Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.358
Filtrar
1.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722391

RESUMO

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Assuntos
Antioxidantes , Chlorella vulgaris , Clorpirifos , Ciclídeos , Doenças dos Peixes , Streptococcus agalactiae , Animais , Streptococcus agalactiae/efeitos dos fármacos , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Ciclídeos/genética , Clorpirifos/toxicidade , Antioxidantes/metabolismo , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Catalase/metabolismo , Catalase/genética , Poluentes Químicos da Água/toxicidade , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Estresse Oxidativo/efeitos dos fármacos , Aquicultura/métodos
2.
Proc Biol Sci ; 291(2021): 20240215, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654651

RESUMO

Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Ciclídeos/fisiologia , Comportamento Alimentar , Crânio , Regulação da Expressão Gênica , Fenótipo
3.
Am Nat ; 203(5): 604-617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635367

RESUMO

AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.


Assuntos
Ciclídeos , Lagos , Animais , Ciclídeos/genética , Opsinas/genética , Expressão Gênica , Ecossistema
4.
Genes (Basel) ; 15(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674414

RESUMO

Carnitine acetyltransferase (CAT) and Enoyl-CoA hydratase short-chain 1 (ECHS1) are considered key enzymes that regulate the ß-oxidation of fatty acids. However, very few studies have investigated their full length and expression in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), an important aquaculture species in China. Here, we cloned CAT and ECHS1 full-length cDNA via the rapid amplification of cDNA ends, and the expressions of CAT and ECHS1 in the liver of juvenile GIFT were detected in different fat and carnitine diets, as were the changes in the lipometabolic enzymes and serum biochemical indexes of juvenile GIFT in diets with different fat and carnitine levels. CAT cDNA possesses an open reading frame (ORF) of 2167 bp and encodes 461 amino acids, and the ECHS1 cDNA sequence is 1354 bp in full length, the ORF of which encodes a peptide of 391 amino acids. We found that juvenile GIFT had higher lipometabolic enzyme activity and lower blood CHOL, TG, HDL-C, and LDL-C contents when the dietary fat level was 2% or 6% and when the carnitine level was 500 mg/kg. We also found that the expression of ECHS1 and CAT genes in the liver of juvenile GIFT can be promoted by a 500 mg/kg carnitine level and 6% fat level feeding. These results suggested that CAT and ECHS1 may participate in regulating lipid metabolism, and when 2% or 6% fat and 500 mg/kg carnitine are added to the feed, it is the most beneficial to the liver and lipid metabolism of juvenile GIFT. Our results may provide a theoretical basis for GIFT feeding and treating fatty liver disease.


Assuntos
Carnitina O-Acetiltransferase , Carnitina , Enoil-CoA Hidratase , Fígado , Animais , Fígado/metabolismo , Carnitina/metabolismo , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Ciclídeos/crescimento & desenvolvimento , Gorduras na Dieta/farmacologia , Gorduras na Dieta/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Metabolismo dos Lipídeos/genética
5.
Science ; 384(6694): 374, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662834

RESUMO

A gene mutation tied to exploratory behavior may have jump-started the evolution of hundreds of cichlid species.


Assuntos
Comportamento Animal , Ciclídeos , Comportamento Exploratório , Animais , Biodiversidade , Evolução Biológica , Ciclídeos/genética , Ciclídeos/fisiologia , Lagos , Mutação , Tanzânia
6.
Science ; 384(6694): 470-475, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662824

RESUMO

Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika. By integrating quantitative behavioral data from 57 cichlid species (702 wild-caught individuals) with high-resolution ecomorphological and genomic information, we show that exploratory behavior is linked to macrohabitat niche adaptations in Tanganyikan cichlids. Furthermore, we uncovered a correlation between the genotypes at a single-nucleotide polymorphism upstream of the AMPA glutamate-receptor regulatory gene cacng5b and variation in exploratory tendency. We validated this association using behavioral predictions with a neural network approach and CRISPR-Cas9 genome editing.


Assuntos
Adaptação Fisiológica , Comportamento Animal , Ciclídeos , Comportamento Exploratório , Receptores de AMPA , Animais , Adaptação Fisiológica/genética , Ciclídeos/genética , Ciclídeos/fisiologia , Sistemas CRISPR-Cas , Ecossistema , Edição de Genes , Genótipo , Lagos , Polimorfismo de Nucleotídeo Único , Receptores de AMPA/genética
7.
Evol Dev ; 26(3): e12475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555511

RESUMO

Vertebrate pigmentation patterns are highly diverse, yet we have a limited understanding of how evolutionary changes to genetic, cellular, and developmental mechanisms generate variation. To address this, we examine the formation of a sexually-selected male ornament exhibiting inter- and intraspecific variation, the egg-spot pattern, consisting of circular yellow-orange markings on the male anal fins of haplochromine cichlid fishes. We focus on Astatotilapia calliptera, the ancestor-type species of the Malawi cichlid adaptive radiation of over 850 species. We identify a key role for iridophores in initializing egg-spot aggregations composed of iridophore-xanthophore associations. Despite adult sexual dimorphism, aggregations initially form in both males and females, with development only diverging between the sexes at later stages. Unexpectedly, we found that the timing of egg-spot initialization is plastic. The earlier individuals are socially isolated, the earlier the aggregations form, with iridophores being the cell type that responds to changes to the social environment. Furthermore, we observe apparent competitive interactions between adjacent egg-spot aggregations, which strongly suggests that egg-spot patterning results mostly from cell-autonomous cellular interactions. Together, these results demonstrate that A. calliptera egg-spot development is an exciting model for investigating pigment pattern formation at the cellular level in a system with developmental plasticity, sexual dimorphism, and intraspecific variation. As A. calliptera represents the ancestral bauplan for egg-spots, these findings provide a baseline for informed comparisons across the incredibly diverse Malawi cichlid radiation.


Assuntos
Ciclídeos , Pigmentação , Animais , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/genética , Ciclídeos/anatomia & histologia , Masculino , Feminino , Caracteres Sexuais , Evolução Biológica
8.
Gene ; 913: 148371, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38485034

RESUMO

The intestinal microbiota is increasingly recognized as playing an important role in aquatic animals. To investigate the functional roles and mechanisms of the intestinal microbial genes/enzymes responding to salinity stress or osmotic pressure in fish, metagenomic analysis was carried out to evaluate the response of intestinal microbiota and especially their functional genes/enzymes from freshwater (the control group) to acute high salinity stress (the treatment group) in Nile tilapia. Our results showed that at the microbial community level, the intestinal microbiota in Nile tilapia generally underwent significant changes in diversity after acute high salinity stress. Among them, the shift in the bacterial community (mainly from Actinobacteria to Proteobacteria) dominated and had a large impact, the fungal community showed a very limited response, and other microbiota, such as phages, likely had a negligible response. At the functional level, the intestinal bacteriadecreased the normal physiological demand and processes, such as those of the digestive system and nervous system, but enhanced energy metabolism. Furthermore, at the gene level, some gene biomarkers, such as glutathione S-transferase, myo-inositol-1(or 4)-monophosphatase, glycine betaine/proline transport system permease protein, and some families of carbohydrate-active enzymes (GT4, GT2), were significantly enriched. However, GH15, GH23 and so on were significantly reduced. Exploring the functional details of the intestinal microbial genes/enzymes that respond to salinity stress in Nile tilapia sheds light on the mechanism of action of the intestinal microbiota with respect to the salinity adaptation of fish.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Salinidade , Intestinos , Pressão Osmótica , Estresse Salino
9.
Zootaxa ; 5410(3): 434-450, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480231

RESUMO

The cichlid species flock from Lake Tanganyika is a well-studied system for evolutionary biology research because its species assemblage shows a high degree of endemism and is a product of adaptive radiation. While our understanding of the evolutionary history of Lake Tanganyika cichlids has advanced tremendously over the past decades, their taxonomy received considerably less attention, despite numerous taxonomic misplacements (e.g., polyphyletic genera and species) that have been revealed by phylogenetic studies. One prominent example of a polyphyletic genus is Gnathochromis, which includes two distantly related species, belonging to two different tribes. To resolve this issue, here we present a taxonomic revision based on an extensive morphological dataset obtained from a comprehensive taxon sampling including 587 specimens from 63 taxa. We introduce a new monotypic genus, Jabarichromis gen. nov. for Gnathochromis pfefferi, a member of the tribe Tropheini, thereby separating it from the type species of Gnathochromis, G. permaxillaris. As a result, the genus Gnathochromis, which belongs to the tribe Limnochromini, is rendered monophyletic. Further, we provide an additional character to distinguish the recently described genus Shuja, which also belongs to the Tropheini, from its former mostly riverine congeners.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Lagos , Filogenia , Tanzânia , Evolução Biológica
10.
Horm Behav ; 161: 105521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452613

RESUMO

The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa. We first used SCUBA to observe the behaviour of focal group members and then measured transcript abundance of key components of the AVP and OXT systems across different brain regions. While AVP is often associated with male-typical behaviours, we found that dominant females had higher expression of avp and its receptor (avpr1a2) in the preoptic area of the brain compared to either dominant males or subordinates of either sex. Dominant females also generally had the highest levels of leucyl-cystinyl aminopeptidase (lnpep)-which inactivates AVP and OXT-throughout the brain, potentially indicating greater overall activity (i.e., production, release, and turnover) of the AVP system in dominant females. Expression of OXT and its receptors did not differ across social ranks. However, dominant males that visited the brood chamber more often had lower preoptic expression of OXT receptor a (oxtra) suggesting a negative relationship between OXT signalling and parental care in males of this species. Overall, these results advance our understanding of the relationships between complex social behaviours and neuroendocrine systems under natural settings.


Assuntos
Arginina Vasopressina , Ciclídeos , Ocitocina , Comportamento Social , Animais , Ocitocina/metabolismo , Ocitocina/análogos & derivados , Arginina Vasopressina/metabolismo , Masculino , Feminino , Ciclídeos/metabolismo , Ciclídeos/fisiologia , Ciclídeos/genética , Encéfalo/metabolismo , Cistinil Aminopeptidase/metabolismo , Cistinil Aminopeptidase/genética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Comportamento Animal/fisiologia , Predomínio Social
11.
Am J Physiol Cell Physiol ; 326(4): C1054-C1066, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344798

RESUMO

To understand the role of myo-inositol oxygenase (miox) in the osmotic regulation of Nile tilapia, its expression was analyzed in various tissues. The results showed that the expression of miox gene was highest in the kidney, followed by the liver, and was significantly upregulated in the kidney and liver under 1 h hyperosmotic stress. The relative luminescence efficiency of the miox gene transcription starting site (-4,617 to +312 bp) under hyperosmotic stress was measured. Two fragments (-1,640/-1,619 and -620/-599) could induce the luminescence activity. Moreover, the -1,640/-1,619 and -620/-599 responded to hyperosmotic stress and high-glucose stimulation by base mutation, suggesting that osmotic and carbohydrate response elements may exist in this region. Finally, the salinity tolerance of Nile tilapia was significantly reduced after the knocking down of miox gene. The accumulation of myo-inositol was affected, and the expression of enzymes in glucose metabolism was significantly reduced after the miox gene was knocked down. Furthermore, hyperosmotic stress can cause oxidative stress, and MIOX may help maintain the cell redox balance under hyperosmotic stress. In summary, MIOX is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.NEW & NOTEWORTHY Myo-inositol oxygenase (MIOX) is the rate-limiting enzyme that catalyzes the first step of MI metabolism and determines MI content in aquatic animals. To understand the role of miox in the osmotic regulation of Nile tilapia, we analyzed its expression in different tissues and its function under hyperosmotic stress. This study showed that miox is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Ciclídeos/metabolismo , Inositol Oxigenase/genética , Inositol Oxigenase/metabolismo , Antioxidantes , Inositol/metabolismo , Glucose/metabolismo
12.
Dev Comp Immunol ; 155: 105152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408717

RESUMO

Tilapia lake virus (TiLV) is an emerging virus that seriously threatens the tilapia industries worldwide. Interferon regulatory factors (IRFs), which are the crucial mediators regulating the response of interferon (IFN) to combat invading viruses, have not yet been reported in tilapia during TiLV infection. Here, six IRF (IRF1, IRF2, IRF4, IRF7, IRF8, and IRF9) homologs from tilapia were characterized and analyzed. These IRFs typically shared the conserved domains and phylogenetic relationship with IRF homologs of other species. Tissue distribution analysis showed that all six IRF genes were expressed in various tissues, with the highest expression in immune-related tissues. Furthermore, overexpression of IRFs in tilapia brain (TiB) cells significantly inhibited TiLV propagation, as evidenced by decreased viral segment 8 gene transcripts and copy numbers of viral segment 1. More importantly, all six IRF genes significantly enhanced the promoter activity of type I interferon-a3 (IFNa3) in TiB cells, suggesting that tilapia IRF genes serve as positive regulators in activating IFNa3. Surprisingly, the promoter activity of IFNa3 mediated by IRF genes was markedly inhibited post-TiLV infection, indicating that TiLV antagonized IRF-mediated IFN immune response. Taken together, six IRF genes of tilapia are highly conserved transcription factors that inhibit TiLV infection by activating the promoter of IFNa3, which is in turn restrained by TiLV. These findings broaden our knowledge about the functionality of IRF-mediated antiviral immunity in tilapia against TiLV infection and host-TiLV interaction, which lays a foundation for developing antiviral strategies in tilapia cultural industries.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Viroses , Vírus , Animais , Interferons/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Filogenia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Vírus/metabolismo
13.
BMC Ecol Evol ; 24(1): 24, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378480

RESUMO

BACKGROUND: The mechanosensory lateral line system is an important sensory modality in fishes, informing multiple behaviours related to survival including finding food and navigating in dark environments. Given its ecological importance, we may expect lateral line morphology to be under disruptive selection early in the ecological speciation process. Here we quantify the lateral line system morphology of two ecomorphs of the cichlid fish Astatotilapia calliptera in crater Lake Masoko that have diverged from common ancestry within the past 1,000 years. RESULTS: Based on geometric morphometric analyses of CT scans, we show that the zooplanktivorous benthic ecomorph that dominates the deeper waters of the lake has large cranial lateral line canal pores, relative to those of the nearshore invertebrate-feeding littoral ecomorph found in the shallower waters. In contrast, fluorescence imaging revealed no evidence for divergence between ecomorphs in the number of either superficial or canal neuromasts. We illustrate the magnitude of the variation we observe in Lake Masoko A. calliptera in the context of the neighbouring Lake Malawi mega-radiation that comprises over 700 species. CONCLUSIONS: These results provide the first evidence of divergence in this often-overlooked sensory modality in the early stages of ecological speciation, suggesting that it may have a role in the broader adaptive radiation process.


Assuntos
Ciclídeos , Sistema da Linha Lateral , Animais , Ciclídeos/genética , Ciclídeos/anatomia & histologia , Lagos , Análise de Sequência de DNA , Malaui
14.
J Evol Biol ; 37(1): 51-61, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285657

RESUMO

Work on the Lake Victoria cichlids Pundamilia nyererei (red dorsum males, deeper water), Pundamilia pundamilia (blue males, shallower water) and related species pairs has provided insights into processes of speciation. Here, we investigate the female mating behaviour of 5 Pundamilia species and 4 of their F1 hybrids through mate choice trials and paternity testing. Complete assortative mating was observed among all sympatric species. Parapatric species with similar depth habitat distributions interbred whereas other parapatric and allopatric species showed complete assortative mating. F1 hybrids mated exclusively with species accepted by females of the parental species. The existence of complete assortative mating among some currently allopatric species suggests that pre-existing mating barriers could be sufficient to explain current patterns of co-existence, although, of course, many other factors may be involved. Regardless of the mechanism, mating preferences may influence species distribution in potentially hybridizing taxa, such as in the adaptive radiation of cichlid fish. We suggest that this at least partly explains why some species fail to establish breeding populations in locations where they are occasionally recorded. Our results support the notion that the mating preferences of potentially cross-breeding species ought to be included in coexistence theory.


Assuntos
Ciclídeos , Lagos , Animais , Masculino , Feminino , Simpatria , Ciclídeos/genética , Reprodução , Água
15.
Parasitology ; 151(3): 319-336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239098

RESUMO

Dermoergasilus madagascarensis n. sp. is described from the gills of Paretroplus polyactis, an endemic cichlid fish in Madagascar, using a combined morphological (light microscopy and SEM) and molecular approach (partial 18S rDNA, 28S rDNA, and COI sequences). The new species is characterized mainly by possessing: (i) roughly pentagonal cephalosome; (ii) antennal endopodal segments covered with slightly inflated membrane; (iii) maxillule bearing 2 equally long outer setae and a minute inner seta; (iv) interpodal sternites of swimming legs ornamented with 3­4 rows of spinules; (v) genital segment and first abdominal somite both barrel-shaped; and (vi) a caudal ramus projecting into a digitiform process with inconspicuous terminal seta and bearing 3 terminal setae. The obtained DNA sequences of Malagasy species represent the first molecular data for species of Dermoergasilus. The 28S rDNA phylogeny showed the affiliation of D. madagascarensis n. sp. to Ergasilidae and its sister relationship with cosmopolitan Ergasilus sieboldi von Nordmann, 1832. The first checklist for all species of Dermoergasilus is provided.


Assuntos
Ciclídeos , Copépodes , Animais , Copépodes/genética , Ciclídeos/genética , Madagáscar , Brânquias , DNA Ribossômico/genética
16.
Evolution ; 78(4): 652-664, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38288653

RESUMO

Intrinsic postzygotic hybrid incompatibilities are usually due to negative epistatic interactions between alleles from different parental genomes. While such incompatibilities are thought to be uncommon in speciation with gene flow, they may be important if such speciation results from a hybrid population. Here we aimed to test this idea in the endemic cichlid fishes of Lake Victoria. Hundreds of species have evolved within the lake in <15k years from hybrid progenitors. While the importance of prezygotic barriers to gene flow is well established in this system, the possible relevance of postzygotic genetic incompatibilities is unknown. We inferred the presence of negative epistatic interactions from systematic patterns of genotype ratio distortions in experimental crosses and wild samples. We then compared the positions of putative incompatibility loci to regions of high genetic differentiation between sympatric sister species and between members of clades that may have arisen in the early history of this radiation, and further determined if the loci showed fixed differences between the closest living relatives of the lineages ancestral to the hybrid progenitors. Overall, we find little evidence for a major role of intrinsic postzygotic incompatibilities in the Lake Victoria radiation. However, we find putative incompatibility loci significantly more often coinciding with islands of genetic differentiation between species that separated early in the radiation than between the younger sister species, consistent with the hypothesis that such variants segregated in the hybrid swarm and were sorted between species in the early speciation events.


Assuntos
Ciclídeos , Lagos , Animais , Ciclídeos/genética , Genoma , Fluxo Gênico , Especiação Genética
17.
Int J Biol Macromol ; 260(Pt 2): 129632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253139

RESUMO

Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.


Assuntos
Ciclídeos , Tilápia , Feminino , Animais , Camundongos , Tilápia/genética , Tilápia/metabolismo , Peixe-Zebra/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Poliadenilação , Proteínas do Ovo/metabolismo , Oogênese/genética , Estrogênios , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
18.
Ann N Y Acad Sci ; 1532(1): 73-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240562

RESUMO

Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.


Assuntos
Síndrome de Resistência a Andrógenos , Ciclídeos , Humanos , Animais , Masculino , Aromatase/genética , Aromatase/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Hipotálamo , Estradiol/metabolismo , Mamíferos/metabolismo
19.
Genomics ; 116(1): 110781, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182036

RESUMO

Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.


Assuntos
Ciclídeos , Humanos , Animais , Ciclídeos/genética , Uganda , Aquicultura , Cruzamento , Variação Genética
20.
Mol Biol Rep ; 51(1): 128, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236311

RESUMO

BACKGROUND: Muscle occupies most of the fish body, promoting the proliferation of fish muscle fibers can facilitate rapid growth and increase the body weight of fish. Some studiesSeveral previous suggest that Myogenic regulatory factors (MRFs) play an important role in the growth of fish. OBJECTIVE: To investigate the association between the polymorphism of MRFs gene family and growth traits in Nile tilapia (Oreochromis niloticus), get more molecular markers for growth. METHODS: Amplified the Nile tilapia MRFs family gene, including Myogenic determination 1 (Myod1), Myogenic determination 2 (Myod2), Myogenin (Myog), Myogenic factor 5 (Myf5), and Myogenic factor 6 (Myf6), single nucleotide polymorphism (SNP) were screened by Sanger sequencing. RESULTS: A total of 16 SNP loci were screened, including six for Myf5, six for Myf6, one for Myog, one for Myod1 and two for Myod2. The growth traits were analyzed in relation to these 16 SNP loci, and the results indicated significant associations between all 16 SNP loci and the growth traits (P < 0.05). The linkage disequilibrium analysis revealed that D1 and D2 diplotypes of Myf5 gene, E1, E2, E3 and E4 of Myf6 gene, and F1 diplotype of Myod2 gene were significantly associated with superior growth traits. CONCLUSION: There were 6, 6, 1, 1 and 2 growth-related molecular markers in Myf5, Myf6, Myog, Myod1 and Myod2 genes, respectively, which could be applied to the breeding of Nile tilapia.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Regulação Miogênica , Fator Regulador Miogênico 5 , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA