compared to DOX (63%) and celecoxib (79.5%). Additionally, C-6 had a less harmful impact on healthy L929 cells than DOX and celecoxib. These findings suggest that C-6 has promising potential as a breast cancer treatment.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Anti-Inflamatórios não Esteroides , Neoplasias da Mama , Desenho de Fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Células MCF-7 , Desenho Assistido por Computador , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Celecoxib/farmacologia , Celecoxib/química , Proliferação de Células/efeitos dos fármacos
2.
BMC Med ; 22(1): 182, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685001

RESUMO

BACKGROUND: The exact mechanisms linking the gut microbiota and social behavior are still under investigation. We aimed to explore the role of the gut microbiota in shaping social behavior deficits using selectively bred mice possessing dominant (Dom) or submissive (Sub) behavior features. Sub mice exhibit asocial, depressive- and anxiety-like behaviors, as well as systemic inflammation, all of which are shaped by their impaired gut microbiota composition. METHODS: An age-dependent comparative analysis of the gut microbiota composition of Dom and Sub mice was performed using 16S rRNA sequencing, from early infancy to adulthood. Dom and Sub gastrointestinal (GI) tract anatomy, function, and immune profiling analyses were performed using histology, RT-PCR, flow cytometry, cytokine array, and dextran-FITC permeability assays. Short chain fatty acids (SCFA) levels in the colons of Dom and Sub mice were quantified using targeted metabolomics. To support our findings, adult Sub mice were orally treated with hyaluronic acid (HA) (30 mg/kg) or with the non-steroidal anti-inflammatory agent celecoxib (16 mg/kg). RESULTS: We demonstrate that from early infancy the Sub mouse gut microbiota lacks essential bacteria for immune maturation, including Lactobacillus and Bifidobacterium genera. Furthermore, from birth, Sub mice possess a thicker colon mucin layer, and from early adulthood, they exhibit shorter colonic length, altered colon integrity with increased gut permeability, reduced SCFA levels and decreased regulatory T-cells, compared to Dom mice. Therapeutic intervention in adult Sub mice treated with HA, celecoxib, or both agents, rescued Sub mice phenotypes. HA treatment reduced Sub mouse gut permeability, increased colon length, and improved mouse social behavior deficits. Treatment with celecoxib increased sociability, reduced depressive- and anxiety-like behaviors, and increased colon length, and a combined treatment resulted in similar effects as celecoxib administered as a single agent. CONCLUSIONS: Overall, our data suggest that treating colon inflammation and decreasing gut permeability can restore gut physiology and prevent social deficits later in life. These findings provide critical insights into the importance of early life gut microbiota in shaping gut immunity, functionality, and social behavior, and may be beneficial for the development of future therapeutic strategies.


Assuntos
Celecoxib , Colo , Microbioma Gastrointestinal , Ácido Hialurônico , Inflamação , Comportamento Social , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Celecoxib/farmacologia , Celecoxib/administração & dosagem , Camundongos , Colo/efeitos dos fármacos , Colo/microbiologia , Inflamação/tratamento farmacológico , Masculino , Comportamento Animal/efeitos dos fármacos , RNA Ribossômico 16S/genética
3.
Int J Biol Macromol ; 266(Pt 2): 131337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574911

RESUMO

Utilization of injectable hydrogels stands as a paradigm of minimally invasive intervention in the context of intervertebral disc degeneration treatment. Restoration of nucleus pulposus (NP) function exerts a profound influence in alleviating back pain. This study introduces an innovative class of injectable shear-thinning hydrogels, founded on quaternized chitosan (QCS), gelatin (GEL), and laponite (LAP) with the capacity for sustained release of the anti-inflammatory drug, celecoxib (CLX). First, synthesis of Magnesium-Aluminum-Layered double hydroxide (LDH) was achieved through a co-precipitation methodology, as a carrier for celecoxib and a source of Mg ions. Intercalation of celecoxib within LDH layers (LDH-CLX) was verified through a battery of analytical techniques, including FTIR, XRD, SEM, EDAX, TGA and UV-visible spectroscopy confirmed a drug loading efficiency of 39.22 ± 0.09 % within LDH. Then, LDH-CLX was loaded in the optimal GEL-QCS-LAP hydrogel under physiological conditions. Release behavior (15 days profile), mechanical properties, swelling ratio, and degradation rate of the resulting composite were evaluated. A G* of 15-47 kPa was recorded for the hydrogel at 22-40 °C, indicating gel stability in this temperature range. Self-healing properties and injectability of the composite were proved by rheological measurements. Also, ex vivo injection into intervertebral disc of sheep, evidenced in situ forming and NP cavity filling behavior of the hydrogel. Support of GEL-QCS-LAP/LDH-CLX (containing mg2+ ions) for viability and proliferation (from ~94 % on day 1 to ~134 % on day 7) of NP cells proved using MTT assay, DAPI and Live/Dead assays. The hydrogel could significantly upregulate secretion of glycosaminoglycan (GAG, from 4.68 ± 0.1 to 27.54 ± 1.0 µg/ml), when LHD-CLX3% was loaded. We conclude that presence of mg2+ ion and celecoxib in the hydrogel can lead to creation of a suitable environment that encourages GAG secretion. In conclusion, the formulated hydrogel holds promise as a minimally invasive candidate for degenerative disc repair.


Assuntos
Celecoxib , Quitosana , Gelatina , Hidrogéis , Silicatos , Hidrogéis/química , Hidrogéis/farmacologia , Celecoxib/farmacologia , Celecoxib/química , Celecoxib/administração & dosagem , Quitosana/química , Gelatina/química , Silicatos/química , Silicatos/farmacologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Animais , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Injeções , Reologia
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542198

RESUMO

Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.


Assuntos
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animais , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Caenorhabditis elegans/metabolismo , Ciclo-Oxigenase 2/metabolismo , PPAR gama/metabolismo , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Apoptose , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Linhagem Celular , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral
5.
J Cardiothorac Surg ; 19(1): 135, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500210

RESUMO

BACKGROUND: Celecoxib, a cyclooxygenase-2 selective inhibitor non-steroidal anti-inflammatory drugs, is used for the management of short- and long-term pain as well as in other inflammatory conditions. Unfortunately, its chronic use is highly associated with serious abnormal cardiovascular events. The current study was designed to explore the effect of long-term administration of celecoxib on the cardiac tissues of male albino rats. The study also examined the alleged cardioprotective effect of royal jelly. METHODS: Thirty, male albino rats were randomly divided into 3 equal groups; 10 each: (1) rats served as the control group and received no drug; (2) rats received celecoxib (50 mg/kg/day, orally), for 30 consecutive days; (3) rats received celecoxib (50 mg/kg/day, orally) plus royal jelly (300 mg/kg/day, orally) for 30 consecutive days. Sera were collected to assay cardiac enzymes and oxidant/antioxidant status. Rats were euthanatized and cardiac tissues were dissected for quantitative estimation of apoptotic genes (Bax) and anti-apoptotic gene (Bcl-2). RESULTS: Long-term celecoxib administration caused cardiotoxicity in male albino rats as manifested by significant elevation of serum levels of creatine phosphokinase (CPK), creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH), with ameliorative effects of royal jelly against celecoxib-induced cardiotoxicity as manifested by significantly decrease in serum CPK, CK-MB, and LDH levels. It also showed a significant decrease in the oxidative stress indicator malondialdehyde (MDA) levels and the bax gene. Additionally, it demonstrated significant increases in the bcl-2 gene and superoxide dismutase (SOD) levels, which contribute to its therapeutic effects against celecoxib-induced cardiotoxicity. CONCLUSION: Long-term celecoxib administration caused cardiotoxicity in male albino rats with protective effect of royal jelly being given together. It could be concluded that royal jelly may prove a useful adjunct in patients being prescribed celecoxib. TRIAL REGISTRATION: Not applicable.


Assuntos
Cardiotoxicidade , Ácidos Graxos , Coração , Humanos , Ratos , Masculino , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Proteína X Associada a bcl-2/farmacologia , Proteína X Associada a bcl-2/uso terapêutico , Antioxidantes/uso terapêutico , Estresse Oxidativo
6.
Inflammopharmacology ; 32(2): 1633-1646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451396

RESUMO

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Animais , Ratos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
7.
ACS Appl Mater Interfaces ; 16(12): 14633-14644, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483312

RESUMO

Osteoarthritis (OA) is the most common form of arthritis, with intra-articular (IA) delivery of therapeutics being the current best option to treat pain and inflammation. However, IA delivery is challenging due to the rapid clearance of therapeutics from the joint and the need for repeated injections. Thus, there is a need for long-acting delivery systems that increase the drug retention time in joints with the capacity to penetrate OA cartilage. As pharmaceutical utility also demands that this is achieved using biocompatible materials that provide colloidal stability, our aim was to develop a nanoparticle (NP) delivery system loaded with the COX-2 inhibitor celecoxib that can meet these criteria. We devised a reproducible and economical method to synthesize the colloidally stable albumin NPs loaded with celecoxib without the use of any of the following conditions: high temperatures at which albumin denaturation occurs, polymer coatings, oils, Class 1/2 solvents, and chemical protein cross-linkers. The spherical NP suspensions were biocompatible, monodisperse with average diameters of 72 nm (ideal for OA cartilage penetration), and they were stable over 6 months at 4 °C. Moreover, the NPs loaded celecoxib at higher levels than those required for the therapeutic response in arthritic joints. For these reasons, they are the first of their kind. Labeled NPs were internalized by primary human articular chondrocytes cultured from the knee joints of OA patients. The NPs reduced the concentration of inflammatory mediator prostaglandin E2 released by the primaries, an indication of retained bioactivity following NP synthesis. Similar results were observed in lipopolysaccharide-stimulated human THP-1 monocytes. The IA administration of these NPs is expected to avoid side-effects associated with oral administration of celecoxib and to maintain a high local concentration in the knee joint over a sustained period. They are now ready for evaluation by IA administration in animal models of OA.


Assuntos
Nanopartículas , Osteoartrite , Animais , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Injeções Intra-Articulares , Osteoartrite/tratamento farmacológico , Articulação do Joelho , Albuminas
8.
Taiwan J Obstet Gynecol ; 63(2): 178-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485312

RESUMO

OBJECTIVE: Endometriosis is an estrogen-dependent chronic inflammatory disease in women of reproductive age. A review of the literature revealed that cytokines and inflammatory factors are associated with endometriosis-associated infertility. Interleukin 33 (IL-33) is a strong inducer of other pro-inflammatory cytokines. Vascular cell adhesion molecule-1 (VCAM-1) plays a central role in recruiting inflammatory cells, whose expression facilitates leukocyte adhesion and is rapidly induced by pro-inflammatory cytokines. Many studies have indicated that VCAM-1 expression is high in endometriosis; however, whether the expression of VCAM-1 is related to IL-33 is unclear. MATERIALS AND METHODS: Human ovarian endometriotic stromal cells (hOVEN-SCs) were treated with IL-33 to enable investigation of cell characterization, gene and protein expression, and signal pathways. Proliferation potential was measured using an MTT assay. Gene expression was analyzed using reverse transcription-polymerase chain reaction. Protein expression assay was performed using western blot analysis. RESULTS: This study investigated the effects of IL-33 on VCAM-1 and COX-2 expression in hOVEN-SCs. First, the results revealed that the IL-33/ST2/mitogen-activated protein kinase (MAPK) signaling pathway could increase the expression of VCAM-1 and COX-2 in hOVEN-SCs. Second, we discovered that COX-2 expression was essential for IL-33-induced VCAM-1 expression because the effects could be negated through NS398, a selective COX-2 inhibitor. Finally, treatment of IL-33-treated hOVEN-SCs with celecoxib significantly and dose-responsively decreased VCAM-1 expression. CONCLUSION: Taken together, these results indicate that IL-33 can upregulate VCAM-1 expression in hOVEN-SCs through the IL-33/ST2/MAPK/COX-2 signaling pathway and thereby contribute to endometriosis.


Assuntos
Endometriose , Molécula 1 de Adesão de Célula Vascular , Humanos , Feminino , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/farmacologia , Celecoxib/metabolismo , Celecoxib/farmacologia , Interleucina-33/metabolismo , Ciclo-Oxigenase 2/metabolismo , Endometriose/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Células Estromais/metabolismo , Células Cultivadas
9.
Anticancer Res ; 44(3): 1045-1049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423669

RESUMO

BACKGROUND/AIM: Osteosarcoma (OS) is a rare malignant tumor with a poor survival rate. Our previous study reported that auranofin (AUR), a thioredoxin reductase inhibitor, suppresses OS pulmonary metastases; however, the local progression of OS is not affected, in vivo. Nonetheless, the development of augmentation therapy with AUR to inhibit OS local progression remains challenging. Celecoxib (CE), an anti-inflammatory drug, potently enhances the therapeutic activity of AUR against colon cancer. Consequently, this study investigated the combined effects of AUR and CE on OS local progression and pulmonary metastases, in vivo. MATERIALS AND METHODS: C3H/HeSlc mice were implanted with the murine OS cell line, LM8. The mice were treated either with a vehicle control, AUR, or combination of AUR and CE (AUR-CE). The primary tumor size and weight were evaluated for the study duration and at resection, respectively. Hematoxylin and eosin and Ki-67 staining were performed to evaluate OS local progression and pulmonary metastases. RESULTS: Mice in the AUR-CE group showed statistically significantly suppressed tumor sizes and weights at the time of excision compared with those in the vehicle. The mice in the AUR group did not show a statistically significant effect. Histopathological analysis of the primary tumor revealed a statistically significant decrease of the Ki-67-positive cells in the AUR-CE group compared with the vehicle group. Histopathological and quantitative analyses demonstrated that the AUR and AUR-CE groups had statistically significant reductions in the development of OS pulmonary metastases compared with the vehicle group. CONCLUSION: The combination of AUR and CE significantly inhibited OS local progression and pulmonary metastases.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Animais , Camundongos , Auranofina/farmacologia , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Antígeno Ki-67 , Camundongos Endogâmicos C3H , Osteossarcoma/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia
10.
Br J Cancer ; 130(5): 880-891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233491

RESUMO

BACKGROUND: Many urothelial bladder carcinoma (UBC) patients don't respond to immune checkpoint blockade (ICB) therapy, possibly due to tumor-associated neutrophils (TANs) suppressing lymphocyte immune response. METHODS: We conducted a meta-analysis on the predictive value of neutrophil-lymphocyte ratio (NLR) in ICB response and investigated TANs' role in UBC. We used RNA-sequencing, HALO spatial analysis, single-cell RNA-sequencing, and flow cytometry to study the impacts of TANs and prostaglandin E2 (PGE2) on IDO1 expression. Animal experiments evaluated celecoxib's efficacy in targeting PGE2 synthesis. RESULTS: Our analysis showed that higher TAN infiltration predicted worse outcomes in UBC patients receiving ICB therapy. Our research revealed that TANs promote IDO1 expression in cancer cells, resulting in immunosuppression. We also found that PGE2 synthesized by COX-2 in neutrophils played a key role in upregulating IDO1 in cancer cells. Animal experiments showed that targeting PGE2 synthesis in neutrophils with celecoxib enhanced the efficacy of ICB treatment. CONCLUSIONS: TAN-secreted PGE2 upregulates IDO1, dampening T cell function in UBC. Celecoxib targeting of PGE2 synthesis represents a promising approach to enhance ICB efficacy in UBC.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Animais , Humanos , Dinoprostona , Celecoxib/farmacologia , Neutrófilos/patologia , Ciclo-Oxigenase 2/metabolismo , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/metabolismo , Linfócitos T CD8-Positivos/patologia , RNA/metabolismo
11.
Sci Rep ; 14(1): 181, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168547

RESUMO

Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Zeína , Feminino , Humanos , Celecoxib/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Prodigiosina/farmacologia , Caseínas
12.
Chem Biodivers ; 21(2): e202301844, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185756

RESUMO

In this study, a series of rhodanine derivatives containing 5-aryloxypyrazole moiety were identified as potential agents with anti-inflammatory and anticancer properties. Most of the synthesized compounds demonstrated anti-inflammatory and anticancer activity. Notably, compound 7 g (94.1 %) exhibited significant anti-inflammatory activity compared with the reference drugs celecoxib (52.5 %) and hydrocortisone (79.4 %). Compound 7 g, at various concentrations, effectively inhibited nitric oxide (NO) production in a dose-dependent manner. Western blot results showed that compound 7 g could prevents LPS-induced expression of inflammatory mediators in macrophages. Enzyme-linked immunosorbent assay (ELISA) assay suggested that 7 g is a promising compound capable of blocking the downstream signaling of COX-2. In summary, these findings indicate that compound 7 g could be a promising candidate for further investigation.


Assuntos
Antineoplásicos , Rodanina , Rodanina/farmacologia , Rodanina/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Celecoxib/metabolismo , Celecoxib/farmacologia , Macrófagos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico
13.
J Pharmacol Sci ; 154(2): 97-107, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246733

RESUMO

In our previous study, we reported that 2, 5-dimethyl-celecoxib (DM-C), a derivative of celecoxib, prevents cardiac remodeling in different mouse models of heart failure, including myocardial infarction (MI). The inflammatory response after MI affects the progression of cardiac remodeling, wherein the immune cells, mainly macrophages, play crucial roles. Therefore, we evaluated the effect of DM-C on macrophages in a cryoinjury-induced myocardial infarction (CMI) mouse model. We observed that DM-C attenuated the deterioration of left ventricular ejection fraction and cardiac fibrosis 14 d after CMI. Gene expression of pro-inflammatory cytokines at the infarct site was reduced by DM-C treatment. Analysis of macrophage surface antigens revealed that DM-C induced transient accumulation of macrophages at the infarct site without affecting their polarization. In vitro experiments using peritoneal monocytes/macrophages revealed that DM-C did not directly increase the phagocytic ability of the macrophages but increased their number, thereby upregulating the clearance capacity. Moreover, DM-C rapidly excluded the cells expressing necrotic cell marker from the infarct site. These results suggested that DM-C enhanced the clearance capacity of macrophages by transiently increasing their number at the infarct site, and terminated the escape from the inflammatory phase earlier, thereby suppressing excessive cardiac remodeling and ameliorating cardiac dysfunction.


Assuntos
Infarto do Miocárdio , Pirazóis , Sulfonamidas , Remodelação Ventricular , Animais , Camundongos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/tratamento farmacológico , Macrófagos , Modelos Animais de Doenças
14.
Brain Res Bull ; 207: 110871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211740

RESUMO

CONTEXT: Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has been shown to exhibit anti-depressive effects in clinical trials. However, the direct mechanism underlying its effect on neuroinflammation remains unclear. Neuroinflammatory reaction from astrocytes leads to depression, and our previous study found that gap junction disorder between astrocytes aggravated neuroinflammatory reaction in depressed mice. OBJECTIVE: To investigate the potential mechanism of celecoxib's effects on astrocytic gap junctions during the central nervous inflammation-induced depression. MATERIALS & METHODS: Stereotaxic injection of lipopolysaccharide (LPS) into the prefrontal cortex (PFC) to establish a model of major depressive disorder (MDD). Celecoxib was administrated into PFC 15 min after LPS injection. The depressive performance was tested by tail suspension test and forced swimming test, and the levels of proinflammation cytokines were determined at mRNA and protein levels. Resting-state functional connection (rsFC) was employed to assess changes in the default mode network (DMN). Additionally, astrocytic gap junctions were also determined by lucifer yellow (LY) diffusion and transmission electron microscope (TEM), and the expression of connexin 43 (Cx43) was measured by western blotting, quantitative polymerase chain reaction, and immunofluorescence. RESULTS: LPS injection induced significant depressive performance, which was ameliorated by celecoxib treatment. Celecoxib also improved rsFC in the DMN. Furthermore, celecoxib improved astrocytic gap junctions as evidenced by increased LY diffusion, shortened gap junction width, and normalized levels of phosphorylated Cx43. Celecoxib also blocked the phosphorylation of p65, and inhibition of p65 abolished the improvement of Cx43. DISCUSSION & CONCLUSION: Anti-depressive effects of celecoxib are mediated, at least in part, by the inhibition of nuclear factor- kappa B (NF-κB) and the subsequent improvement of astrocytic gap junction function.


Assuntos
Transtorno Depressivo Maior , NF-kappa B , Animais , Camundongos , Celecoxib/farmacologia , NF-kappa B/metabolismo , Conexina 43/metabolismo , Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Lipopolissacarídeos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Junções Comunicantes
15.
Med Oncol ; 41(2): 43, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170401

RESUMO

Drug resistance and recurrence represent a great challenge in colorectal cancer management, highlighting the urgent need for novel therapeutics. Our objective is to evaluate the influence of Abemaciclib, Celecoxib, and their combination on both the autophagic and apoptotic machinery in an attempt to unravel the interplay between them in HCT-116 and Caco-2 cell lines. The MTT assay was used to assess the GI50 of the drugs. ELIZA was used to determine the protein levels of Beclin-1, LC3, Cox-2, and Bcl-2. Active Caspase-3 was determined by a colorimetric assay. Gene expression levels of ATG5, LC3, Beclin-1, and p62 were assessed by quantitative real-time PCR. In HCT-116 cells, the GI50s for Abemaciclib and Celecoxib were 15.86 and 92.67 µM, respectively, while for Caco-2 cells, the GI50s were 7.85 and 49.02 µM for Abemaciclib and Celecoxib, respectively. Upon treatment of HCT-116 and Caco-2 cells with Abemaciclib, Celecoxib, and their combinations, ATG5, p62, LC3, and Beclin-1 gene expression levels were up-regulated. The protein levels of Beclin-1, LC3, and Caspase-3 were significantly increased, while Bcl-2 was decreased in both cell lines due to single and combined treatments. Both drugs, either alone or in combination, decreased the migration ability of the cells in both cell lines. To conclude, the treatment protocol has the potential to induce cell cycle arrest, diminish the potentiality of cells for migration, and initiate apoptotic and autophagic cell death. Further research is recommended to unravel the potential antitumor effects of Abemaciclib/Celecoxib combination in different cancer types.


Assuntos
Apoptose , Neoplasias do Colo , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Caspase 3/metabolismo , Células CACO-2 , Proteína Beclina-1/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
J Biomol Struct Dyn ; 42(5): 2437-2448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37160705

RESUMO

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a role in healing, including reducing inflammation, promoting fibroblast and keratinocyte migration, and modifying scar tissue. Due to their pleiotropic functions in the wound-healing process in diabetic wounds, MMPs constitute a significant cause of delayed wound closure. COX-2 inhibitors are proven to inhibit inflammation. The present study aims to repurpose celecoxib against MMP-2, MMP-8 and MMP-9 through in silico approaches, such as molecular docking, molecular dynamics, and MMPB/SA analysis. We considered five selective COX-2 inhibitors (celecoxib, etoricoxib, lumiracoxib, rofecoxib and valdecoxib) for our study against MMPs. Based on molecular docking study and hydrogen bonding pattern, celecoxib in complex with three MMPs was further analyzed using 1 µs (1000 ns) molecular dynamics simulation and MMPB/SA techniques. These studies identified that celecoxib exhibited significant binding affinity -8.8, -7.9 and -8.3 kcal/mol, respectively, against MMP-2, MMP-8 and MMP-9. Celecoxib formed hydrogen bonding and hydrophobic (π-π) interactions with crucial substrate pocket amino acids, which may be accountable for their inhibitory nature. The MMPB/SA studies showed that electrostatic and van der Waal energy terms favoured the total free binding energy component, while polar solvation terms were highly disfavored. The in silico analysis of the secondary structures showed that the celecoxib binding conformation maintains relatively stable along the simulation trajectories. These findings provide some key clues regarding the accommodation of celecoxib in the substrate binding S1' pocket and also provide structural insights and challenges in repurposing drugs as new MMP inhibitors with anti-inflammatory and anti-inflammatory wound-healing properties.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Inibidores de Metaloproteinases de Matriz , Simulação de Dinâmica Molecular , Humanos , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Reposicionamento de Medicamentos , Inflamação , Metaloproteinase 2 da Matriz , Metaloproteinase 8 da Matriz , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia
17.
Acta Pharmacol Sin ; 45(1): 193-208, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749237

RESUMO

Metastasis of colorectal cancer (CRC) is a leading cause of mortality among CRC patients. Elevated COX-2 and PD-L1 expression in colon cancer tissue has been linked to distant metastasis of tumor cells. Although COX-2 inhibitors and immune checkpoint inhibitors demonstrate improved anti-tumor efficacy, their toxicity and variable therapeutic effects in individual patients raise concerns. To address this challenge, it is vital to identify traditional Chinese medicine components that modulate COX-2 and PD-1/PD-L1: rosmarinic acid (RA) exerts striking inhibitory effect on COX-2, while ginsenoside Rg1 (GR) possesses the potential to suppress the binding of PD-1/PD-L1. In this study we investigated whether the combination of RA and GR could exert anti-metastatic effects against CRC. MC38 tumor xenograft mouse model with lung metastasis was established. The mice were administered RA (100 mg·kg-1·d-1, i.g.) alone or in combination with GR (100 mg·kg-1·d-1, i.p.). We showed that RA (50, 100, 150 µM) or a COX-2 inhibitor Celecoxib (1, 3, 9 µM) concentration-dependently inhibited the migration and invasion of MC38 cells in vitro. We further demonstrated that RA and Celecoxib inhibited the metastasis of MC38 tumors in vitro and in vivo via interfering with the COX-2-MYO10 signaling axis and inhibiting the generation of filopodia. In the MC38 tumor xenograft mice, RA administration significantly decreased the number of metastatic foci in the lungs detected by Micro CT scanning; RA in combination with GR that had inhibitory effect on the binding of PD-1 and PD-L1 further suppressed the lung metastasis of colon cancer. Compared to COX-2 inhibitors and immune checkpoint inhibitors, RA and GR displayed better safety profiles without disrupting the tissue structures of the liver, stomach and colon, offering insights into the lower toxic effects of clinical traditional Chinese medicine against tumors while retaining its efficacy.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácido Rosmarínico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
18.
Andrology ; 12(4): 899-917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37772683

RESUMO

BACKGROUND: Acetaminophen and ibuprofen are widely administered to babies due to their presumed safety as over-the-counter drugs. However, no reports exist on the effects of cyclooxygenase inhibitors on undifferentiated spermatogonia and spermatogonial stem cells. Infancy represents a critical period for spermatogonial stem cell formation and disrupting spermatogonial stem cells or their precursors may be associated with infertility and testicular cancer formation. OBJECTIVES: The goal of this study was to examine the molecular and functional impact of cyclooxygenase inhibition and silencing on early steps of undifferentiated spermatogonia (u spg) and spermatogonial stem cell development, to assess the potential reproductive risk of pharmaceutical cyclooxygenase inhibitors. METHODS: The effects of cyclooxygenase inhibition were assessed using the mouse C18-4 undifferentiated juvenile spermatogonial cell line model, previously shown to include cells with spermatogonial stem cell features, by measuring prostaglandins, cell proliferation, and differentiation, using cyclooxygenase 1- and cyclooxygenase 2-selective inhibitors NS398, celecoxib, and FR122047, acetaminophen, and ibuprofen. Cyclooxygenase 1 gene silencing was achieved using a stable short-hairpin RNA approach and clone selection, then assessing gene and protein expression in RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence studies. RESULTS: Cyclooxygenase 2 inhibitors NS398 and celecoxib, as well as acetaminophen, but not ibuprofen, dose-dependently decreased retinoic acid-induced expression of the spg differentiation gene Stra8, while NS398 decreased the spg differentiation marker Kit, suggesting that cyclooxygenase 2 is positively associated with spg differentiation. In contrast, short-hairpin RNA-based cyclooxygenase 1 silencing in C18-4 cells altered cellular morphology and upregulated Stra8 and Kit, implying that cyclooxygenase 1 prevented spg differentiation. Furthermore, RNA sequencing analysis of cyclooxygenase 1 knockdown cells indicated the activation of several signaling pathways including the TGFb, Wnt, and Notch pathways, compared to control C18-4 cells. Notch pathway genes were upregulated by selective cyclooxygenase inhibitors, acetaminophen and ibuprofen. CONCLUSION: We report that cyclooxygenase 1 and 2 differentially regulate undifferentiated spermatogonia/spermatogonial stem cell differentiation. Cyclooxygenases regulate Notch3 expression, with the Notch pathway targeted by PGD2. These data suggest an interaction between the eicosanoid and Notch signaling pathways that may be critical for the development of spermatogonial stem cells and subsequent spermatogenesis, cautioning about using cyclooxygenase inhibitors in infants.


Assuntos
Nitrobenzenos , Espermatogônias , Sulfonamidas , Neoplasias Testiculares , Humanos , Masculino , Animais , Camundongos , Espermatogônias/metabolismo , Neoplasias Testiculares/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/farmacologia , Ciclo-Oxigenase 2/metabolismo , Celecoxib/farmacologia , Celecoxib/metabolismo , Ibuprofeno/farmacologia , Acetaminofen , Espermatogênese/fisiologia , Diferenciação Celular/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , RNA/metabolismo , Testículo/metabolismo
19.
Cancer Rep (Hoboken) ; 7(1): e1915, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37867289

RESUMO

BACKGROUND: Sinonasal undifferentiated carcinoma (SNUC) is an exceedingly rare head and neck malignancy. No consensus exists on treatment for metastatic disease. CASE: A 56-year-old female was diagnosed with SNUC after endorsing sinus congestion, diplopia, and right orbital pain. Initially treated with surgery and radiation, she later developed significant metastatic disease. She demonstrated progression of her hepatic metastases under pembrolizumab therapy. However, the addition of ipilimumab and a COX-2 inhibitor resulted in significant improvement in her lesions as well as an ongoing durable response. Her regimen was complicated by immune-related adverse events successfully treated with steroids. CONCLUSION: Dual checkpoint inhibition deserves consideration when treating metastatic SNUC, especially after single agent therapy has failed. The positive effect of this treatment may be augmented by IDO1 inhibition.


Assuntos
Carcinoma , Neoplasias do Seio Maxilar , Feminino , Humanos , Pessoa de Meia-Idade , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Neoplasias do Seio Maxilar/patologia , Neoplasias do Seio Maxilar/terapia , Carcinoma/patologia
20.
Immunopharmacol Immunotoxicol ; 46(1): 117-127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047472

RESUMO

BACKGROUND: Splenomegaly can exacerbate liver cirrhosis and portal hypertension. We have previously demonstrated that cyclooxygenase-2 (COX-2) inhibitor can attenuate cirrhotic splenomegaly. However, the mechanism of cirrhotic splenomegaly remains unclear, thus becoming the focus of the present study. MATERIALS AND METHODS: Thioacetamide (TAA) intraperitoneal injection was used to induce cirrhotic splenomegaly. Rats were randomized into the control, TAA and TAA + celecoxib groups. Histological analysis and high-throughput RNA sequencing of the spleen were conducted. Splenic collagen III, α-SMA, Ki-67, and VEGF were quantified. RESULTS: A total of 1461 differentially expressed genes (DEGs) were identified in the spleens of the TAA group compared to the control group. The immune response and immune cell activation might be the major signaling pathways involved in the pathogenesis of cirrhotic splenomegaly. With its immunoregulatory effect, celecoxib presents to ameliorate cirrhotic splenomegaly and liver cirrhosis. Furthermore, 304 coexisting DEGs were obtained between TAA vs. control and TAA + celecoxib vs. TAA. Gene ontology (GO) and KEGG analyses collectively indicated that celecoxib may attenuate cirrhotic splenomegaly through the suppression of splenic immune cell proliferation, inflammation, immune regulation, and fibrogenesis. The impacts on these factors were subsequently validated by the decreased splenic Ki-67-positive cells, macrophages, fibrotic areas, and mRNA levels of collagen III and α-SMA. CONCLUSIONS: Celecoxib attenuates cirrhotic splenomegaly by inhibiting splenic immune cell proliferation, inflammation, and fibrogenesis. The current study sheds light on the therapeutic strategy of liver cirrhosis by targeting splenic abnormalities and provides COX-2 inhibitors as a novel medical treatment for cirrhotic splenomegaly.


Assuntos
Cirrose Hepática , Esplenomegalia , Ratos , Animais , Celecoxib/farmacologia , Esplenomegalia/tratamento farmacológico , Esplenomegalia/etiologia , Esplenomegalia/patologia , Antígeno Ki-67 , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Colágeno , Inflamação/tratamento farmacológico , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA