Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.148
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731820

RESUMO

A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.


Assuntos
Retículo Endoplasmático , Epilepsias Mioclônicas , Proteólise , Receptores de GABA-A , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Humanos , Convulsões Febris/metabolismo , Convulsões Febris/genética , Degradação Associada com o Retículo Endoplasmático , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Mutação , Células HEK293 , Chaperona BiP do Retículo Endoplasmático/metabolismo
2.
Genes Dev ; 38(7-8): 336-353, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744503

RESUMO

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas , Melanoma , Humanos , Melanoma/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Histonas/genética , Acetilação , Apoptose/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
3.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722426

RESUMO

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regiões Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinais Direcionadores de Proteínas/genética
4.
Vet Res ; 55(1): 60, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750480

RESUMO

Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Infecções Estreptocócicas , Streptococcus agalactiae , Estresse Fisiológico , Streptococcus agalactiae/fisiologia , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/genética , Virulência , Animais , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Ciclídeos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Camundongos , Células RAW 264.7
5.
PeerJ ; 12: e17197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708341

RESUMO

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Assuntos
Resposta ao Choque Térmico , Legionella pneumophila , Legionella pneumophila/genética , Resposta ao Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Alta , Evolução Molecular
6.
Nat Commun ; 15(1): 4132, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755165

RESUMO

The regulated release of chemical messengers is crucial for cell-to-cell communication; abnormalities in which impact coordinated human body function. During vesicular secretion, multiple SNARE complexes assemble at the release site, leading to fusion pore opening. How membrane fusion regulators act on heterogeneous SNARE populations to assemble fusion pores in a timely and synchronized manner, is unknown. Here, we demonstrate the role of SNARE chaperones Munc13-1 and Munc18-1 in rescuing individual nascent fusion pores from their diacylglycerol lipid-mediated inhibitory states. At the onset of membrane fusion, Munc13-1 clusters multiple SNARE complexes at the release site and synchronizes release events, while Munc18-1 stoichiometrically interacts with trans-SNARE complexes to enhance N- to C-terminal zippering. When both Munc proteins are present simultaneously, they differentially access dynamic trans-SNARE complexes to regulate pore properties. Overall, Munc proteins' direct action on fusion pore assembly indicates their role in controlling quantal size during vesicular secretion.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas do Tecido Nervoso , Proteínas SNARE , Proteínas Munc18/metabolismo , Proteínas Munc18/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ratos
7.
Nat Commun ; 15(1): 3736, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744818

RESUMO

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Assuntos
Mitose , Proteínas Inibidoras de STAT Ativados , Humanos , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Animais , Linhagem Celular Tumoral , Camundongos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Interferência de RNA , Fuso Acromático/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Complexo de Endopeptidases do Proteassoma/metabolismo , Sumoilação , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Feminino
8.
PLoS One ; 19(5): e0303235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728287

RESUMO

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Assuntos
Autofagia , Galectina 3 , Aprendizado de Máquina , Neurônios , Animais , Neurônios/metabolismo , Ratos , Galectina 3/metabolismo , Galectina 3/genética , Ratos Sprague-Dawley , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Mapas de Interação de Proteínas , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética
9.
Sci Rep ; 14(1): 7666, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561384

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy with poor prognosis. Abnormal expression of H3-H4 histone chaperones has been identified in many cancers and holds promise as a biomarker for diagnosis and prognosis. However, systemic analysis of H3-H4 histone chaperones in HCC is still lacking. Here, we investigated the expression of 19 known H3-H4 histone chaperones in HCC. Integrated analysis of multiple public databases indicated that these chaperones are highly expressed in HCC tumor tissues, which was further verified by immunohistochemistry (IHC) staining in offline samples. Additionally, survival analysis suggested that HCC patients with upregulated H3-H4 histone chaperones have poor prognosis. Using LASSO and Cox regression, we constructed a two-gene model (ASF1A, HJURP) that accurately predicts prognosis in ICGC-LIRI and GEO HCC data, which was further validated in HCC tissue microarrays with follow-up information. GSEA revealed that HCCs in the high-risk group were associated with enhanced cell cycle progression and DNA replication. Intriguingly, HCCs in the high-risk group exhibited increased immune infiltration and sensitivity to immune checkpoint therapy (ICT). In summary, H3-H4 histone chaperones play a critical role in HCC progression, and the two-gene (ASF1A, HJURP) risk model is effective for predicting survival outcomes and sensitivity to immunotherapy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Neoplasias Hepáticas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Prognóstico
10.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612382

RESUMO

A neurological condition called dystonia results in abnormal, uncontrollable postures or movements because of sporadic or continuous muscular spasms. Several varieties of dystonia can impact people of all ages, leading to severe impairment and a decreased standard of living. The discovery of genes causing variations of single or mixed dystonia has improved our understanding of the disease's etiology. Genetic dystonias are linked to several genes, including pathogenic variations of VPS16, TOR1A, THAP1, GNAL, and ANO3. Diagnosis of dystonia is primarily based on clinical symptoms, which can be challenging due to overlapping symptoms with other neurological conditions, such as Parkinson's disease. This review aims to summarize recent advances in the genetic origins and management of focal dystonia.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/diagnóstico , Distonia/genética , Distonia/terapia , Movimento , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA , Proteínas Reguladoras de Apoptose , Anoctaminas
11.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642191

RESUMO

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Assuntos
Cobre , Metais Pesados , Cobre/metabolismo , Silício/farmacologia , Silício/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Suplementos Nutricionais
12.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588611

RESUMO

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Assuntos
Chaperonina 60 , Cardiopatias Congênitas , Animais , Camundongos , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatias Congênitas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miócitos Cardíacos/metabolismo
13.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648719

RESUMO

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Assuntos
Proteínas de Drosophila , Proteínas de Choque Térmico HSP40 , Memória de Longo Prazo , Animais , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Memória de Longo Prazo/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Corpos Pedunculados/metabolismo , Multimerização Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
14.
Biochem Biophys Res Commun ; 714: 149964, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38669753

RESUMO

Human DDX3X, an important member of the DEAD-box family RNA helicases, plays a crucial role in RNA metabolism and is involved in cancer development, viral infection, and neurodegenerative disease. Although there have been many studies on the physiological functions of human DDX3X, issues regarding its exact targets and mechanisms of action remain unclear. In this study, we systematically characterized the biochemical activities and substrate specificity of DDX3X. The results demonstrate that DDX3X is a bidirectional RNA helicase to unwind RNA duplex and RNA-DNA hybrid driven by ATP. DDX3X also has nucleic acid annealing activity, especially for DNA. More importantly, it can function as a typical nucleic acid chaperone which destabilizes highly structured DNA and RNA in an ATP-independent manner and promotes their annealing to form a more stable structure. Further truncation mutations confirmed that the highly disordered N-tail and C-tail are critical for the biochemical activities of DDX3X. They are functionally complementary, with the N-tail being crucial. These results will shed new light on our understanding of the molecular mechanism of DDX3X in RNA metabolism and DNA repair, and have potential significance for the development of antiviral/anticancer drugs targeting DDX3X.


Assuntos
Trifosfato de Adenosina , RNA Helicases DEAD-box , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Trifosfato de Adenosina/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Especificidade por Substrato , RNA/metabolismo , RNA/química , RNA/genética , DNA/metabolismo , DNA/química
15.
J Cell Mol Med ; 28(9): e18209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682349

RESUMO

Ferroptosis is a new type of programmed cell death, which has been involved in the progression of tumours. However, the regulatory network of ferroptosis in pancreatic cancer is still largely unknown. Here, using datasets from GEO and TCGA, we screened HSPB1, related to the P450 monooxygenase signalling, a fuel of ferroptosis, to be a candidate gene for regulating pancreatic cancer cell ferroptosis. We found that HSPB1 was enriched in the exosomes derived from human pancreatic cancer cell lines SW1990 and Panc-1. Then, hypoxic SW1990 cells were incubated with exosomes alone or together with HSPB1 siRNA (si-HSPB1), and we observed that exosomes promoted cell proliferation and invasion and suppressed ferroptosis, which was reversed by si-HSPB1. Moreover, we found a potential binding affinity between HSPB1 and FUS, verified their protein interaction by using dual-colour fluorescence colocalization and co-IP assays, and demonstrated the promoting effect of FUS on oxidative stress and ferroptosis in hypoxic SW1990 cells. Subsequently, FUS was demonstrated to bind with and stabilize the mRNA of Nrf2, a famous anti-ferroptosis gene that negatively regulates the level of P450. Furthermore, overexpressing FUS and activating the Nrf2/HO-1 pathway (using NK-252) both reversed the inhibitory effect of si-HSPB1 on exosome functions. Finally, our in vivo studies showed that exosome administration promote tumour growth in nude mice of xenotransplantation, which was able to be eliminated by knockdown of HSPB1. In conclusion, exosomal HSPB1 interacts with the RNA binding protein FUS and decreases FUS-mediated stability of Nrf2 mRNA, thus suppressing hypoxia-induced ferroptosis in pancreatic cancer.


Assuntos
Exossomos , Ferroptose , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico , Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , RNA Mensageiro , Proteína FUS de Ligação a RNA , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ferroptose/genética , Exossomos/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Proliferação de Células , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Camundongos Nus , Estabilidade de RNA , Ligação Proteica
16.
Biochemistry ; 63(9): 1147-1161, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640496

RESUMO

HdeA and HdeB are dimeric ATP-independent acid-stress chaperones, which protect the periplasmic proteins of enteric bacteria at pH 2.0 and 4.0, respectively, during their passage through the acidic environment of the mammalian stomach. Despite being structurally similar, they exhibit distinct functional pH optima and conformational prerequisite for their chaperone action. HdeA undergoes a dimer-to-monomer transition at pH 2.0, whereas HdeB remains dimeric at pH 4.0. The monomerization of HdeA exposes its hydrophobic motifs, which facilitates its interaction with the partially folded substrates. How HdeB functions despite maintaining its dimeric conformation has been poorly elucidated in the literature. Herein, we characterized the conformational states and stability of HdeB at its physiologically relevant pH and compared the data with those of HdeA. At pH 4.0, HdeB exhibited distinct spectroscopic signatures and higher stability against heat and guanidine-HCl-induced denaturation than at pH 7.5. We affirm that the pH 4.0 conformer of HdeB was distinct from that at pH 7.5 and that these two conformational states were hierarchically unrelated. Salt-bridge mutations that perturbed HdeB's intersubunit interactions resulted in the loss of its stability and function at pH 4.0. In contrast, mutations affecting intrasubunit interactions enhanced its function, albeit with a reduction in stability. These findings suggest that, unlike HdeA, HdeB acts as a noncanonical chaperone, where pH-dependent stability and conformational rearrangement at pH 4.0 play a core role in its chaperone function rather than its surface hydrophobicity. Such rearrangement establishes a stability-function trade-off that allows HdeB to function while maintaining its stable dimeric state.


Assuntos
Proteínas de Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares , Conformação Proteica , Estabilidade Proteica , Concentração de Íons de Hidrogênio , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Multimerização Proteica , Desnaturação Proteica
17.
Redox Biol ; 72: 103156, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640584

RESUMO

Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas de Transporte de Cobre , Hipocampo , Mitofagia , Neurônios , Estresse Oxidativo , Proteína Desglicase DJ-1 , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/genética , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/genética , Proteínas de Transporte de Cobre/metabolismo , Proteínas de Transporte de Cobre/genética , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Masculino , Antioxidantes/metabolismo , Linhagem Celular , Humanos
18.
Bull Exp Biol Med ; 176(4): 477-480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492099

RESUMO

Adaptor proteins stress induced phosphoprotein 1 (STIP1) and ST13 Hsp70 interacting protein (ST13) may play a crucial role in the pathophysiology of ischemic stroke through controlling protein folding, neuronal survival, and regulation of HSP70/HSP90. The present pilot study investigated whether tagSNPs in genes encoding ST13 (rs138335, rs138344, rs7290793, and rs138344) and STIP1 (rs4980524) are associated with ischemic stroke. DNA samples from 721 ischemic stroke patients and 471 healthy controls were genotyped using the MassArray-4. Our research revealed a relationship between rs138344 ST13 and the risk of ischemic stroke, which was seen only in females (risk allele G; OR=1.34, 95%CI=1.07-1.69; p=0.01). The haplotype rs138335G-rs138344C-rs7290793C ST13 was linked with lower risk of ischemic stroke in females: OR=0.42; 95%CI=0.26-0.68; p=0.0005. Thus, ST13 represents a novel genetic marker for ischemic stroke.


Assuntos
Proteínas de Choque Térmico , AVC Isquêmico , Chaperonas Moleculares , Proteínas Supressoras de Tumor , Feminino , Humanos , Genótipo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/genética , Projetos Piloto , Polimorfismo Genético , Proteínas Supressoras de Tumor/genética
19.
PeerJ ; 12: e17069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549779

RESUMO

In this work we carried out an in silico analysis to understand the interaction between InvF-SicA and RNAP in the bacterium Salmonella Typhimurium strain LT2. Structural analysis of InvF allowed the identification of three possible potential cavities for interaction with SicA. This interaction could occur with the structural motif known as tetratricopeptide repeat (TPR) 1 and 2 in the two cavities located in the interface of the InvF and α-CTD of RNAP. Indeed, molecular dynamics simulations showed that SicA stabilizes the Helix-turn-Helix DNA-binding motifs, i.e., maintaining their proper conformation, mainly in the DNA Binding Domain (DBD). Finally, to evaluate the role of amino acids that contribute to protein-protein affinity, an alanine scanning mutagenesis approach, indicated that R177 and R181, located in the DBD motif, caused the greatest changes in binding affinity with α-CTD, suggesting a central role in the stabilization of the complex. However, it seems that the N-terminal region also plays a key role in the protein-protein interaction, especially the amino acid R40, since we observed conformational flexibility in this region allowing it to interact with interface residues. We consider that this analysis opens the possibility to validate experimentally the amino acids involved in protein-protein interactions and explore other regulatory complexes where chaperones are involved.


Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Proteínas de Bactérias/genética , Chaperonas Moleculares/genética , Salmonella typhimurium/genética , Aminoácidos/metabolismo , DNA/metabolismo
20.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542374

RESUMO

In this short review, we presented and discussed studies on the expression of globin genes in ß-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of ß-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of ß-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by ß-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with ß-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.


Assuntos
Hemoglobinopatias , Talassemia beta , Humanos , Talassemia beta/genética , alfa-Globinas/genética , alfa-Globinas/metabolismo , Hemoglobinopatias/genética , Fenótipo , Expressão Gênica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA