Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
BMC Plant Biol ; 24(1): 816, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39210264

RESUMO

BACKGROUND: Suaeda australis is one of typical halophyte owing to high levels of salt tolerance. In addition, the bZIP gene family assumes pivotal functions in response to salt stress. However, there are little reports available regarding the bZIP gene family in S. australis. RESULTS: In this study, we successfully screened 44 bZIP genes within S. australis genome. Subsequently, we conducted an extensive analysis, encompassing investigations into chromosome location, gene structure, phylogenetic relationship, promoter region, conserved motif, and gene expression profile. The 44 bZIP genes were categorized into 12 distinct groups, exhibiting an uneven distribution among the 9 chromosomes of S. australis chromosomes, but one member (Sau23745) was mapped on unanchored scaffolds. Examination of cis-regulatory elements revealed that bZIP promoters were closely related to anaerobic induction, transcription start, and light responsiveness. Comparative transcriptome analysis between ST1 and ST2 samples identified 2,434 DEGs, which were significantly enriched in some primary biological pathways related to salt response-regulating signaling based on GO and KEGG enrichment analysis. Expression patterns analyses clearly discovered the role of several differently expressed SabZIPs, including Sau08107, Sau08911, Sau11415, Sau16575, and Sau19276, which showed higher expression levels in higher salt concentration than low concentration and a response to salt stress. These expression patterns were corroborated through RT-qPCR analysis. The six differentially expressed SabZIP genes, all localized in the nucleus, exhibited positive regulation involved in the salt stress response. SabZIP14, SabZIP26, and SabZIP36 proteins could bind to the promoter region of downstream salt stress-related genes and activate their expressions. CONCLUSIONS: Our findings offer valuable insights into the evolutionary trajectory of the bZIP gene family in S. australis and shed light on their roles in responding to salt stress. In addition to fundamental genomic information, these results would serve as a foundational framework for future investigations into the regulation of salt stress responses in S. australis.


Assuntos
Chenopodiaceae , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Salino , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Tolerância ao Sal/genética , Regiões Promotoras Genéticas , Genes de Plantas
2.
Biomolecules ; 14(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39199278

RESUMO

The taxonomic classification of the genera Salsola L., Pyankovia Akhani and Roalson, and Xylosalsola Tzvelev within Chenopodiaceae Vent. (Amaranthaceae s.l.) remains controversial, with the precise number of species within these genera still unresolved. This study presents a comparative analysis of the complete plastid genomes of S. foliosa, S. tragus, P. affinis, and X. richteri species collected in Kazakhstan. The assembled plastid genomes varied in length, ranging from 151,177 bp to 152,969 bp for X. richteri and S. tragus. These genomes contained 133 genes, of which 114 were unique, including 80 protein-coding, 30 tRNA, and 4 rRNA genes. Thirteen regions, including ndhC-ndhD, rps16-psbK, petD, rpoC2, ndhA, petB, clpP, atpF, ycf3, accD, ndhF-ndhG, matK, and rpl20-rpl22, exhibited relatively high levels of nucleotide variation. A total of 987 SSRs were detected across the four analyzed plastid genomes, primarily located in the intergenic spacer regions. Additionally, 254 repeats were identified, including 92 tandem repeats, 88 forward repeats, 100 palindromic repeats, and only one reverse repeat. A phylogenetic analysis revealed clear clustering into four clusters corresponding to the Salsoleae and Caroxyloneae tribe clades. These nucleotide sequences obtained in this study represent a valuable resource for future phylogenetic analyses within the Salsoleae s.l. tribe.


Assuntos
Genomas de Plastídeos , Filogenia , Genomas de Plastídeos/genética , Chenopodiaceae/genética , Chenopodiaceae/classificação , Repetições de Microssatélites/genética
3.
Physiol Plant ; 176(3): e14384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859697

RESUMO

The present study aims to explore the potential of a plasma-membrane localized PIP2-type aquaporin protein sourced from the halophyte Salicornia brachiata to alleviate salinity and water deficit stress tolerance in a model plant through transgenic intervention. Transgenic plants overexpressing SbPIP2 gene showed improved physio-biochemical parameters like increased osmolytes (proline, total sugar, and amino acids), antioxidants (polyphenols), pigments and membrane stability under salinity and drought stresses compared to control plants [wild type (WT) and vector control (VC) plants]. Multivariate statistical analysis showed that, under water and salinity stresses, osmolytes, antioxidants and pigments were correlated with SbPIP2-overexpressing (SbPIP2-OE) plants treated with salinity and water deficit stress, suggesting their involvement in stress tolerance. As aquaporins are also involved in CO2 transport, SbPIP2-OE plants showed enhanced photosynthesis performance than wild type upon salinity and drought stresses. Photosynthetic gas exchange (net CO2 assimilation rate, PSII efficiency, ETR, and non-photochemical quenching) were significantly higher in SbPIP2-OE plants compared to control plants (wild type and vector control plants) under both unstressed and stressed conditions. The higher quantum yield for reduction of end electron acceptors at the PSI acceptor side [Φ( R0 )] in SbPIP2-OE plants compared to control plants under abiotic stresses indicates a continued PSI functioning, leading to retained electron transport rate, higher carbon assimilation, and less ROS-mediated injuries. In conclusion, the SbPIP2 gene functionally validated in the present study could be a potential candidate for engineering abiotic stress resilience in important crops.


Assuntos
Nicotiana , Fotossíntese , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Antioxidantes/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Chenopodiaceae/genética , Secas , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Nicotiana/metabolismo , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891835

RESUMO

Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the genes in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the only yeast nitrate transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots-its expression rose about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of adult S. altissima plants under nitrogen deficiency.


Assuntos
Proteínas de Transporte de Ânions , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Transportadores de Nitrato , Nitratos , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Nitratos/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Sequência de Aminoácidos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
5.
Nat Commun ; 15(1): 4279, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769297

RESUMO

The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.


Assuntos
Chenopodiaceae , Proteínas de Plantas , Tolerância ao Sal , Chenopodiaceae/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Vacúolos/metabolismo , Salinidade , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Retículo Endoplasmático/metabolismo , Estresse Salino , Proteômica , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Transcriptoma
6.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558078

RESUMO

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Assuntos
Parede Celular , Chenopodiaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Xilema , Tolerância ao Sal/genética , Xilema/fisiologia , Xilema/genética , Xilema/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/fisiologia , Parede Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho Celular , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Genes de Plantas , Diferenciação Celular/genética , Lignina/metabolismo
7.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38388483

RESUMO

Tolerance mechanisms to single abiotic stress events are being investigated in different plant species, but how plants deal with multiple stress factors occurring simultaneously is still poorly understood. Here, we introduce Salicornia europaea as a species with an extraordinary tolerance level to both flooding and high salt concentrations. Plants exposed to 0.5MNaCl (mimicking sea water concentrations) grew larger than plants not exposed to salt. Adding more salt reduced growth, but concentrations up to 2.5MNaCl were not lethal. Regular tidal flooding with salt water (0.5MNaCl) did not affect growth or chlorophyll fluorescence, whereas continuous flooding stopped growth while plants survived. Quantitative polymerase chain reaction (qPCR) analysis of plants exposed to 1% oxygen in air revealed induction of selected hypoxia responsive genes, but these genes were not induced during tidal flooding, suggesting that S. europaea did not experience hypoxic stress. Indeed, plants were able to transport oxygen into waterlogged soil. Interestingly, sequential exposure to salt and hypoxic air changed the expression of several but not all genes as compared to their expression upon hypoxia only, demonstrating the potential to use S . europaea to investigate signalling-crosstalk between tolerance reactions to multiple environmental perturbations.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Oxigênio/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Hipóxia
8.
BMC Genom Data ; 25(1): 10, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287264

RESUMO

BACKGROUND: Krascheninnikovia ceratoides, a perennial halophytic semi-shrub belonging to the genus Krascheninnikovia (Amarathaceae), possesses noteworthy ecological, nutritional, and economic relevance. This species is primarily distributed across arid, semi-arid, and saline-alkaline regions of the Eurasian continent, encompassing Inner Mongolia, Xinjiang, Qinghai, Gansu, Ningxia, and Tibet. RESULTS: We reported the comprehensive chloroplast (cp) genome of K. ceratoides, characterized by a circular conformation spanning 151,968 bp with a GC content of 36.60%. The cp genome encompassed a large single copy (LSC, 84,029 bp), a small single copy (SSC, 19,043 bp), and a pair of inverted repeats (IRs) regions (24,448 bp each). This genome harbored 128 genes and encompassed 150 simple sequence repeats (SSRs). Through comparative analyses involving cp genomes from other Cyclolobeae (Amarathaceae) taxa, we observed that the K. ceratoides cp genome exhibited high conservation, with minor divergence events in protein-coding genes (PCGs) accD, matK, ndhF, ndhK, ycf1, and ycf2. Phylogenetic reconstructions delineated K. ceratoides as the sister taxon to Atriplex, Chenopodium, Dysphania, and Suaeda, thus constituting a robust clade. Intriguingly, nucleotide substitution ratios (Ka/Ks) between K. ceratoides and Dysphania species for ycf1 and ycf2 genes surpassed 1.0, indicating the presence of positive selection pressure on these loci. CONCLUSIONS: The findings of this study augment the genomic repository for the Amarathaceae family and furnish crucial molecular instruments for subsequent investigations into the ecological adaptation mechanisms of K. ceratoides within desert ecosystems.


Assuntos
Chenopodiaceae , Genoma de Cloroplastos , Códon , Genoma de Cloroplastos/genética , Filogenia , Resistência à Seca , Ecossistema , Chenopodiaceae/genética
9.
BMC Genomics ; 25(1): 123, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287293

RESUMO

BACKGROUND: Haloxylon ammodendron holds significance as an ecological plant, showcasing remarkable adaptability to desert conditions, halophytic environments, and sand fixation. With its potential for carbon sequestration, it emerges as a promising candidate for environmental sustainability. Furthermore, it serves as a valuable C4 plant model, offering insights into the genetic foundations of extreme drought tolerance. Despite the availability of plastid and nuclear genomes, the absence of a mitochondrial genome (mitogenome or mtDNA) hinders a comprehensive understanding of its its mtDNA structure, organization, and phylogenetic implications. RESULTS: In the present study, the mitochondrial genome of H. ammodendron was assembled and annotated, resulting in a multi-chromosomal configuration with two circular chromosomes. The mtDNA measured 210,149 bp in length and contained 31 protein-coding genes, 18 tRNA and three rRNA. Our analysis identified a total of 66 simple sequence repeats along with 27 tandem repeats, 312 forward repeats, and 303 palindromic repeats were found. Notably, 17 sequence fragments displayed homology between the mtDNA and chloroplast genome (cpDNA), spanning 5233 bp, accounting for 2.49% of the total mitogenome size. Additionally, we predicted 337 RNA editing sites, all of the C-to-U conversion type. Phylogenetic inference confidently placed H. ammodendron in the Amaranthacea family and its close relative, Suaeda glacum. CONCLUSIONS: H. ammodendron mtDNA showed a multi-chromosomal structure with two fully circularized molecules. This newly characterized mtDNA represents a valuable resource for gaining insights into the basis of mtDNA structure variation within Caryophyllales and the evolution of land plants, contributing to their identification, and classification.


Assuntos
Chenopodiaceae , Genoma Mitocondrial , Plantas Tolerantes a Sal/genética , Filogenia , Chenopodiaceae/genética , DNA Mitocondrial/genética
10.
Mol Biol Rep ; 51(1): 60, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165474

RESUMO

The complete chloroplast genome (plastome) of the annual flowering halophyte herb Suaeda monoica Forssk. ex J. F. Gmel. family (Amaranthaceae) that grows in Jeddah, Saudi Arabia, was identified for the first time in this study. Suaeda monoica is a medicinal plant species whose taxonomic classification remains controversial. Further, studying the species is useful for current conservation and management efforts. In the current study, the full chloroplast genome S. monoica was reassembled using whole-genome next-generation sequencing and compared with the previously published chloroplast genomes of Suaeda species. The chloroplast genome size of Suaeda monoica was 151,789 bp, with a single large copy of 83,404 bp, a small single copy of 18,007 bp and two inverted repeats regions of 25,189 bp. GC content in the whole genome was 36.4%. The cp genome included 87 genes that coded for proteins, 37 genes coding for tRNA, 8 genes coding for rRNA and one non-coding pseudogene. Five chloroplast genome features were compared between S. monoica and S. japonica, S. glauca, S. salsa, S. malacosperma and S. physophora. Among Suaeda genus and equal to most angiosperms chloroplast genomes, the RSCU values were conservative. Two pseudogenes (accD and ycf1), rpl16 intron and ndhF-rpl32 intergenic spacer, were highlighted as suitable DNA barcodes for different Suaeda species. Phylogenetic analyses show Suaeda cluster into three main groups; one in which S. monoica was closer to S. salsa. The obtained result provided valuable information on the characteristics of the S. monoica chloroplast genome and the phylogenetic relationships.


Assuntos
Chenopodiaceae , Genoma de Cloroplastos , Magnoliopsida , Genoma de Cloroplastos/genética , Plantas Tolerantes a Sal/genética , Arábia Saudita , Filogenia , Chenopodiaceae/genética
11.
Gene ; 900: 148139, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185292

RESUMO

The heat stress is a significant environmental challenge and impede the plant growth, development and productivity. The characterization and utilization of novel genes for improving stress tolerance represents a paramount approach in crop breeding. In the present study, we report on cloning of a novel heat-induced chaperonin 10-like gene (SbCPN10L) from Salicornia brachiata and elucidation of its in-planta role in conferring the heat stress endurance. The transgenic tobacco over-expressing SbCPN10L gene exhibited enhanced growth attributes such as higher rate of seed germination, germination and vigor index at elevated (35 ± 1 °C) temperature (eT). The SbCPN10L tobacco exhibited greenish and healthy seedling growth under stress. Compared with control tobacco at eT, the transgenic tobacco had higher water contents, membrane stability index, stress tolerance index and photosynthetic pigments. Lower electrolyte leakage and less accumulation of malondialdehyde, hydrogen peroxide and reactive oxygen species indicated better heat stress tolerance in transgenic tobacco over-expressing SbCPN10L gene. Transgenic tobacco accumulated higher contents of sugars, starch, amino acids and polyphenols at eT. The negative solute potential observed in transgenic tobacco contributed to maintain water content and support improved growth under stress. The up-regulation of NtAPX, NtPOX and NtSOD in transgenic tobacco under stress indicated higher ROS scavenging ability and better physiological conditioning. The results recommend the SbCPN10L gene as a potential candidate gene with an ability to confer heat stress tolerance for climate resilient crops.


Assuntos
Chaperonina 10 , Chenopodiaceae , Plantas Geneticamente Modificadas/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Água/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
12.
Mar Pollut Bull ; 197: 115728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918144

RESUMO

Halophytes can be used to screen genes for breeding salt-tolerant crops and are of great value in the restoration of salinized or contaminated soils. However, the potential of halophytes in improving saline soils remains limited. In this paper, based on the latest research progress, we use Suaeda salsa L. as an example to evaluate the value of halophytes in developing saline agriculture including: 1) some defined salt-resistance genes and high-affinity nitrate transporter genes in the species for breeding salt-tolerance and nitrogen efficiency crops; 2) the value of S. salsa and microorganisms from S. salsa in remediation of heavy metal contaminated and organic polluted saline soils; and 3) the capacity to remove salts from soils and the application of the species. In conclusion, S. salsa has high value as a candidate to explore the theoretical base and practical application for utilizing halophytes to improve salinized soils from genes to ecosystem.


Assuntos
Chenopodiaceae , Ecossistema , Plantas Tolerantes a Sal/genética , Melhoramento Vegetal , Agricultura , Chenopodiaceae/genética , Solo
13.
Funct Plant Biol ; 50(9): 701-711, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531972

RESUMO

Suaeda salsa is an important salt- and drought-tolerant plant with important ecological restoration roles. However, little is known about its underlying molecular regulatory mechanisms. Therefore, understanding the response mechanisms of plants to salt and drought stress is of great importance. In this study, metabolomics analysis was performed to evaluate the effects of salt and drought stress on S. salsa . The experiment consisted of three treatments: (1) control (CK); (2) salt stress (Ps); and (3) drought stress (Pd). The results showed that compared with the control group, S. salsa showed significant differences in phenotypes under salt and drought stress conditions. First, a total of 207 and 292 differential metabolites were identified in the Ps/CK and Pd/CK groups, respectively. Second, some soluble sugars and amino acids, such as raffinose, maltopentoses, D -altro-beptulose, D -proline, valine-proline, proline, tryptophan and glycine-L -leucine, showed increased activity under salt and drought stress conditions, suggesting that these metabolites may be responsible for salt and drought resistance in S. salsa . Third, the flavonoid biosynthetic and phenylalanine metabolic pathways were significantly enriched under both salt and drought stress conditions, indicating that these two metabolic pathways play important roles in salt and drought stress resistance in S. salsa . The findings of this study provide new insights into the salt and drought tolerance mechanisms of S. salsa .


Assuntos
Chenopodiaceae , Secas , Metabolômica/métodos , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Estresse Salino , Redes e Vias Metabólicas
14.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628942

RESUMO

Like other abiotic stresses, salt stress has become a major factor that restricts the growth, distribution and yield of crops. Research has shown that increasing the nitrogen content in soil can improve the salt tolerance of plants and nitrate transporter (NRT) is the primary nitrogen transporter in plants. Suaeda salsa (L.) Pall is a strong halophyte that can grow normally at a salt concentration of 200 mM. The salt stress transcriptome database of S. salsa was found to contain four putative genes that were homologous to NRT, including SsNRT1.1A, SsNRT1.1B, SsNRT1.1C and SsNRT1.1D. The cDNA of SsNRT1.1s was predicted to contain open reading frames of 1791, 1782, 1755 and 1746 bp, respectively. Sequence alignment and structural analysis showed that the SsNRT1.1 amino acids were inducible by salt and have conserved MFS and PTR2 domains. Subcellular localization showed they are on the endoplasmic reticulum. Overexpression of SsNRT1.1 genes in transgenic Arabidopsis improves its salt tolerance and SsNRT1.1C was more effective than others. We constructed a salt-stressed yeast cDNA library and used yeast two-hybrid and BiFC technology to find out that SsHINT1 and SsNRT1.1C have a protein interaction relationship. Overexpression of SsHINT1 in transgenic Arabidopsis also improves salt tolerance and the expressions of Na+ and K+ were increased and reduced, respectively. But the K+/Liratio was up-regulated 11.1-fold compared with the wild type. Thus, these results provide evidence that SsNRT1.1C through protein interactions with SsHINT1 increases the K+/Na+ ratio to improve salt tolerance and this signaling may be controlled by the salt overly sensitive (SOS) pathway.


Assuntos
Arabidopsis , Chenopodiaceae , Arabidopsis/genética , Saccharomyces cerevisiae , Estresse Salino/genética , Chenopodiaceae/genética , Produtos Agrícolas , Proteínas de Plantas/genética , Proteínas de Transporte de Ânions
15.
Plant Physiol Biochem ; 201: 107763, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301187

RESUMO

Cadmium (Cd) and sodium (Na) are two of the most phytotoxic metallic elements causing environmental and agricultural problems. Metallothioneins (MTs) play an important role in the adaptation to abiotic stress. We previously isolated a novel type 2 MT gene from Halostachys caspica (H. caspica), named HcMT, which responded to metal and salt stress. To understand the regulatory mechanisms controlling HcMT expression, we cloned the HcMT promoter and characterized its tissue-specific and spatiotemporal expression patterns. ß-Glucuronidase (GUS) activity analysis showed that the HcMT promoter was responsive to CdCl2, CuSO4, ZnSO4 and NaCl stress. Therefore, we further investigated the function of HcMT under abiotic stress in yeast and Arabidopsis thaliana (Arabidopsis). In CdCl2, CuSO4 or ZnSO4 stress, HcMT significantly enhanced the metal ions tolerance and accumulation in yeast through function as a metal chelator. Moreover, the HcMT protein also protected yeast cells from NaCl, PEG and hydrogen peroxide (H2O2) toxicity with less effectiveness. However, transgenic Arabidopsis carrying HcMT gene only displayed tolerance to CdCl2 and NaCl, accompanying by higher content of Cd2+ or Na+ and lower H2O2, compared to wild-type (WT) plants. Next, we demonstrated that the recombinant HcMT protein has the ability to bind Cd2+ and the potential of scavenging ROS (reactive oxygen species) in vitro. This result further confirmed that the role of HcMT to influence plants to CdCl2 and NaCl stress may bind metal ions and scavenge ROS. Overall, we described the biological functions of HcMT and developed a metal- and salt-inducible promoter system for using in genetic engineering.


Assuntos
Arabidopsis , Chenopodiaceae , Plantas Tolerantes a Sal/genética , Cádmio/toxicidade , Cádmio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Saccharomyces cerevisiae/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Chenopodiaceae/genética , Estresse Fisiológico/genética
16.
Plant Mol Biol ; 112(4-5): 261-277, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37341869

RESUMO

Haloxylon ammodendron, an important shrub utilized for afforestation in desert areas, can withstand harsh ecological conditions such as drought, high salt and extreme heat. A better understanding of the stress adaptation mechanisms of H. ammodendron is vital for ecological improvement in desert areas. In this study, the role of the H. ammodendron 14-3-3 protein HaFT-1 in thermotolerance was investigated. qRT-PCR analysis showed that heat stress (HS) priming (the first HS) enhanced the expression of HaFT-1 during the second HS and subsequent recovery phase. The subcellular localization of YFP-HaFT-1 fusion protein was mainly detected in cytoplasm. HaFT-1 overexpression increased the germination rate of transgenic Arabidopsis seeds, and the survival rate of HaFT-1 overexpression seedlings was higher than that of wild-type (WT) Arabidopsis after priming-and-triggering and non-primed control treatments. Cell death staining showed that HaFT-1 overexpression lines exhibited significantly reduced cell death during HS compared to WT. Transcriptome analysis showed that genes associated with energy generation, protein metabolism, proline metabolism, autophagy, chlorophyll metabolism and reactive oxygen species (ROS) scavenging were important to the thermotolerance of HS-primed HaFT-1 transgenic plants. Growth physiology analysis indicated that priming-and-triggering treatment of Arabidopsis seedlings overexpressing HaFT-1 increased proline content and strengthened ROS scavenging activity. These results demonstrated that overexpression of HaFT-1 increased not only HS priming but also tolerance to the second HS of transgenic Arabidopsis, suggesting that HaFT-1 is a positive regulator in acquired thermotolerance.


Assuntos
Arabidopsis , Chenopodiaceae , Termotolerância , Arabidopsis/metabolismo , Termotolerância/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Plântula , Prolina/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas
17.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674457

RESUMO

CLC family genes, comprising anion channels and anion/H+ antiporters, are widely represented in nearly all prokaryotes and eukaryotes. CLC proteins carry out a plethora of functions at the cellular level. Here the coding sequences of the SaCLCa2 and SaCLCc2 genes, homologous to Arabidopsis thaliana CLCa and CLCc, were cloned from the euhalophyte Suaeda altissima (L.) Pall. Both the genes cloned belong to the CLC family as supported by the presence of the key conserved motifs and glutamates inherent for CLC proteins. SaCLCa2 and SaCLCc2 were heterologously expressed in Saccharomyces cerevisiae GEF1 disrupted strain, Δgef1, where GEF1 encodes the only CLC family protein, the Cl− transporter Gef1p, in undisrupted strains of yeast. The Δgef1 strain is characterized by inability to grow on YPD yeast medium containing Mn2+ ions. Expression of SaCLCa2 in Δgef1 cells growing on this medium did not rescue the growth defect phenotype of the mutant. However, a partial growth restoration occurred when the Δgef1 strain was transformed by SaCLCa2(C544T), the gene encoding protein in which proline, specific for nitrate, was replaced with serine, specific for chloride, in the selectivity filter. Unlike SaCLCa2, expression of SaCLCc2 in Δgef1 resulted in a partial growth restoration under these conditions. Analysis of SaCLCa2 and SaCLCc2 expression in the euhalophyte Suaeda altissima (L.) Pall by quantitative real-time PCR (qRT-PCR) under different growth conditions demonstrated stimulation of SaCLCa2 expression by nitrate and stimulation of SaCLCc2 expression by chloride. The results of yeast complementation assay, the presence of both the "gating" and "proton" glutamates in aa sequences of both the proteins, as well results of the gene expression in euhalophyte Suaeda altissima (L.) Pall suggest that SaCLCa2 and SaCLCc2 function as anion/H+ antiporters with nitrate and chloride specificities, respectively. The general bioinformatic overview of seven CLC genes cloned from euhalophyte Suaeda altissima is given, together with results on their expression in roots and leaves under different levels of salinity.


Assuntos
Chenopodiaceae , Canais de Cloreto , Proteínas de Plantas , Sequência de Aminoácidos , Ânions/metabolismo , Antiporters/metabolismo , Arabidopsis/genética , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Clonagem Molecular , Nitratos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Sci ; 328: 111572, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563942

RESUMO

Abscisic acid (ABA), stress, and ripening-induced proteins (ASR), which belong to the ABA/WDS domain superfamily, are involved in the plant response to abiotic stresses. Haloxylon ammodendron is a succulent xerohalophyte species that exhibits strong resistance to abiotic stress. In this study, we isolated HaASR2 from H. ammodendron and demonstrated its detailed molecular function for drought and salt stress tolerance. HaASR2 interacted with the HaNHX1 protein, and its expression was significantly up-regulated under osmotic stress. Overexpression of HaASR2 improved drought and salt tolerance by enhancing water use efficiency and photosynthetic capacity in Arabidopsis thaliana. Overexpression of HaASR2 maintained the homeostasis of reactive oxygen species (ROS) and decreased sensitivity to exogenous ABA and endogenous ABA levels by down-regulating ABA biosynthesis genes under drought stress. Furthermore, a transcriptomic comparison between wild-type and HaASR2 transgenic Arabidopsis plants indicated that HaASR2 significantly induced the expression of 896 genes in roots and 406 genes in shoots under osmotic stress. Gene ontology (GO) enrichment analysis showed that those DEGs were mainly involved in ROS scavenging, metal ion homeostasis, response to hormone stimulus, etc. The results demonstrated that HaASR2 from the desert shrub, H. ammodendron, plays a critical role in plant adaptation to drought and salt stress and could be a promising gene for the genetic improvement of crop abiotic stress tolerance.


Assuntos
Arabidopsis , Chenopodiaceae , Tolerância ao Sal/genética , Secas , Espécies Reativas de Oxigênio/metabolismo , Chenopodiaceae/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Planta ; 256(6): 105, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315282

RESUMO

MAIN CONCLUSION: HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.


Assuntos
Chenopodiaceae , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Expressão Ectópica do Gene , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Chenopodiaceae/genética , Secas , Cloreto de Sódio/metabolismo
20.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293085

RESUMO

Seed germination is susceptible to external environmental factors, especially salt stress. Suaeda liaotungensis is a halophyte with strong salt tolerance, and the germination rate of brown seeds under 1000 mM NaCl treatment still reached 28.9%. To explore the mechanism of salt stress response during brown seed germination in Suaeda liaotungensis, we conducted transcriptomic analysis on the dry seeds (SlD), germinated seeds under the control condition (SlG_C), and salt treatment (SlG_N). Transcriptome analysis revealed that 13314 and 755 differentially expressed genes (DEGs) from SlD vs. SlG_C and SlG_C vs. SlG_N were detected, respectively. Most DEGs were enriched in pathways related to transcription regulation and hormone signal transduction, ROS metabolism, cell wall organization or biogenesis, and carbohydrate metabolic process in two contrasting groups. Compared with the control condition, POD and CAT activity, H2O2, soluble sugar, and proline contents were increased during germinated seeds under salt stress. Furthermore, functional analysis demonstrated that overexpression of SlNAC2 significantly enhanced salt tolerance during the germination stage in Arabidopsis. These results not only revealed the tolerant mechanism of brown seed germination in response to salinity stress but also promoted the exploration and application of salt-tolerant gene resources of Suaeda liaotungensis.


Assuntos
Arabidopsis , Chenopodiaceae , Germinação/genética , Tolerância ao Sal/genética , Sementes/metabolismo , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Arabidopsis/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Prolina/metabolismo , Hormônios/metabolismo , Carboidratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA