Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Prod Rep ; 39(8): 1622-1642, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35726901

RESUMO

Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.


Assuntos
Ciclitóis , Carboidratos , Ciclitóis/química , Ciclitóis/metabolismo
2.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008692

RESUMO

The present study clarified changes in the contents of polar metabolites (amino acids, organic acids, saccharides, cyclitols, and phosphoric acid) in leaf senescence in Ginkgo biloba with or without the application of methyl jasmonate (JA-Me) in comparison with those in naturally senescent leaf blades and petioles. The contents of most amino acids and citric and malic acids were significantly higher in abaxially, and that of myo-inositol was lower in abaxially JA-Me-treated leaves than in adaxially JA-Me-treated and naturally senescent leaves. The levels of succinic and fumaric acids in leaves treated adaxially substantially high, but not in naturally senescent leaves. In contrast, sucrose, glucose, and fructose contents were much lower in leaf blades and petioles treated abaxially with JA-Me than those treated adaxially. The levels of these saccharides were also lower compared with those in naturally senescent leaves. Shikimic acid and quinic acid were present at high levels in leaf blades and petioles of G. biloba. In leaves naturally senescent, their levels were higher compared to green leaves. The shikimic acid content was also higher in the organs of naturally yellow leaves than in those treated with JA-Me. These results strongly suggest that JA-Me applied abaxially significantly enhanced processes of primary metabolism during senescence of G. biloba compared with those applied adaxially. The changes in polar metabolites in relation to natural senescence were also discussed.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Ginkgo biloba/crescimento & desenvolvimento , Ginkgo biloba/metabolismo , Metaboloma , Oxilipinas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Senescência Vegetal , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Ciclitóis/metabolismo , Ginkgo biloba/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Ácidos Fosfóricos/metabolismo , Folhas de Planta/efeitos dos fármacos , Senescência Vegetal/efeitos dos fármacos , Análise de Componente Principal
3.
J Med Chem ; 63(9): 4617-4627, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32105467

RESUMO

Selective inhibitors of gut bacterial ß-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (2-7) for the GUSs. Complex structures of Ruminococcus gnavus GUS with 2-7 explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity. N1 of uronic isofagomine (2) made strong electrostatic interactions with two catalytic glutamates of GUSs, resulting in the most potent inhibition (Ki ≥ 11 nM). C6-propyl analogue of 2 (6) displayed 700-fold selectivity for opportunistic bacterial GUSs (Ki = 74 nM for E. coli GUS and 51.8 µM for RgGUS). In comparison with 2, there was 200-fold enhancement in the selectivity, which was attributed to differential interactions between the propyl group and loop 5 residues of the GUSs. The results provide useful insights to develop potent and selective inhibitors for undesired GUSs.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Ciclitóis/química , Microbioma Gastrointestinal/efeitos dos fármacos , Glucuronidase/antagonistas & inibidores , Piperidinas/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Bovinos , Clostridiales/enzimologia , Clostridium perfringens/enzimologia , Cristalografia por Raios X , Ciclitóis/síntese química , Ciclitóis/metabolismo , Ensaios Enzimáticos , Escherichia coli/enzimologia , Glucuronidase/química , Glucuronidase/metabolismo , Conformação Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
4.
J Chem Ecol ; 45(11-12): 926-933, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31758292

RESUMO

Chemical examination of plant constituents responsible for oviposition by a Magnoliaceae-feeding butterfly, Graphium doson, was conducted using its major host plant, Michelia compressa. A methanol extract prepared from young leaves of the plant elicited a strong oviposition response from females. The methanolic extract was then separated by solvent partition into three fractions: CHCl3, i-BuOH, and aqueous fractions. Active substance(s) resided in both i-BuOH- and water-soluble fractions. Bioassay-guided further fractionation of the water-soluble substances by means of various chromatographic techniques led to the isolation of an oviposition stimulant. The stimulant was identified as D-(+)-pinitol on the basis of 13C NMR spectra and physicochemical properties. D-(+)-Pinitol singly exhibited a moderate oviposition-stimulatory activity at a dose of 150 µg/cm2. This compound was present also in another host plant, Magnolia grandiflora, in a sufficient amount to induce oviposition behavior of G. doson females. Certain cyclitols including D-(+)-pinitol have been reported to be involved in stimulation of oviposition by some Aristolochiaceae- and Rutaceae-feeding papilionid butterflies. A possible pathway of phytochemical-mediated host shifts in the Papilionidae, in which certain cyclitols could enact important mediators, is discussed in relation to the evolution of cyclitol biosynthesis in plants.


Assuntos
Magnolia/química , Oviposição/efeitos dos fármacos , Extratos Vegetais/química , Animais , Butanóis/química , Borboletas , Ciclitóis/química , Ciclitóis/metabolismo , Feminino , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Inositol/análogos & derivados , Inositol/química , Inositol/metabolismo , Magnolia/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Solubilidade , Água/química
5.
Chem Asian J ; 14(22): 4001-4012, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31609526

RESUMO

This Minireview describes the exploitation of certain enzymatically derived, readily accessible, and enantiomerically pure cis-1,2-dihydrocatechols as starting materials in the chemical synthesis of a range of biologically active natural products, most notably sesquiterpenoids and alkaloids.


Assuntos
Produtos Biológicos/metabolismo , Dioxigenases/metabolismo , Produtos Biológicos/química , Catecóis/química , Catecóis/metabolismo , Ciclitóis/química , Ciclitóis/metabolismo , Reação de Cicloadição , Oxigenases/metabolismo , Estereoisomerismo
6.
New Phytol ; 222(4): 1803-1815, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30740705

RESUMO

While photosynthetic isotope discrimination is well understood, the postphotosynthetic and transport-related fractionation mechanisms that influence phloem and subsequently tree ring δ13 C are less investigated and may vary among species. We studied the seasonal and diel courses of leaf-to-phloem δ13 C differences of water-soluble organic matter (WSOM) in vertical crown gradients and followed the assimilate transport via the branches to the trunk phloem at breast height in European beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii). δ13 C of individual sugars and cyclitols from a subsample was determined by compound-specific isotope analysis. In beech, leaf-to-phloem δ13 C differences in WSOM increased with height and were partly caused by biochemical isotope fractionation between leaf compounds. 13 C-Enrichment of phloem sugars relative to leaf sucrose implies an additional isotope fractionation mechanism related to leaf assimilate export. In Douglas fir, leaf-to-phloem δ13 C differences were much smaller and isotopically invariant pinitol strongly influenced leaf and phloem WSOM. Trunk phloem WSOM at breast height reflected canopy-integrated δ13 C in beech but not in Douglas fir. Our results demonstrate that leaf-to-phloem isotope fractionation and δ13 C mixing patterns along vertical gradients can differ between tree species. These effects have to be considered for functional interpretations of trunk phloem and tree ring δ13 C.


Assuntos
Isótopos de Carbono/metabolismo , Fagus/metabolismo , Floema/metabolismo , Folhas de Planta/metabolismo , Pseudotsuga/metabolismo , Fracionamento Químico , Ritmo Circadiano , Ciclitóis/metabolismo , Compostos Orgânicos/análise , Estações do Ano , Solubilidade , Açúcares/metabolismo , Fatores de Tempo
7.
Chem Pharm Bull (Tokyo) ; 66(10): 976-982, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30270243

RESUMO

A new aminocyclitol derivative, designated nabscessin C (1), was isolated from Nocardia abscessus IFM 10029T. Nabcessin C is an isomer of nabscessins A (2) and B (3) with different positioning of the acyl group. Absolute configuration of nabscessin A was determined by conversion into the 2-deoxy-scyllo-inosamine pentaacetyl derivative (4) by hydrolysis and acetylation of 2. The biosynthetic pathway of nabscessins is proposed based on gene expression analysis.


Assuntos
Ciclitóis/metabolismo , Nocardia asteroides/química , Acetilação , Animais , Linhagem Celular , Proliferação de Células , Ciclitóis/química , Ciclitóis/isolamento & purificação , Hidrólise , Camundongos , Estrutura Molecular , Nocardia asteroides/metabolismo , Sementes/química , Sementes/metabolismo
8.
ACS Chem Biol ; 12(4): 979-988, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28182402

RESUMO

2-Epi-5-epi-valiolone synthase (EEVS), a C7-sugar phosphate cyclase (SPC) homologous to 3-dehydroquinate synthase (DHQS), was discovered during studies of the biosynthesis of the C7N-aminocyclitol family of natural products. EEVS was originally thought to be present only in certain actinomycetes, but analyses of genome sequences showed that it is broadly distributed in both prokaryotes and eukaryotes, including vertebrates. Another SPC, desmethyl-4-deoxygadusol synthase (DDGS), was later discovered as being involved in the biosynthesis of mycosporine-like amino acid sunscreen compounds. Current database annotations are quite unreliable, with many EEVSs reported as DHQS, and most DDGSs reported as EEVS, DHQS, or simply hypothetical proteins. Here, we identify sequence features useful for distinguishing these enzymes, report a crystal structure of a representative DDGS showing the high similarity of the EEVS and DDGS enzymes, identify notable active site differences, and demonstrate the importance of two of these active site residues for catalysis by point mutations. Further, we functionally characterized two representatives of a distinct clade equidistant from known EEVS and known DDGS groups and show them to be authentic EEVSs. Moreover, we document and discuss the distribution of genes that encode EEVS and DDGS in various prokaryotes and eukaryotes, including pathogenic bacteria, plant symbionts, nitrogen-fixing bacteria, myxobacteria, cyanobacteria, fungi, stramenopiles, and animals, suggesting their broad potential biological roles in nature.


Assuntos
Evolução Biológica , Ciclitóis/metabolismo , Ligases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Sequência Conservada , Cristalografia por Raios X , Ciclitóis/química , Células Eucarióticas , Ligases/química , Ligases/genética , Filogenia , Células Procarióticas , Homologia de Sequência de Aminoácidos
9.
Biosci Biotechnol Biochem ; 81(5): 871-881, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28110605

RESUMO

Actinomycetes are a major source of bioactive natural products with important pharmaceutical properties. Understanding the natural enzymatic assembly of complex small molecules is important for rational metabolic pathway design to produce "artificial" natural products in bacterial cells. This review will highlight current research on the biosynthetic mechanisms of two classes of nitrogen-containing natural products, C7N aminocyclitols and bis-indoles. Validamycin A is a member of C7N aminocyclitol natural products from Streptomyces hygroscopicus. Here, two important biosynthetic steps, pseudoglycosyltranferase-catalyzed C-N bond formation, and C7-sugar phosphate cyclase-catalyzed divergent carbasugar formation, will be reviewed. In addition, the bis-indolic natural products indolocarbazole, staurosporine from Streptomyces sp. TP-A0274, and rearranged bis-indole violacein from Chromobacterium violaceum are reviewed including the oxidative course of the assembly pathway for the bis-indolic scaffold. The identified biosynthesis mechanisms will be useful to generating new biocatalytic tools and bioactive compounds.


Assuntos
Actinobacteria/metabolismo , Ciclitóis/química , Ciclitóis/metabolismo , Indóis/química , Indóis/metabolismo , Nitrogênio , Actinobacteria/enzimologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Glicosiltransferases/metabolismo
10.
Chembiochem ; 17(22): 2143-2148, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27577857

RESUMO

Aristeromycin is a unique carbocyclic nucleoside antibiotic produced by Streptomyces citricolor. In order to elucidate its intriguing carbocyclic formation, we used a genome-mining approach to identify the responsible enzyme. In silico screening with known cyclitol synthases involved in primary metabolism, such as myo-inositol-1-phosphate synthase (MIPS) and dehydroqunate synthase (DHQS), identified a unique MIPS orthologue (Ari2) encoded in the genome of S. citricolor. Heterologous expression of the gene cluster containing ari2 with a cosmid vector in Streptomyces albus resulted in the production of aristeromycin, thus indicating that the cloned DNA region (37.5 kb) with 33 open reading frames contains its biosynthetic gene cluster. We verified that Ari2 catalyzes the formation of a novel five-membered cyclitol phosphate from d-fructose 6-phosphate (F6P) with NAD+ as a cofactor. This provides insight into cyclitol phosphate synthase as a member of the MIPS family of enzymes. A biosynthetic pathway to aristeromycin is proposed based on bioinformatics analysis of the gene cluster.


Assuntos
Adenosina/análogos & derivados , Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Ciclitóis/metabolismo , Mio-Inositol-1-Fosfato Sintase/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Adenosina/biossíntese , Adenosina/química , Antibacterianos/química , Proteínas de Bactérias/genética , Cosmídeos/genética , Cosmídeos/metabolismo , Ciclitóis/química , Espectroscopia de Ressonância Magnética , Família Multigênica , Mio-Inositol-1-Fosfato Sintase/genética , Nucleosídeos/química , Fósforo-Oxigênio Liases/genética , Espectrometria de Massas por Ionização por Electrospray , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética
11.
J Plant Physiol ; 184: 37-48, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26210320

RESUMO

Galactinol is the galactosyl donor for the biosynthesis of both the raffinose family oligosaccharides (RFOs) and galactosyl cyclitols (Gal-C). Its synthesis by galactinol synthase (GolS, EC 2.4.1.123) is the first committed step of the soluble α-D-galactosides biosynthetic pathway in orthodox seeds. The deposition of galactosides in seeds is suggested to be associated with desiccation tolerance (DT). In this work, for the first time, we cloned and characterized two Vicia hirsuta (L.) S.F. Gray galactinol synthase genes (VhGolS1, VhGolS2), analyzed galactinol synthase activity and measured the accumulation of galactosides of both sucrose and D-pinitol in relation to the acquisition of DT in developing seeds of this wild species. A developmentally induced increase of VhGolS1 expression preceded the rise of GolS activity in crude protein extract from maturing seeds, while the expression of the VhGolS2 gene remained low. GolS activity peaked just after the beginning of the maturation drying phase. The increase of GolS activity was not followed by galactinol accumulation, instead the high enzyme activity was related to high levels of galactose bound in soluble galactosides of the RFO and galactosyl pinitol series. Acquisition of DT coincided with an increase of VhGolS1 expression, high galactinol synthase activity and the accumulation of oligogalactosides in seeds. DT was positively correlated with the high content of soluble α-D-galactosides of both the RFO and galactosyl pinitol series as well as with the amount of galactose bound in these galactosides.


Assuntos
Secas , Galactosiltransferases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Vicia/fisiologia , Sequência de Aminoácidos , Ciclitóis/metabolismo , Dessecação , Galactosídeos/metabolismo , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Rafinose/metabolismo , Sementes/metabolismo , Vicia/genética
12.
Mol Plant Microbe Interact ; 26(11): 1325-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902262

RESUMO

Several plant species of the genus Psychotria (Rubiaceae) harbor Burkholderia sp. bacteria within specialized leaf nodules. The bacteria are transmitted vertically between plant generations and have not yet been cultured outside of their host. This symbiosis is considered to be obligatory because plants devoid of symbionts fail to develop into mature individuals. The genome of 'Candidatus Burkholderia kirkii' has been sequenced recently and has revealed evidence of reductive genome evolution, as shown by the proliferation of insertion sequences and the presence of numerous pseudogenes. We employed shotgun proteomics to investigate the expression of 'Ca. B. kirkii' proteins in the leaf nodule. Drawing from this dataset and refined comparative genomics analyses, we designed a new pseudogene prediction algorithm and improved the genome annotation. We also found conclusive evidence that nodule bacteria allocate vast resources to synthesis of secondary metabolites, possibly of the C7N aminocyclitol family. Expression of a putative 2-epi-5-valiolone synthase, a key enzyme of the C7N aminocyclitol synthesis, is high in the nodule population but downregulated in bacteria residing in the shoot apex, suggesting that production of secondary metabolites is particularly important in the leaf nodule.


Assuntos
Burkholderia/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteômica , Psychotria/microbiologia , Algoritmos , Evolução Biológica , Burkholderia/genética , Burkholderia/fisiologia , Ciclitóis/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Regulação para Baixo , Anotação de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Pseudogenes , Psychotria/genética , Psychotria/metabolismo , Metabolismo Secundário , Simbiose
13.
J Nat Prod ; 76(5): 939-46, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23607523

RESUMO

The biosynthetic gene cluster for the pyralomicin antibiotics has been cloned and sequenced from Nonomuraea spiralis IMC A-0156. The 41 kb gene cluster contains 27 ORFs predicted to encode all of the functions for pyralomicin biosynthesis. This includes nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) required for the formation of the benzopyranopyrrole core unit, as well as a suite of tailoring enzymes (e.g., four halogenases, an O-methyltransferase, and an N-glycosyltransferase) necessary for further modifications of the core structure. The N-glycosyltransferase is predicted to transfer either glucose or a pseudosugar (cyclitol) to the aglycone. A gene cassette encoding C7-cyclitol biosynthetic enzymes was identified upstream of the benzopyranopyrrole-specific ORFs. Targeted disruption of the gene encoding the N-glycosyltransferase, prlH, abolished pyralomicin production, and recombinant expression of PrlA confirms the activity of this enzyme as a sugar phosphate cyclase involved in the formation of the C7-cyclitol moiety.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/biossíntese , Actinobacteria/genética , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Cromonas/química , Cromonas/metabolismo , Ciclitóis/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Glucosiltransferases/metabolismo , Estrutura Molecular , Família Multigênica , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Pirróis/química , Pirróis/metabolismo
14.
PLoS One ; 7(9): e44934, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028689

RESUMO

The pseudo-glycosyltransferase VldE catalyzes non-glycosidic C-N coupling between an unsaturated cyclitol and a saturated aminocyclitol with the conservation of the stereochemical configuration of the substrates to form validoxylamine A 7'-phosphate, the biosynthetic precursor of the antibiotic validamycin A. To study the molecular basis of its mechanism, the three-dimensional structures of VldE from Streptomyces hygroscopicus subsp. limoneus was determined in apo form, in complex with GDP, in complex with GDP and validoxylamine A 7'-phosphate, and in complex with GDP and trehalose. The structure of VldE with the catalytic site in both an "open" and "closed" conformation is also described. With these structures, the preferred binding of the guanine moiety by VldE, rather than the uracil moiety as seen in OtsA could be explained. The elucidation of the VldE structure in complex with the entirety of its products provides insight into the internal return mechanism by which catalysis occurs with a net retention of the stereochemical configuration of the donated cyclitol.


Assuntos
Glicosiltransferases/química , Glicosiltransferases/metabolismo , Fosfatos de Inositol/biossíntese , Inositol/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ciclitóis/metabolismo , Inositol/biossíntese , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Streptomyces/enzimologia
15.
J Chem Inf Model ; 51(2): 335-58, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21299226

RESUMO

CXCL-8 (Interleukin 8) is a CXC chemokine with a central role in the human immune response. We have undertaken extensive in silico analyses to elucidate the interactions of CXCL-8 with its various binding partners, which are crucial for its biological function. Sequence and structure analyses showed that residues in the thirdq ß-sheet and basic residues in the heparin binding site are highly variable, while residues in the second ß-sheet are highly conserved. Molecular dynamics simulations in aqueous solution of dimeric CXCL-8 have been performed with starting geometries from both X-ray and NMR structures showed shearing movements between the two antiparallel C-terminal helices. Dynamic conservation analyses of these simulations agreed with experimental data indicating that structural differences between the two structures at quaternary level arise from changes in the secondary structure of the N-terminal loop, the 3(10)-helix, the 30s, 40s, and 50s loops and the third ß-sheet, resulting in a different interhelical separation. Nevertheless, the observation of these different states indicates that CXCL-8 has the potential to undergo conformational changes, and it seems likely that this feature is relevant to the mode of binding of glycosaminoglycan (GAG) mimetics such as cyclitols. Simulations of the receptor peptide fragment-CXCL-8 complex identified several specific interactions of the receptor peptide with CXCL-8 that could be exploited in the structure-based design of competitive peptides and nonpeptidic molecules targeting CXCL-8 for combating inflammatory diseases. Simulations of the CXCL-8 dimer complexed with a 24-mer heparin fragment and of the CXCL-8-receptor peptide complex revealed that Arg60, Lys64, and Arg68 in the dimer bind to cyclitols in a horseshoe pattern, defining a region which is spatially distinct from the receptor binding site. There appears to be an optimum number of sulfates and an optimum length of alkyl spacers required for the interaction of cyclitol inhibitors with the dimeric form of CXCL-8. Calculation of the binding affinities of cyclitol inhibitors reflected satisfactorily the ranking of experimentally determined inhibitory potencies. The findings of these molecular modeling studies will help in the search for inhibitors which can modulate various CXCL-8 biological activities and serve as an excellent model system to study CXC-inhibitor interactions.


Assuntos
Ciclitóis/metabolismo , Heparina/química , Interleucina-8/metabolismo , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Receptores de Interleucina-8/química , Sulfatos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional , Sequência Conservada , Ciclitóis/química , Evolução Molecular , Heparina/metabolismo , Humanos , Interleucina-8/química , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de Interleucina-8/metabolismo , Termodinâmica
16.
Curr Opin Chem Biol ; 13(2): 161-70, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19321377

RESUMO

A stream of genetic and biochemical information available for the biosynthesis of aminocyclitols over the past few years has provided the foundation to study the modes of formation of this clinically important class of natural products. In addition to work on the identification and functional analysis of aminocyclitol biosynthetic gene clusters, a contingent of recent studies has focused on the detailed analysis of unique enzymatic and catalytic mechanisms inherent to these pathways. The results provide invaluable insights into the biochemical and molecular aspects of aminocyclitol biosynthesis and have revealed diverse and unique features of the pathways.


Assuntos
Ciclitóis/metabolismo , Aminoglicosídeos/biossíntese , Aminoglicosídeos/química , Antibacterianos/biossíntese , Antibacterianos/química , Ciclitóis/química , Liases/metabolismo , Fosfatos Açúcares/metabolismo
17.
J Biotechnol ; 140(1-2): 114-23, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19059289

RESUMO

The C7N-cyclitol containing alpha-glucosidase inhibitor acarbose is commercially produced using developed strains of Actinoplanes and is used in the treatment of patients suffering from diabetes type II. We have identified a second acarbose production cluster using a genomic cosmid gene bank from Streptomyces glaucescens GLA.O and sequenced a region (42658bp; accession AM409314) which clearly contained a gene cluster (gac-cluster) for the synthesis of acarbose or acarbose related endproducts. The gac-cluster exhibited large similarities to the acb-gene cluster from Actinoplanes. However, remarkable differences are found in the biosynthesis of the C7N-cyclitol in the two acarbose biosynthesis pathways. We show the expression of selected genes using RT-PCR approaches, we were able to detect small amounts of acarbose or acarbose related metabolites and we have characterized the GacK protein, an acarbose kinase, which specifically phosphorylates acarbose and acarbose homologs. All these data in combination with the postulated functions of the encoded Gac proteins clearly indicate that also in S. glaucescens a recycling mechanism for acarbose ("carbophor") which had been described for the first time for acarbose cluster from Actinoplanes, is also realised.


Assuntos
Acarbose/metabolismo , Proteínas de Bactérias , Família Multigênica , Fosfotransferases (Aceptor do Grupo Álcool) , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclitóis/metabolismo , Diabetes Mellitus Tipo 2 , Expressão Gênica , Genes Bacterianos , Inibidores de Glicosídeo Hidrolases , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Streptomyces/metabolismo , alfa-Amilases/genética
18.
J Am Chem Soc ; 129(47): 14811-7, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17985886

RESUMO

A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraldehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with kcat/KMvalues of 33, 75, and 20 M-1 s-1, respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization.


Assuntos
Ciclitóis/química , Ciclitóis/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosefosfatos/metabolismo , Iminas/química , Aldeídos/química , Aminas/química , Azidas/química , Catálise , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Cinética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA