Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Food Res Int ; 186: 114344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729696

RESUMO

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Assuntos
Disponibilidade Biológica , Cicer , Ferro , Cicer/química , Ferro/química , Ferro/metabolismo , Humanos , Alimentos Fortificados , Proteínas de Plantas/química , Digestão , Minerais/química , Células CACO-2 , Ácido Succínico/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Solubilidade , Ferritinas/química , Ferritinas/metabolismo
2.
Food Chem ; 448: 139117, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608398

RESUMO

This study aimed to determine the impact of supplementation with probiotically fermented chickpea (Cicer arietinum L) seeds on the quality parameters and functional characteristics of wheat bread. The addition of chickpea seeds caused significant changes in the chemical composition of the control wheat bread. The legume-supplemented products exhibited higher values of a* and b* color parameters and higher hardness after 24 h of storage than the control. The application of fermented or unfermented chickpeas contributed to an increase in total polyphenol and flavonoid contents, iron chelating capacity, and antioxidant properties of the final product. The variant containing unfermented seeds had the highest riboflavin content (29.53 ± 1.11 µg/100 g d.w.), Trolox equivalent antioxidant capacity (227.02 ± 7.29 µmol·L-1 TX/100 g d.w.), and free radical scavenging activity (71.37 ± 1.30 % DPPH inhibition). The results of this preliminary research have practical importance in the production of innovative bakery products with potential properties of functional food.


Assuntos
Antioxidantes , Pão , Cicer , Fermentação , Probióticos , Cicer/química , Pão/análise , Antioxidantes/química , Antioxidantes/análise , Probióticos/análise , Probióticos/química , Sementes/química , Flavonoides/análise , Flavonoides/química , Polifenóis/química , Polifenóis/análise , Alimento Funcional/análise , Triticum/química , Triticum/metabolismo
3.
Int J Biol Macromol ; 268(Pt 1): 131576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636764

RESUMO

This work aimed to characterize and compare the physicochemical properties of four pulse starches: bean, chickpea, lentil, and pea. Chemical proximate analysis, elemental composition, morphological grain characterization, crystalline structure, thermal analysis, FTIR analysis, and pasting properties were conducted. The proximate analysis shows that these starches have low fat, mineral, and protein content but high amylose values ranging from 29 to 36 % determined by colorimetry. Despite the high amylose content, the starches did not exhibit the typical behavior of an amylose-rich starch, with high peak viscosity and low breakdown and setback. It was found that this behavior was likely due to the large granule size of the ellipsoidal, spherical, and kidney-shaped granules and the high content of some minerals such as Na, Mg, K, Fe, Mn, P, and Si. The study also found that all pulse starches simultaneously contain monoclinic and hexagonal crystals, making them C-type starches. The findings were verified through the Rietveld analyses of X-ray diffraction patterns and differential scanning calorimetry, in which bimodal endothermic peaks evidenced both types of crystals being gelatinized.


Assuntos
Amilose , Reologia , Amido , Amido/química , Amilose/química , Amilose/análise , Fenômenos Químicos , Viscosidade , Difração de Raios X , Lens (Planta)/química , Produtos Agrícolas/química , Cicer/química , Varredura Diferencial de Calorimetria
4.
Food Chem ; 449: 139187, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604029

RESUMO

Pickering emulsions stabilized by protein particles are of great interest for use in real food systems. This study was to investigate the properties of microgel particles prepared from different plant proteins, i.e., soybean protein isolate (SPI), pea protein isolate (PPI), mung bean protein isolate (MPI), chia seed protein isolate (CSPI), and chickpea protein isolate (CPI). MPI protein particles had most desirable Pickering emulsion forming ability. The particles of SPI and PPI had similar particle size (316.23 nm and 294.80 nm) and surface hydrophobicity (2238.40 and 2001.13) and emulsion forming ability, while the CSPI and CPI particle stabilized emulsions had the least desirable properties. The MPI and PPI particle stabilized Pickering emulsions produced better quality ice cream than the one produced by SPI particle-stabilized emulsions. These findings provide insight into the properties of Pickering emulsions stabilized by different plant protein particles and help expand their application in emulsions and ice cream.


Assuntos
Emulsões , Tamanho da Partícula , Proteínas de Plantas , Emulsões/química , Proteínas de Plantas/química , Microgéis/química , Interações Hidrofóbicas e Hidrofílicas , Sorvetes/análise , Cicer/química , Vigna/química
5.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474555

RESUMO

BACKGROUND: Prostate cancer (PC) and benign prostatic hyperplasia (BPH) are common health problems in the aging male population. Due to the unexplored and unconfirmed impact of food containing isoflavones, like sprouts, on the development of the management of BPH and prostate cancer, we decided to extend the knowledge in this area. RESULTS: We have demonstrated for the first time that chickpea sprouts may play an important role in the chemoprevention of prostate disorders. However, attention should be paid to the isoflavone content in the sprouts, as in our study, chickpea sprouts with a moderate concentration of the compounds, harvested in natural light conditions (CA10L) and blue LED light (CA7B), showed the best scores in terms of their potential towards prostate disorders. METHODS: Chickpea seeds were grown in LED chambers. The methanol extracts from sprouts were quantitatively defined using the HPLC system. Experiments such as the determination of PSA, 5-α-reductase, and dihydrotestosterone were performed on PNT2 and LNCaP cells. For anti-inflammatory assays (determination of NO, IL-6, and TNF-alpha release), murine RAW264.7 macrophages were used. CONCLUSIONS: The role of legume products as a diet element should be deeply evaluated for the development of future dietary recommendations for prostate cancer and BPH prevention.


Assuntos
Cicer , Isoflavonas , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Cicer/química , Próstata , Isoflavonas/química , Dieta
6.
Food Chem ; 445: 138671, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367556

RESUMO

Chickpea protein, a valuable plant-based source, offers versatile applications, yet the impact of modifications like succinylation and ultrasonication on its properties remains unclear. This study explored dual succinylation and ultrasonication modification to enhance its functionality and application. Modified chickpea protein with a degree of succinylation of 96.75 %, showed enhanced water holding capacity 39.83 %, oil holding capacity 54.02 %, solubility 7.20 %, and emulsifying capacity 23.17 %, compared to native protein. Despite reduced amino acid content (64.50 %), particularly lysine, succinylation increased sulfhydryl by 1.74 %, reducing hydrophobicity (Ho) by 41.87 % and causing structural changes. Ultrasonication further reduced particle size by 82.57 % and increased zeta potential and amino acid content (57.47 %). The dual-modified protein exhibited a non-significant increase in antimicrobial activity against Staphylococcus aureus (25.93 ± 1.36 mm) compared to the native protein (25.28 ± 1.05 mm). In conclusion, succinylation combined with ultrasonication offers a promising strategy to enhance chickpea protein's physicochemical properties for diverse applications.


Assuntos
Aminoácidos , Cicer , Aminoácidos/metabolismo , Cicer/química , Proteínas/metabolismo , Solubilidade , Água/metabolismo
7.
Biochem Biophys Res Commun ; 671: 26-37, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37290281

RESUMO

Osteoporosis is a systemic bone disease that is caused by multiple factors that lead to an imbalance in bone metabolism. Isoflavones can prevent and treat osteoporosis by regulating bone metabolism through a variety of pathways. The germination of chickpeas can significantly increase their isoflavone contents. However, the use of isoflavones isolated from chickpea sprouts (ICS) to prevent and treat osteoporosis by regulating bone metabolism has not been widely studied. In vivo experimental studies in ovariectomized rats showed that ICS significantly improved femoral bone mineral density (BMD) and trabecular structure, with effects similar to raloxifene. Furthermore, the chemical composition of ICS as well as the targets and signalling pathways its regulates in the prevention and treatment of osteoporosis were predicted by network pharmacological studies. ICS with drug-like properties were identified by Lipinski's 5 principles, and intersecting targets of isoflavones with osteoporosis were identified. The overlapping targets were analysed by PPI, GO and KEGG analyses, and the possible key targets, signalling pathways and biological processes by which ICS treats osteoporosis were predicted; the prediction results were verified by molecular docking technology. The results showed that ICS could play an important role in the treatment of osteoporosis through "multicomponent, multitarget and multipathway" mechanisms, and the MAKP, NF-kB and ER-related signalling pathways may be important pathways by which ICS regulates osteoporosis; these findings provide a new theoretical basis for further experimental studies.


Assuntos
Cicer , Isoflavonas , Osteoporose , Ratos , Animais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Cicer/química , Cicer/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle
8.
J Texture Stud ; 54(5): 706-719, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246468

RESUMO

Physico-chemical, textural, functional, and nutritional properties of the twin screw extruded whole sorghum-chickpea (8:2) snacks was investigated using in vitro procedures. The extruded snacks were analyzed for the effect of variations in extruded conditions on their properties: barrel BT (BT) (130-170°C) and feed moisture (FM) (14%-18%), keeping screw speed constant (400 rpm). The results revealed that specific mechanical energy (SME) decreased (74.4-60.0) in response to rise in both BT and FM, whereas expansion ratio (ER) had shown an alternative relation as it decreased with elevated FM (2.17 at 14%, 130°C to 2.14 at 16%, 130°C) and increased with BT (1.75 at 18%, 130°C to 2.48 at 18%, 170°C). The values of WAI and WSI improved with the surge in BT, which was associated with enhanced disruption of starch granules at higher BT. Raise in FM incremented the total phenolic content (TPC) and hence the antioxidant activity (AA) (FRAP and DPPH) along with the hardness of snacks. As per in vitro starch digestibility is concerned, slowly digestible starch (SDS) content as well as glycemic index (51-53) of the extrudates depressed with increasing BT and FM. Also, lower BT and FM improved the functional properties such as expansion ratio, in-vitro protein digestibility, and overall acceptability of the snacks. A positive correlation was seen among SME and hardness of the snacks, WSI and ER, TPC and AA, SDS and Exp-GI, color and OA, texture and OA.


Assuntos
Antioxidantes , Cicer , Índice Glicêmico , Nutrientes , Lanches , Sorghum , Antioxidantes/análise , Cicer/química , Grão Comestível/química , Manipulação de Alimentos/métodos , Nutrientes/análise , Nutrientes/química , Fenóis/análise , Sorghum/química , Amido
9.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110634

RESUMO

Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.


Assuntos
Antioxidantes , Cicer , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cicer/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Tripsina/metabolismo , Elastase Pancreática/metabolismo
10.
J Sci Food Agric ; 103(11): 5213-5220, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36988580

RESUMO

Pulses have been part of human nutrition for centuries. They are also used in folk medicine as products with multidirectional medicinal effects. They are annual plants representing the Fabaceae family. Their edible part is the fruit, i.e. the so-called pods. Whole pods or their parts can be eaten, depending on the species and fruit ripeness. Beans, peas, peanuts, chickpeas, lentils, broad beans and soybeans are edible legume species. Legume seeds are characterized by high nutritional value. Compared to seeds from other plants, they have high protein content ranging, on average, from 20% to 35%, depending on the type, growing conditions and maturity of the fruit. This review focuses on various health-promoting properties of legumes and presents their nutritional value and compounds exerting health-promoting effects. Many pulses have a low glycemic index, which is important for prevention and treatment of diabetes. In addition to their low glycemic index and high fiber content, pulses have α-amylase and α-glucosidase inhibitors, which reduce the absorption of glucose from the gastrointestinal tract. These compounds have antidiabetic and anti-inflammatory effects. Pulses have been shown to contain bioactive peptides with angiotensin-converting enzyme inhibitory properties; hence, they are useful in the treatment of cardiovascular diseases. Pulses used in the nutrition of obese individuals provide compounds with pancreatic lipase inhibitory properties, thus promoting weight reduction and control. © 2023 Society of Chemical Industry.


Assuntos
Cicer , Fabaceae , Humanos , Fabaceae/química , Glycine max , Pisum sativum/química , Sementes/química , Cicer/química , Verduras
11.
Proteins ; 91(7): 859-871, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36729014

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in the elderly, with some known classical factors. Cicer arietinum (Leguminosae) is a source of protein for humans and contains albumin, globulin, glutelin, and prolamin. The protein content of two cultivars of C. arietinum, Hashem and Mansour, was isolated to evaluate their inhibition activity against acetylcholinesterase (AChE), butyrylcholine esterase (BChE), and ß-amyloid peptide (ßA) aggregation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and molecular docking were also applied to evaluate the content and determine the potential of each chickpea protein to interact with AChE, respectively. Obtained data showed that proteins from both cultivars could inhibit AChE with IC50 of 17.73 (0.03) and 22.20 (0.06) µg/mL, respectively, with no activity on BChE. The 50 µg/mL protein concentration of each cultivar suppressed ßA accumulation (Mansour: 25.66% and Hashem: 21.69%) and showed biometal chelating activity. SDS-PAGE analysis revealed relatively different protein patterns, though the Mansour cultivar contained some protein bands with molecular weights of 18, 24, and 70 kDa were estimated to belong to vicilin and legumin, which were absent in the Hashem protein mass. Molecular docking showed that legumin and especially vicilin have good potential to interact with AChE. The chickpea proteins showed inhibitory activity against AChE, which might be due to the vicilin and legumin fractions. The characterization of the inhibitory effect of each protein band could be promising in finding new therapeutic peptide candidates to treat Alzheimer's in the future, although more experimental work is needed in this issue.


Assuntos
Doença de Alzheimer , Cicer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cicer/química , Cicer/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides , Inibidores da Colinesterase/farmacologia
12.
Food Chem ; 407: 135136, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502729

RESUMO

Chickpea protein (CP) is an exceptional nutrient-dense pulse protein prevailing in the development of plant-based foods. However, its relatively low solubility, compared to other legume proteins, hinders the practical uses of CP in food matrix. To resolve this problem, pea protein (PP), another popular pulse protein, was co-assembled with CP to form a binary complex during the alkaline pH-shifting process. Results indicated that the complexed CP exhibited significantly increased solubility to that of the pristine protein (more than 50%), whose aqueous stability was also enhanced against different environmental stresses (pH, salt, heat/frozen treatment, and centrifugation). Structural and morphology analysis confirmed the interplay between unfolded CP and PP during pH shifting, which enabled their resistance to acid-induced structural over-folding. Our experiments that induce the co-assembling of two pulse proteins provide a novel routine and scientific basis for tailoring CP functionalities, as well as the formulation of pulse protein-based products.


Assuntos
Cicer , Fabaceae , Cicer/química , Proteínas Alimentares/metabolismo
13.
Food Chem ; 398: 133936, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36027659

RESUMO

This study investigated the impact of seed coats from peas (PC) and chickpeas (CC) (at 15 % and 30 % levels) on rice-based co-extruded snacks. Using PC and CC reduced the content of soluble (29 %) and cell-wall bound phenolic acids (21 %), but it enhanced the amount and the profile of flavonoids of rice-based snacks (up to 16 times with PC), resulting in significantly higher antioxidant activity (134 %). Snacks with 15 % CC showed a higher section area (about 335 versus 191 mm2) and a lower average pore radius (20.1 versus 23.9 mm) than PC-snacks; however, such features did not affect either texture or porosity. At 30 % level, PC resulted in a more porous structure (porosity: 73.1 versus 66.7 %) with smaller pores (17.2 versus 27.3 mm) and high firmness (55.9 versus 40.1 N). Consumers' acceptability evaluation revealed that samples containing pulse seed coat were comparable and preferred to the control (i.e., 100 % polished rice).


Assuntos
Cicer , Oryza , Cicer/química , Oryza/química , Pisum sativum/química , Fenóis/metabolismo , Sementes , Lanches
14.
J Food Sci ; 87(12): 5191-5207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36316799

RESUMO

The applicability of ozone has been increased to include pulse grains because of their increased production and significance as plant-based protein source. In many developed countries, there is a growing demand for products made from chickpeas grains. Whole chickpea grains were treated with ozone gas (500-1000 ppm) for 20-30 min. The structural, thermal, pasting properties, and phytochemicals of the ozone-treated, as well as control samples, were evaluated. Minor structural changes in the functional groups in the protein and starch molecules were observed in the treated sample. Ozonation caused significant changes in the pasting properties such as peak viscosity, trough viscosity, breakdown viscosity, final viscosity, setback viscosity, and peak temperature values. Microstructure revealed a reduction in the particle sizes of chickpea powders with the severity of ozone treatment. The total flavonoids (41.35-48.94 mg QE), alkaloids (1120.24-1453.57µg/g), and xanthoprotein (0.995-1.387 µg/g) increased significantly (p < 0.05) with ozone treatment. Commercially, chickpea grains can be ozone treated for achieving desired functional characteristics in a target product. PRACTICAL APPLICATION: Before consuming grain that has been treated with gaseous ozone, it is vitally important for all consumers to have a solid understanding of the facts presented here regarding variations in the chickpea nutritional profile. The impact of ozone treatment on functional groups, thermal behavior, pasting properties, and morphological features in chickpeas reveals vital information regarding changes occurred on macromolecules such as starch, proteins, and bioactive compounds. Since ozonation aids in extraction of health-beneficial bioactive compounds and brings about change in the starch and protein morphology, making them more digestible, it can be highly useful in preparation of health foods.


Assuntos
Cicer , Ozônio , Cicer/química , Amido/química , Viscosidade , Compostos Fitoquímicos
15.
Food Chem ; 395: 133586, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35779505

RESUMO

Alimentary pasta made of chickpeas has been recently introduced in the market. The novelty and presentation of this food can have a confounding effect on chickpea allergic patients and can pose a risk to them. The allergenic content of novel alimentary chickpea pasta in comparison with regular chickpea seeds has not been analyzed so far. Protein extracts were obtained, and the allergenic content was analyzed with sera from chickpea allergic patients and antibodies against major allergens by western blot, ELISA, dot blot, and cellular assays. Alimentary chickpea pasta showed an important content in IgE-binding proteins and chickpea allergens: 7S globulin, 2S albumin, LTP, and PR-10, similar to hydrated and boiled chickpea seeds. During boiling, more allergens from alimentary chickpea pasta were transferred to the boiling water than chickpea seeds. Novel alimentary chickpea pasta retains an important allergenic content which is affected by boiling by transferring allergens to the cooking water.


Assuntos
Cicer , Hipersensibilidade Alimentar , Alérgenos , Cicer/química , Humanos , Imunoglobulina E , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Água
16.
J Food Biochem ; 46(10): e14308, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35770807

RESUMO

Extensively consumed worldwide, legumes such as beans, soybeans, chickpeas, and peas represent a great source of protein. Legume-derived proteins provide bioactive peptides, small sequences of amino acids produced by enzymatic hydrolysis, gastrointestinal digestion, fermentation, or germination. Recent studies showed diverse biological effects of these peptides as antioxidants, antihypertensives, anti-inflammatory, antimicrobial, antithrombotic, antidiabetic, hypocholesterolemic, and even immunomodulators. These beneficial effects aid in preventing and treating chronic illnesses, particularly inflammatory disorders, obesity, and cardiovascular diseases. Thus, this work discusses these biological functions in gastrointestinal digestion health of bioactive peptides obtained from common beans, soybeans, chickpeas, peas, and other legumes. PRACTICAL APPLICATIONS: Knowledge of the nutraceutical properties of legumes can encourage the use of these seeds as ingredients in the development and design of functional foods.


Assuntos
Cicer , Fabaceae , Aminoácidos , Anti-Inflamatórios , Anti-Hipertensivos , Cicer/química , Fabaceae/química , Fibrinolíticos , Hipoglicemiantes , Pisum sativum/química , Peptídeos/química , Peptídeos/farmacologia , Glycine max/química , Verduras
17.
Microbiol Spectr ; 10(3): e0278521, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638782

RESUMO

Seed-borne bacteria are a unique group of microorganisms capable of maintaining stable populations within plant tissues and seeds. These bacteria may benefit their host from germination to maturation and are of great interest for basic and applied plant-microbe interaction studies. Furthermore, many such beneficial bacteria present in wild plant species are missing in their respective congeneric domesticated forms. The objectives of this study were to explore the bacterial communities within the seeds of wild Cicer species and to select beneficial bacteria which could be used to improve production of domesticated chickpea (C. arietinum). We analyzed the composition of seed-borne bacteria of chickpea (Cicer spp.), comparing wild and domesticated species from different geographic locations. Subsequently, we isolated the dominant and prevalent seed-borne bacteria from wild Cicer judaicum and assessed their ability to colonize and affect the growth of domesticated chickpea and other legume crops. The composition and structure of seed-borne bacteria, determined by amplicon sequencing of the 16S rRNA gene, differed between wild and domesticated chickpea and varied among geographic locations. The genus Burkholderia dominated samples from domesticated chickpea at all examined sites, while Bacillus or Sphingomonas dominated cultures isolated from wild C. judaicum, dependent on geographic location. A particular Bacillus strain, Bacillus sp. CJ, representing the most prevalent bacterium in wild C. judaicum, was further isolated. Bacillus sp. CJ, applied by seed coating, successfully inhabited domesticated chickpea plants and improved plant growth parameters. These results demonstrate the potential for reconstructing the microbiota of crop plants using the wild microbiota reservoir. IMPORTANCE Chickpea (garbanzo bean, hummus, Cicer arietinum) representing the third legume crop produced globally. As is the case for many other domesticated crops, the adaptation and resistance of chickpea to biotic and abiotic stresses is inferior compared to that of their wild progenitors and relatives. Re-establishing desirable characteristics from wild to domesticated species may be achieved by reconstructing beneficial microbiota. In this study, we examined the seed-associated microbiota of both wild and domesticated chickpea and applied isolated beneficial bacteria originating from wild Cicer judaicum to domesticated chickpea by seed coating. This isolate, Bacillus sp. CJ, was successfully established in the crop and enhanced its growth, demonstrating effective and efficient manipulation of the chickpea microbiota as a potential model for future application in other crop plants.


Assuntos
Cicer , Microbiota , Cicer/química , Cicer/genética , Cicer/microbiologia , Produtos Agrícolas , RNA Ribossômico 16S/genética , Plântula/genética , Sementes
18.
J Food Sci ; 87(5): 2197-2210, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35411599

RESUMO

Germination is a biochemical process that has been widely used to improve the nutritional quality, functional properties, and bioavailability of the protein. Soaking is the preliminary step for germination. Effect of soaking temperature on germination parameters was studied to select the suitable soaking temperature for germination. The effect of germination time on nutritional, functional, and microstructural properties of chickpea flour was evaluated. The soaking temperature was selected as 30°C depending on the germination percentage, vigor value, and mean germination time. Physico-chemical composition, antioxidant activity, ascorbic acid, total phenolic, and total flavonoid were investigated over 4 days of germination. It was found that protein content increased on dry matter basis, whereas carbohydrate and fat content decreased during germination. Ascorbic acid content was found to increase to about 3.52 times. Antioxidant activity increased from 24.14% to 58.50% after 4 days of germination. Water absorption capacity was found to decrease, whereas oil absorption capacity increased. XRD pattern depicted a decrease in crystallinity due to the degradation of amylopectin and increased amylose content. SEM was used to study the microstructural changes with increase in germination time. DSC studies were also carried out to study the effect of germination on thermal properties of chickpea flour. PRACTICAL APPLICATION: This research work gives an outline of the available literature on the mechanism of hydration and germination process with the associated chemical and biochemical changes in the bioactive components along with the special emphasis on the health benefits. The present work is an effort toward the development of chickpea-based meal-replacement beverages.


Assuntos
Cicer , Farinha , Antioxidantes/análise , Ácido Ascórbico/análise , Cicer/química , Farinha/análise , Germinação , Plântula/metabolismo , Sementes/química , Temperatura
19.
J Food Sci ; 87(4): 1895-1905, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35289402

RESUMO

The objective of this study was to produce maize extrudates supplemented with germinated chickpea flour to increase the contents of resistant starch (RS) and protein. Six extrudates were formulated using maize grits (ME), germinated chickpea flour (GCE) and different blends of maize and 10%, 20%, 30%, or 40% of germinated chickpea flour (MGCE-10, MGCE-20, MGCE-30, or MGCE-40). Increase of RS was observed in the defatted samples due to germinated chickpea flour addition. In the nondefatted samples, the highest content of RS was observed in GCE followed by ME and the different MGCE. Interaction between fat, starch, and protein by improved intramolecular association was assessed by Fourier transform- infrared spectroscopy (FTIR). Amylose-lipid complexes in nondefatted samples increased the content of RS in comparison to defatted samples. The highest expansion index was obtained in MGCE-30 and MGCE-40. ME had the highest hardness and crispiness. Germinated chickpea flour increased the water absorption index (WAI), but reduced water solubility index (WSI) when it was combined with maize grits to produce extrudates. The in vitro protein digestibility (IVPD) was higher in the GCE and MGCE with more than 20% of germinated chickpea flour compared to ME. MGCE-20 and MGCE-30 showed the highest acceptability of the supplemented extrudates with 50% more protein than ME, a similar IVPD to that of GCE, and good functional characteristics. PRACTICAL APPLICATION: Combining maize and germinated chickpea flour is a good strategy to have a controlled digestibility of starch and increase the plant based protein content in healthier snacks.


Assuntos
Cicer , Amido , Amilose , Cicer/química , Farinha , Amido/química , Água , Zea mays/química
20.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164408

RESUMO

Extrusion cooking allows the development of value-added products from pulses, such as gluten-free snacks with added functional properties. The main objective of this study was to evaluate the changes induced by the extrusion process on the carbohydrate fraction (total carbohydrates, soluble sugars and oligosaccharides, dietary fiber, and arabinoxylans) of novel flour formulations based on chickpeas and rice enriched with different dietary fiber sources. Moreover, the influence of the addition of fiber-rich ingredients, such as Fibersol® and passion fruit, on the analyzed compounds was also evaluated. Sucrose was the main soluble sugar found in analyzed formulations, and raffinose was the prevalent oligosaccharide, followed by stachyose. The content of total α-galactosides tended to be higher after extrusion cooking. As a consequence of the extrusion treatment, the content of total and soluble dietary fiber was statistically increased in most of the analyzed samples. In general, no significant changes were observed in total arabinoxylan content as a consequence of the extrusion process, while the content of water-soluble arabinoxylans was significantly increased in extruded formulations. It was observed that the content of total available carbohydrates, stachyose, and water-soluble arabinoxylans were significantly influenced by the addition of passion fruit, Fibersol®, and both. The incorporation of these ingredients in gluten-free formulations based on chickpeas and rice allows one to obtain suitable functional formulations for the development of innovative, gluten-free, extruded snack-type products, which could be an interesting alternative for people with celiac disease.


Assuntos
Cicer/química , Farinha/análise , Oryza/química , Carboidratos/análise , Culinária , Dieta Livre de Glúten , Fibras na Dieta/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA