Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
J Immunol Res ; 2021: 5123823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485535

RESUMO

Acute pancreatitis (AP) is one of the leading causes of hospital admission, 20% of which could progress to the severe type with extensive acinar cell necrosis. Clinical studies have reported that diabetes is an independent risk factor of the incidence of AP and is associated with higher severity than nondiabetic subjects. However, how diabetes participates in AP progression is not well defined. To investigate this question, wild-type (wt) and diabetic db/db mice at the age of 16 weeks were used in the study. AP was induced in wt recipients by 10 injections of 50 µg/kg caerulein with a 1 h interval. One hour after the last caerulein injection, bone marrow cells (BMC) isolated from wt and db/db mice were injected intraperitoneally into the recipients (1 × 107cells/recipient). The recipients with no BMC injection served as controls. Thirteen hours after BMC injection, serum lipase activity was 1.8- and 1.3-folds higher in mice that received db/db BMC, compared with those with no injection and wt BMC injection, respectively (p ≤ 0.02 for both). By H&E staining, the overall severity score was 14.7 for no cell injection and 16.6 for wt BMC injection and increased to 22.6 for db/db BMC injection (p ≤ 0.002 for both). In particular, mice with db/db BMC injection developed more acinar cell necrosis and vacuolization than the other groups (p ≤ 0.03 for both). When sections were stained with an antibody against myeloperoxidase (MPO), the density of MPO+ cells in pancreatitis was 1.9- and 1.6-folds higher than wt BMC and no BMC injection groups, separately (p ≤ 0.02 for both). Quantified by ELISA, db/db BMC produced more IL-6, GM-CSF, and IL-10 compared with wt BMC (p ≤ 0.04 for all). In conclusion, BMC of db/db mice produced more inflammatory cytokines. In response to acinar cell injury, diabetic BMC aggravated the inflammation cascade and acinar cell injury, leading to the progression of acute pancreatitis.


Assuntos
Células da Medula Óssea/imunologia , Complicações do Diabetes/imunologia , Pancreatite/imunologia , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Citocinas/metabolismo , Complicações do Diabetes/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Necrose , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/patologia
2.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165971, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950676

RESUMO

Acute pancreatitis (AP) is associated with impaired acinar cell autophagic flux, intracellular zymogen activation, cell necrosis and inflammation. Activation of the cholinergic system of vagus nerve has been shown to attenuate AP, but the effect of organ-intrinsic cholinergic system on pancreatitis remains unknown. In this study, we aim to examine the effect of α7 nicotinic acetylcholine receptor (α7nAChR) stimulation within the pancreas during AP. In vivo, AP was induced by caerulein plus LPS or ethanol plus palmitoleic acid in mice. In vitro, pancreatic acini were isolated and subjected to cholecystokinin (CCK) stimulation. Mice or acini were pre-treated with PNU-282987 (selective α7nAChR agonist) or methyllycaconitine citrate salt (selective α7nAChR antagonist). Pancreatitis severity, acinar cell injury, autophagic flux, and transcription factor EB (TFEB) pathway were analyzed. Both caerulein plus LPS in vivo and CCK in vitro led to an up-regulation of α7nAChR, indicating activation of pancreas-intrinsic α7nAChR signaling during AP. PNU-282987 decreased acinar cell injury, trypsinogen activation and pancreatitis severity. Conversely, methyllycaconitine citrate salt increased acinar cell injury and aggravated AP. Moreover, activation of α7nAChR by PNU-282987 promoted autophagic flux as indicated by reduced p62, increased LysoTracker staining and decreased number of autolysosomes with undegraded contents. Furthermore, PNU-282987 treatment significantly increased TFEB activity in pancreatic acinar cells. α7nAChR activation also attenuated pancreatic inflammation and NF-κB activation. Our results showed that activation of α7nAChR protected against experimental pancreatitis through enhancing TFEB-mediated acinar cell autophagy, suggesting that activation of pancreas-intrinsic α7nAChR may serve as an endogenous protective mechanism during AP.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Pancreatite/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Aconitina/administração & dosagem , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/administração & dosagem , Compostos Bicíclicos com Pontes/farmacologia , Ceruletídeo/administração & dosagem , Etanol/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
3.
Theranostics ; 10(18): 8298-8314, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724472

RESUMO

Background: There is no curative therapy for severe acute pancreatitis (SAP) due to poor understanding of its molecular mechanisms. Endoplasmic reticulum (ER) stress is involved in SAP and increased expression of ATF6 has been detected in SAP patients. Here, we aimed to investigate the role of ATF6 in a preclinical SAP mouse model and characterize its regulatory mechanism. Methods: Pancreatic tissues of healthy and SAP patients were collected during surgery. Humanized PRSS1 transgenic mice were treated with caerulein to mimic the SAP development, which was crossed to an ATF6 knockout mouse line, and pancreatic tissues from the resulting pups were screened by proteomics. Adenovirus-mediated delivery to the pancreas of SAP mice was used for shRNA-based knockdown or overexpression. The potential functions and mechanisms of ATF6 were clarified by immunofluorescence, immunoelectron microscopy, Western blotting, qRT-PCR, ChIP-qPCR and luciferase reporter assay. Results: Increased expression of ATF6 was associated with elevated apoptosis, ER and mitochondrial disorder in pancreatic tissues from SAP patients and PRSS1 mice. Knockout of ATF6 in SAP mice attenuated acinar injury, apoptosis and ER disorder. AIFM2, known as a p53 target gene, was identified as a downstream regulatory partner of ATF6, whose expression was increased in SAP. Functionally, AIFM2 could reestablish the pathological disorder in SAP tissues in the absence of ATF6. p53 expression was also increased in SAP mice, which was downregulated by ATF6 knockout. p53 knockout significantly suppressed acinar apoptosis and injury in SAP model. Mechanistically, ATF6 promoted AIFM2 transcription by binding to p53 and AIFM2 promoters. Conclusion: These results reveal that ATF6/p53/AIFM2 pathway plays a critical role in acinar apoptosis during SAP progression, highlighting novel therapeutic target molecules for SAP.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Mitocondriais/genética , Pâncreas/patologia , Pancreatite/genética , Proteína Supressora de Tumor p53/genética , Células Acinares/patologia , Fator 6 Ativador da Transcrição/genética , Adulto , Animais , Apoptose/genética , Estudos de Casos e Controles , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Pâncreas/citologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Ativação Transcricional , Tripsina/genética
4.
Gastroenterology ; 159(3): 1036-1050.e8, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445858

RESUMO

BACKGROUND & AIMS: Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS: We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBC△/△) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS: Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBC△/△ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS: Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Inibidores de Calcineurina/uso terapêutico , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Musculares/metabolismo , Pancreatite/imunologia , Células Acinares/metabolismo , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Calcineurina/genética , Calcineurina/imunologia , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/tratamento farmacológico , Cultura Primária de Células
5.
Clin Transl Gastroenterol ; 11(5): e00152, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32358238

RESUMO

INTRODUCTION: Acute pancreatitis (AP) is a healthcare challenge with considerable mortality. Treatment is limited to supportive care, highlighting the need to investigate disease drivers and prognostic markers. Activin A is an established mediator of inflammatory responses, and its serum levels correlate with AP severity. We hypothesized that activin A is independent of body mass index (BMI) and is a targetable promoter of the AP inflammatory response. METHODS: We assessed whether BMI and serum activin A levels are independent markers to determine disease severity in a cohort of patients with AP. To evaluate activin A inhibition as a therapeutic, we used a cerulein-induced murine model of AP and treated mice with activin A-specific neutralizing antibody or immunoglobulin G control, both before and during the development of AP. We measured the production and release of activin A by pancreas and macrophage cell lines and observed the activation of macrophages after activin A treatment. RESULTS: BMI and activin A independently predicted severe AP in patients. Inhibiting activin A in AP mice reduced disease severity and local immune cell infiltration. Inflammatory stimulation led to activin A production and release by pancreas cells but not by macrophages. Macrophages were activated by activin A, suggesting activin A might promote inflammation in the pancreas in response to injury. DISCUSSION: Activin A provides a promising therapeutic target to interrupt the cycle of inflammation and tissue damage in AP progression. Moreover, assessing activin A and BMI in patients on hospital admission could provide important predictive measures for screening patients likely to develop severe disease.


Assuntos
Ativinas/metabolismo , Anti-Inflamatórios/farmacologia , Pâncreas/patologia , Pancreatite/diagnóstico , Índice de Gravidade de Doença , Ativinas/antagonistas & inibidores , Ativinas/sangue , Ativinas/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Índice de Massa Corporal , Linhagem Celular , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Estudos de Coortes , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Ativação de Macrófagos/imunologia , Macrófagos , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pancreatite/sangue , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Admissão do Paciente , Valor Preditivo dos Testes
6.
Biochem Pharmacol ; 177: 113992, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335141

RESUMO

IL-17A combined with TNF-α plays a vital role in inflammatory response and interference of the synergistic effect is an effective strategy for treating inflammatory diseases. Ellipticine, a natural alkaloid, has biological activities on anti-tumor and anti-HIV. However, it is still unknown whether ellipticine can inhibit IL-17A and TNF-α-mediated signaling and has treatment effect on PALI. Here, we reported that ellipticine significantly inhibited the production of pro-inflammatory cytokines and chemokines in pulmonary epithelial cell BEAS-2B treated with IL-17A and TNF-α, but not IL-17A or TNF-α alone. Meanwhile, ellipticine attenuated NF-κB and MAPKs activation in response to IL-17A and TNF-α treatment, inhibited Act1 and TRAF6-mediated NF-κB activation, and blocked the interaction of Act1 with TRAF6. Furthermore, we found that ellipticine significantly alleviated CAE and LPS-induced SAP/PALI. Ellipticine treatment dramatically reduced inflammatory cells infiltration, MPO activity, serum amylase and lipase activity and the protein concentration of BALF. Collectively, our findings indicate that ellipticine inhibits the synergistic effect of IL-17A and TNF-α by targeting on Act1 and TRAF6 interaction and is a potential therapeutic agent for the treatment of SAP/PALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Elipticinas/farmacologia , Interleucina-17/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Amilases/antagonistas & inibidores , Amilases/genética , Amilases/metabolismo , Animais , Linhagem Celular Transformada , Ceruletídeo/administração & dosagem , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Interleucina-17/farmacologia , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/genética , Peroxidase/antagonistas & inibidores , Peroxidase/genética , Peroxidase/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
FEBS Open Bio ; 9(10): 1756-1768, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31380604

RESUMO

Tamoxifen is very successfully used for the induction of CreERT -mediated genomic recombination in conditional mouse models. Recent studies, however, indicated that tamoxifen might also affect the fibrotic response in several disease models following administration, both in vitro and in vivo. In order to investigate a possible effect of tamoxifen on pancreatic fibrogenesis and to evaluate an optimal treatment scheme in an experimental pancreatitis mouse model, we administered tamoxifen by oral gavage to both male and female C57BL/6J mice and then waited for different periods of time before inducing chronic pancreatitis by cerulein. We observed a sex-specific and time-dependent effect of tamoxifen on the fibrotic response as measured by collagen deposition and the number of myofibroblasts and macrophages. The findings of in vitro studies, in which cerulein was administrated with or without 4-hydroxytamoxifen to stimulate primary murine female and male pancreatic stellate cells, supported our in vivo observations. Real-time PCR also indicated that this effect may be related to differences in ERα expression between female and male stellate cells. Our data demonstrate that tamoxifen administration has unignorable side effects, which affect the experimental outcome in a cerulein-based model of chronic pancreatitis in mice. We suggest a 2-week waiting period before cerulein administration to reduce side effects to a minimum for the described fibrosis model in female mice.


Assuntos
Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Pancreatite Crônica/tratamento farmacológico , Tamoxifeno/farmacologia , Administração Oral , Animais , Ceruletídeo/administração & dosagem , Feminino , Fibrose/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pancreatite Crônica/induzido quimicamente , Tamoxifeno/administração & dosagem
8.
Int Immunopharmacol ; 69: 225-234, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738992

RESUMO

Heme oxygenase-1 (HO-1) has an anti-inflammatory action in acute pancreatitis (AP). However, its mechanism of action and natural compounds/drugs to induce HO-1 in pancreas are not well understood. In this study, we investigated the regulatory mechanisms of HO-1 during AP using desoxo-narchinol-A (DN), the natural compound inducing HO-1 in the pancreas. Female C57/BL6 Mice were intraperitoneally injected with supramaximal concentrations of cerulein (50 µg/kg) hourly for 6 h to induce AP. DMSO or DN was administered intraperitoneally, then mice were sacrificed 6 h after the final cerulein injection. Administration of DN increased pancreatic HO-1 expression through activation of activating protein-1, mediated by mitogen-activated protein kinases. Furthermore, DN treatment reduced the pancreatic weight-to-body weight ratio as well as production of digestive enzymes and pro-inflammatory cytokines. Inhibition of HO-1 by tin protoporphyrin IX abolished the protective effects of DN on pancreatic damage. Additionally, DN treatment inhibited neutrophil infiltration into the pancreas via regulation of chemokine (C-X-C motif) ligand 2 (CXCL2) by HO-1. Our results suggest that DN is an effective inducer of HO-1 in the pancreas, and that HO-1 regulates neutrophil infiltration in AP via CXCL2 inhibition.


Assuntos
Quimiocina CXCL2/metabolismo , Heme Oxigenase-1/metabolismo , Neutrófilos/fisiologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Doença Aguda , Amilases/sangue , Animais , Ceruletídeo/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/metabolismo , Infiltração de Neutrófilos , Pâncreas/patologia , Pancreatite/patologia
9.
Int Immunopharmacol ; 69: 169-177, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716587

RESUMO

Inflammasomes promote the production of pro-inflammatory cytokines, such as interleukin (IL)-1ß and IL-18, which are the representative mediators of inflammation. Abnormal activation of inflammasomes leads to the development of inflammatory diseases such as acute pancreatitis (AP). In this study, we demonstrate the inhibitory effects of a new natural compound fraxinellone on inflammasome formation and examine the role of inflammasomes in a mouse model of AP. AP was induced with hourly intraperitoneal injections of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 µg/kg) for 6 h. Mice were sacrificed 6 h after the final cerulein injection. Blood and pancreas samples were obtained for further experiments. Intraperitoneal injection of fraxinellone significantly inhibited the pancreatic activation of multiple inflammasome molecules such as NACHT, LRR and PYD domains-containing protein 3 (NLRP3), PY-CARD, caspase-1, IL-18, and IL-1ß during AP. In addition, fraxinellone treatment inhibited pancreatic injury, elevation in serum amylase and lipase activities, and infiltration of inflammatory cells such as neutrophils and macrophages but had no effect on pancreatic edema. To investigate whether inflammasome activation leads to the infiltration of inflammatory cells, we used parthenolide, a well-known natural inhibitor, and IL-1 receptor antagonist mice. The inhibition of inflammasome activation by pharmacological/or genetic modification restricted the infiltration of inflammatory cells, but not edema, consistent with the results observed with fraxinellone. Taken together, our study highlights fraxinellone as a natural inhibitor of inflammasomes and that inflammasome inhibition may lead to the suppression of inflammatory cells during AP.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzofuranos/uso terapêutico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Neutrófilos/imunologia , Pancreatite/tratamento farmacológico , Doença Aguda , Animais , Movimento Celular/efeitos dos fármacos , Ceruletídeo/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
J Cell Biochem ; 120(1): 799-808, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206968

RESUMO

OBJECTIVES: Our study aimed to probe the effects of rosiglitazone treatment on a severe acute pancreatitis (SAP) model induced by caerulein and investigate the underlying mechanism. METHODS: Differentially expressed messenger RNAs (mRNAs) in the mice of a SAP group were screened out by microarray analysis. The inflammatory response pathway was obtained from the online website DAVID Bioinformatics Resources 6.8. The interactions of caerulein and its target proteins were shown by search tool for interactions of chemicals (STITCH). Functional interactions of the genes associated with pancreatitis and the target proteins of caerulein were obtained with search tool for interactions of chemicals (STRING). SAP mice were established by hourly intraperitoneal injection of caerulein. Rosiglitazone was used as treatment drug, and pancreatic inflammation was assessed. The expression of Socs3 was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. The expression of interleukin (IL)-6, IL-1b, and Egr1 were studied by RT-PCR and Western blot analysis. RESULTS: The GSE77983 data were analyzed, and the results showed that Socs3 was overexpressed in SAP tissues. The inflammation response pathway in pancreas was selected by DAVID, STITCH, and STRING. After injection of rosiglitazone in mice, the serum levels of amylase and lipase were decreased. Furthermore, the mRNA and protein levels of Socs3 and inflammatory cytokines in pancreatic tissues were downregulated. CONCLUSIONS: Rosiglitazone could protect mice with SAP from injury by downregulating Socs3 and inhibiting the inflammatory response pathway.


Assuntos
Pancreatite/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Rosiglitazona/uso terapêutico , Animais , Ceruletídeo/administração & dosagem , Ceruletídeo/farmacologia , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Injeções Intraperitoneais , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Pancreatite/induzido quimicamente , Substâncias Protetoras/farmacologia , RNA Mensageiro/metabolismo , Rosiglitazona/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
11.
Biochem Biophys Res Commun ; 509(2): 421-428, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30594397

RESUMO

Acute pancreatitis (AP) is a severe and frequently lethal disorder, but the precise mechanisms are not well understood and there is lack of effective drugs. Therefore, our study examined the in vivo intervention effects of genistein and elucidated its mechanism in acute experimental pancreatitis models. We used cerulein or taurocholate to induce acute pancreatitis (AP) in Sprague-Dawley rats with prior genistein treatment. Histological examination of the pancreas was performed and the expression of unfolded protein response (UPR) components and apoptotic mediators like caspase 12 and c-Jun N-terminal protein kinase (JNK) were measured. The amount of apoptosis in pancreatic acinar cells was also determined. Our studies found that the severity of cerulein- or taurocholate-induced AP was rescued by prior genistein treatment. Genistein stimulated the activation of multiple endoplasmic reticulum (ER) stress-related regulators like GRP78, PERK, eIF2α, and upregulated the expression of the apoptotic genes, caspase 12 and CHOP. Moreover, TUNEL assays showed that genistein treatment promoted acinar cell apoptosis. Taken together, we speculated that ER stress-associated apoptotic pathways in AP are induced by genistein, which showed cytoprotective capacity in the exocrine pancreas. These data suggest novel therapeutic strategies that employ genistein in the prevention of AP.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Genisteína/farmacologia , Pancreatite Necrosante Aguda/tratamento farmacológico , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Apoptose/genética , Caspase 12/genética , Caspase 12/metabolismo , Ceruletídeo/administração & dosagem , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/genética , Pancreatite Necrosante Aguda/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Ácido Taurocólico/administração & dosagem , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
12.
Stem Cell Res Ther ; 9(1): 282, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359310

RESUMO

BACKGROUND: Severe acute pancreatitis (SAP) is an acute abdominal disease characterized by pancreatic necrosis and systemic disease. In a previous study, we showed that bone marrow-derived mesenchymal stem cells (BMSCs) can reduce SAP by secreting microRNA (miR)-9; however, the underlying mechanism remains unclear. The present study investigated the mechanism underlying BMSC-induced pancreatic regeneration. METHODS: BMSCs were isolated, and miR-9 modified/antagonized BMSCs (pri-miR-9-BMSCs/TuD-BMSCs) were generated and injected into SAP rats. The levels of inflammatory cytokines and histopathologic changes were examined using ELISA and H&E staining. Angiogenesis was analyzed by qRT-PCR, western blotting, and immunohistochemistry. Cell function tests, dual luciferase reporter assays, cell co-culture, western blotting, and cell tracing were used to explore the mechanisms underlying miR-9 induced angiogenesis. RESULTS: Pri-miR-9-BMSCs induced angiogenesis in SAP rats (Ang-1↑, TIE-2↑, and CD31↑) and repaired damaged vascular endothelial cells (VECs) in vitro, promoting angiogenesis (Ang-1↑, TIE-2↑, PI3K↑, AKT↑, p-AKT↑, CD31↑, and CD34↑). Pri-miR-9-BMSCs released miR-9 into VECs or injured pancreatic tissue, targeting the VE-cadherin gene and promoting PI3K/AKT signaling to treat SAP (VE-cadherin↓, ß-catenin↓, PI3K↑, p-AKT↑), whereas antagonizing miR-9 in BMSCs did not alleviate or aggravated SAP. CONCLUSIONS: Pri-miR-9-BMSCs can repair injured pancreatic tissue by secreting miR-9 and promoting angiogenesis.


Assuntos
Engenharia Genética/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/genética , Pancreatite Necrosante Aguda/terapia , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Caderinas/genética , Caderinas/metabolismo , Ceruletídeo/administração & dosagem , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Masculino , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/genética , Pancreatite Necrosante Aguda/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transfecção , beta Catenina/genética , beta Catenina/metabolismo
13.
Sci Rep ; 8(1): 8829, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891873

RESUMO

Severe acute pancreatitis is a lethal inflammatory disease frequently accompanied by pancreatic necrosis. We aimed to identify a key regulator in the development of pancreatic necrosis. A cytokine/chemokine array using sera from patients with acute pancreatitis (AP) revealed that serum CXCL16 levels were elevated according to the severity of pancreatitis. In a mouse model of AP, Cxcl16 expression was induced in pancreatic acini in the late phase with the development of pancreatic necrosis. Cxcl16-/- mice revealed similar sensitivity as wild-type (WT) mice to the onset of pancreatitis, but better resisted development of acinar cell necrosis with attenuated neutrophil infiltration. A cytokine array and immunohistochemistry revealed lower expression of Ccl9, a neutrophil chemoattractant, in the pancreatic acini of Cxcl16-/- mice than WT mice. Ccl9 mRNA expression was induced by stimulation with Cxcl16 protein in pancreatic acinar cells in vitro, suggesting a Cxcl16/Ccl9 cascade. Neutralizing antibody against Cxcl16 ameliorated pancreatic injury in the mouse AP model with decreased Ccl9 expression and less neutrophil accumulation. In conclusion, Cxcl16 expressed in pancreatic acini contributes to the development of acinar cell necrosis through the induction of Ccl9 and subsequent neutrophil infiltration. CXCL16 could be a new therapeutic target in AP.


Assuntos
Células Acinares/metabolismo , Células Acinares/patologia , Ceruletídeo/toxicidade , Quimiocina CXCL16/metabolismo , Quimiocinas CC/análise , Proteínas Inflamatórias de Macrófagos/análise , Neutrófilos/imunologia , Pancreatite Necrosante Aguda/patologia , Animais , Ceruletídeo/administração & dosagem , Quimiocina CXCL16/sangue , Quimiocina CXCL16/deficiência , Quimiocinas CC/sangue , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Proteínas Inflamatórias de Macrófagos/sangue , Camundongos , Camundongos Knockout , Pancreatite Necrosante Aguda/induzido quimicamente , Soro/química
14.
J Coll Physicians Surg Pak ; 27(10): 606-610, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29056120

RESUMO

OBJECTIVE: To create acute pancreatitis condition experimentally in rats using cerulein, and to reveal histopathological effects in pancreatic tissue with erdosteine. STUDY DESIGN: An experimental study. PLACE AND DURATION OF STUDY: Department of General Surgery, Duzce University, Turkey, from June to October 2014. METHODOLOGY: Thirty male Wistar albino rats were divided into three groups. No procedures were applied to Group 1. The rats in Group 2 and Group 3 were injected cerulein, to establish an experimental pancreatitis model and the blood amylase and lipase values were examined. The rats in Group 3 were given 10 mg/kg erdosteine. This treatment was continued for another 2 days and the rats were sacrificed. The pancreatic tissues were examined histopathologically for edema, inflammation, acinar necrosis, fat necrosis, and vacuolization. RESULTS: The lipase and amylase values and the histopathological examination of pancreatic tissues evidenced that the experimental acute pancreatitis model was established and edema, inflammation, acinar necrosis, fat necrosis, and vacuolization were observed in the pancreatic tissues. The statistical results suggest that erdosteine can decrease the edema, inflammation, acinar necrosis, fat necrosis and vacuolization scores in the tissues. CONCLUSION: The severity of acute pancreatitis, induced by cerulein in rats, is reduced with the use of erdosteine.


Assuntos
Ceruletídeo/efeitos adversos , Expectorantes/farmacologia , Pâncreas/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Tioglicolatos/farmacologia , Tiofenos/farmacologia , Doença Aguda , Amilases/sangue , Animais , Ceruletídeo/administração & dosagem , Modelos Animais de Doenças , Edema , Expectorantes/administração & dosagem , Lipase , Masculino , Necrose/patologia , Pâncreas/patologia , Pancreatite/sangue , Pancreatite/patologia , Ratos , Ratos Wistar , Tioglicolatos/administração & dosagem , Tiofenos/administração & dosagem , Resultado do Tratamento
15.
Mol Ther ; 25(11): 2490-2501, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784560

RESUMO

The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 105 or 1 × 106 GFP+ ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP+ ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP+ ASCs migrated to pancreas and differentiated into amylase+ cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase+ cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis.


Assuntos
Tecido Adiposo/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pancreatite Crônica/terapia , Células Acinares/citologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Tecido Adiposo/metabolismo , Amilases/genética , Amilases/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Ceruletídeo/administração & dosagem , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Etanol/administração & dosagem , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Theranostics ; 7(2): 285-294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042334

RESUMO

Purpose: To investigate whether Caerulein-induced acute pancreatitis (AP) in rats could be noninvasively studied by clinical magnetic resonance imaging (MRI) techniques and validated by enzymatic biochemistry and histomorphology. Materials and Methods: The study was approved by the institutional animal ethical committee. The AP was induced in 26 rats by intraperitoneal injections of Caerulein, as compared to 6 normal rats. T2-weighted 3D MRI, T2 relaxation measurement and contrast enhanced T1-weighted MRI were performed at 3 Tesla. Pancreatic volume and contrast ratio of pancreas against surrounding tissues were measured by MRI. Animals were scarified at 3, 8, 24 and 48-hr respectively for analyses of serum lipase and amylase levels, and biliopancreatic perfusion-assisted histomorphology. Results: The AP could be observed on MRI 3-hr onwards after Caerulein-administration. T2 relaxation within the pancreas was prolonged due to high water content or edema. Increase of vascular permeability was indicated by T1 contrast enhancement. Both edema and vascular permeability gradually recovered afterwards (p<0.05/0.01), paralleled by declining serum enzyme levels (p<0.05). Microscopy revealed cell vacuolization and edema for early stage, and increased inflammatory cell infiltration and acinar cell loss after 24 and 48-hr. Conclusion: Multiparametric MRI techniques at 3.0T could facilitate noninvasive diagnosis and characterization of Caerulein induced AP in rats, as validated by a novel ex vivo method.


Assuntos
Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Técnicas de Laboratório Clínico , Histocitoquímica , Imageamento por Ressonância Magnética/métodos , Pancreatite Necrosante Aguda/diagnóstico por imagem , Pancreatite Necrosante Aguda/patologia , Animais , Injeções Intraperitoneais , Pâncreas/patologia , Pancreatite Necrosante Aguda/induzido quimicamente , Ratos
17.
Neoplasia ; 18(3): 172-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26992918

RESUMO

The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Supressoras de Tumor/genética , Células Acinares/patologia , Animais , Transformação Celular Neoplásica/patologia , Ceruletídeo/administração & dosagem , Heterozigoto , Proteínas de Homeodomínio/biossíntese , Humanos , Inflamação/genética , Inflamação/patologia , Metaplasia/genética , Metaplasia/patologia , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteínas Supressoras de Tumor/biossíntese
18.
Mucosal Immunol ; 9(5): 1234-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26813347

RESUMO

Nucleotide-binding oligomerization domain 1 (NOD1) fulfills important host-defense functions via its responses to a variety of gut pathogens. Recently, however, we showed that in acute pancreatitis caused by administration of cholecystokinin receptor (CCKR) agonist (cerulein) NOD1 also has a role in inflammation via its responses to gut commensal organisms. In the present study, we explored the long-term outcome of such NOD1 responsiveness in a new model of chronic pancreatitis induced by repeated administration of low doses of cerulein in combination with NOD1 ligand. We found that the development of chronic pancreatitis in this model requires intact NOD1 and type I IFN signaling and that such signaling mediates a macrophage-mediated inflammatory response that supports interleukin (IL)-33 production by acinar cells. The IL-33, in turn, has a necessary role in the induction of IL-13 and TGF-ß1, factors causing the fibrotic reaction characteristic of chronic pancreatitis. Interestingly, the Th2 effects of IL-33 were attenuated by the concomitant type I IFN response since the inflammation was marked by clear increases in IFN-γ and TNF-α production but only marginal increases in IL-4 production. These studies establish chronic pancreatitis as an IL-33-dependent inflammation resulting from synergistic interactions between the NOD1 and CCKR signaling pathways.


Assuntos
Ceruletídeo/administração & dosagem , Ácido Diaminopimélico/análogos & derivados , Interleucina-33/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Pancreatite Crônica/imunologia , Receptores da Colecistocinina/imunologia , Células Acinares/efeitos dos fármacos , Células Acinares/imunologia , Células Acinares/patologia , Animais , Ácido Diaminopimélico/administração & dosagem , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-33/genética , Interleucina-4/genética , Interleucina-4/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/genética , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Receptores da Colecistocinina/genética , Transdução de Sinais , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
19.
Appl Microbiol Biotechnol ; 100(1): 337-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26411454

RESUMO

Hydrogen sulphide (H2S) is an endogenous inflammatory mediator produced by cystathionine-γ-lyase (CSE) in monocytes/macrophages. To determine the role of H2S and macrophages in inflammation, we used small interference RNA (siRNA) to target the CSE gene and investigated its effect in a mouse model of acute pancreatitis. Acute pancreatitis is characterised by increased levels of plasma amylase, myeloperoxidase (MPO) activity and pro-inflammatory cytokines and chemokines in the pancreas and lung. SiRNA treatment attenuated inflammation in the pancreas and lungs of mice following caerulein-induced acute pancreatitis. MPO activity increased in caerulein-induced acute pancreatitis (16.21 ± 3.571 SD fold increase over control) and treatment with siRNA significantly reduced this (mean 3.555 ± 2.522 SD fold increase over control) (p < 0.0001). Similarly, lung MPO activity increased following treatment with caerulein (3.56 ± 0.941 SD fold increase over control) while siRNA treatment significantly reduced MPO activity (0.8243 ± 0.4353 SD fold increase over control) (p < 0.0001). Caerulein treatment increased plasma amylase activity (7094 ± 207 U/l) and this significantly decreased following siRNA administration (5895 ± 115 U/l) (p < 0.0001). Cytokine and chemokine levels in caerulein-induced acute pancreatitis reduced following treatment with siRNA. For example, siRNA treatment significantly decreased pancreatic and lung monocyte chemoattractant protein (MCP)-1 (169.8 ± 59.75 SD; 90.01 ± 46.97 SD pg/ml, respectively) compared to caerulein-treated mice (324.7 ± 103.9 SD; 222.8 ± 85.37 SD pg/ml, pancreas and lun,g respectively) (p < 0.0001). These findings show a crucial pro-inflammatory role for H2S synthesised by CSE in macrophages in acute pancreatitis and suggest CSE gene silencing with siRNA as a potential therapeutic approach for this condition.


Assuntos
Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Monócitos/enzimologia , Pancreatite Necrosante Aguda/prevenção & controle , RNA Interferente Pequeno/metabolismo , Amilases/sangue , Animais , Análise Química do Sangue , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Citocinas/sangue , Modelos Animais de Doenças , Inativação Gênica , Pulmão/patologia , Camundongos , Monócitos/imunologia , Pâncreas/patologia , Pancreatite Necrosante Aguda/induzido quimicamente , Pancreatite Necrosante Aguda/patologia , Peroxidase/análise
20.
Cell Physiol Biochem ; 33(5): 1411-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24853800

RESUMO

UNLABELLED: BACKGOUND/AIMS: The injection of cerulein, an analogue of the pancreatic secretagogue cholecystokinin (CCK), induces acute pancreatitis in mice that is accompanied by the synthesis of the transcription factor Egr-1. The signaling cascade that connects cerulein stimulation with enhanced Egr-1 biosynthesis was analyzed. METHODS: AR42J rat pancreatic acinar cells were used as a model system to measure cerulein-induced Egr-1 biosynthesis. For comparison, the signaling cascade induced by activation of Gαq-coupled designer receptors with the designer drug clozapine-N-oxide (CNO) was investigated. RESULTS: Stimulation of AR42J cells with cerulein induced a robust and transient biosynthesis of Egr-1. The signaling cascade connecting cerulein stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca(2+) and the activation of the protein kinases PKC, Raf and ERK, while expression of MKP-1 prevented Egr-1 biosynthesis in cerulein-stimulated AR42J cells. In addition, ternary complex factors are required to connect cerulein stimulation with enhanced transcription of the Egr-1 gene. Egr-1 biosynthesis induced in CNO-stimulated AR42J pancreatic acinar cells expressing Gαq-coupled designer receptors required identical signaling molecules, although subtle differences were observed in comparison to cerulein/CCK receptor signaling. CONCLUSION: We propose that overstimulation of the canonical Gαq-induced signaling pathway may be crucial for inducing acute pancreatitis.


Assuntos
Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Ceruletídeo/farmacologia , Colecistocinina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Cultivadas , Ceruletídeo/administração & dosagem , Pâncreas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA