Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39351905

RESUMO

Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.


Assuntos
Ecossistema , Camada de Gelo , Camada de Gelo/microbiologia , Microbiologia do Solo , Fixação de Nitrogênio/genética , Microbiota/genética , Metagenômica , Sedimentos Geológicos/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenoma , Ciclo do Nitrogênio/genética
2.
Arch Microbiol ; 206(7): 297, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861039

RESUMO

The microbe-mediated conversion of nitrate (NO3-) to ammonium (NH4+) in the nitrogen cycle has strong implications for soil health and crop productivity. The role of prokaryotes, eukaryotes and their phylogeny, physiology, and genetic regulations are essential for understanding the ecological significance of this empirical process. Several prokaryotes (bacteria and archaea), and a few eukaryotes (fungi and algae) are reported as NO3- reducers under certain conditions. This process involves enzymatic reactions which has been catalysed by nitrate reductases, nitrite reductases, and NH4+-assimilating enzymes. Earlier reports emphasised that single-cell prokaryotic or eukaryotic organisms are responsible for this process, which portrayed a prominent gap. Therefore, this study revisits the similarities and uniqueness of mechanism behind NO3- -reduction to NH4+ in both prokaryotes and eukaryotes. Moreover, phylogenetic, physiological, and genetic regulation also shed light on the evolutionary connections between two systems which could help us to better explain the NO3--reduction mechanisms over time. Reports also revealed that certain transcription factors like NtrC/NtrB and Nit2 have shown a major role in coordinating the expression of NO3- assimilation genes in response to NO3- availability. Overall, this review provides a comprehensive information about the complex fermentative and respiratory dissimilatory nitrate reduction to ammonium (DNRA) processes. Uncovering the complexity of this process across various organisms may further give insight into sustainable nitrogen management practices and might contribute to addressing global environmental challenges.


Assuntos
Compostos de Amônio , Archaea , Bactérias , Nitratos , Oxirredução , Filogenia , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Eucariotos/genética , Eucariotos/metabolismo , Células Procarióticas/metabolismo , Fungos/genética , Fungos/metabolismo , Fungos/classificação , Ciclo do Nitrogênio/genética , Nitrito Redutases/genética , Nitrito Redutases/metabolismo
3.
J Hazard Mater ; 472: 134387, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723479

RESUMO

Microplastics (MPs) are distributed widely in the ocean surface waters and sediments. Increasing MPs contamination in intertidal zone profoundly impacts microbial ecosystem services and biogeochemical process. Little is known about the response of tidal sediment microbiome to MPs. We conducted a 30-day laboratory microcosm study using five polymers (PE, PBS, PC, PLA and PET) at three concentrations (1 %, 2 % and 5 %, w/w). High throughput sequencing of 16 S rRNA, qPCR and enzyme activity test were applied to demonstrate the response of microbial community and nitrogen cycling functional genes to MPs. MPs reduced the microbial alpha diversity and the microbial dissimilarity while the effects of PLA-MPs were concentration dependent. LEfSe analysis indicated that the Proteobacteria predominated for all MP treatments. Mantel's test, RDA and correlation analysis implied that pH may be the key environmental factor for causing microbial alterations. MPs enhanced nitrogen fixation in tidal sediment. PLA levels of 1 % but not 5 % produced the most significant effects in nitrogen cycling functional microbiota and genes. PLS-PM revealed that impacts of MPs on tidal sediment microbial communities and nitrogen cycling were dominated by indirect effects. Our study deepened understanding and filled the knowledge gap of MP contaminants affecting tidal sediment microbial nitrogen cycling.


Assuntos
Exposição Ambiental , Microbiota , Microplásticos , Ciclo do Nitrogênio , Polímeros , Microplásticos/química , Microplásticos/toxicidade , Polímeros/química , Polímeros/toxicidade , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Ciclo do Nitrogênio/efeitos dos fármacos , Ciclo do Nitrogênio/genética , Microbiota/efeitos dos fármacos , Microbiota/genética , Biodiversidade , Concentração de Íons de Hidrogênio , Ondas de Maré
4.
Sci Total Environ ; 921: 171048, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387590

RESUMO

Quantification of nitrogen (N) cycling genes contributes to our best understanding of N transformation processes. The application of organic amendment (OA) is widely recognized as an effective measure to improve N management and soil fertility in various ecosystems. However, our understanding of N-cycling gene abundances in response to OA application remains deficient. We performed a meta-analysis embracing 124 sets of observation data to study the impact of OA application on the main N-cycling gene abundances, including nifH, amoA, nirS, nirK and nosZ. We found that the significantly positive response of N-cycling gene abundances to OA application was attributed to the rotation cropping system (by 6.45 %-104.20 %) in the field experiment (by 19.43 %-52.56 %), OA application alone (by 8.29 %-111.70 %) especially manure addition (by 33.43 %-98.70 %), application dose of OAs within 10-20 t ha-1 (by 45.33 %-381.90 %), fertilization duration <5 years (by 43.69 %-112.63 %), C/N of OA <25 (by 37.87 %-160.90 %), SOC lower than 1.2 % (by 41.44 %-157.89 %) and application to alkaline soil (by 32.24 %-134.40 %). Moreover, soil organic carbon (SOC) and pH were the most essential regulators associated with N-cycling gene abundances with OA application. Identification of key driving factors of the abundance of N-cycling functional genes will help remedy strategies for managing OAs in ecosystems.


Assuntos
Ecossistema , Solo , Carbono , Ciclo do Nitrogênio/genética , Nitrogênio , Microbiologia do Solo , Fertilizantes/análise
5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903227

RESUMO

Nitrification is a central process of the aquatic nitrogen cycle that controls the supply of nitrate used in other key processes, such as phytoplankton growth and denitrification. Through time series observation and modeling of a seasonally stratified, eutrophic coastal basin, we demonstrate that physical dilution of nitrifying microorganisms by water column mixing can delay and decouple nitrification. The findings are based on a 4-y, weekly time series in the subsurface water of Bedford Basin, Nova Scotia, Canada, that included measurement of functional (amoA) and phylogenetic (16S rRNA) marker genes. In years with colder winters, more intense winter mixing resulted in strong dilution of resident nitrifiers in subsurface water, delaying nitrification for weeks to months despite availability of ammonium and oxygen. Delayed regrowth of nitrifiers also led to transient accumulation of nitrite (3 to 8 µmol · kgsw-1) due to decoupling of ammonia and nitrite oxidation. Nitrite accumulation was enhanced by ammonia-oxidizing bacteria (Nitrosomonadaceae) with fast enzyme kinetics, which temporarily outcompeted the ammonia-oxidizing archaea (Nitrosopumilus) that dominated under more stable conditions. The study reveals how physical mixing can drive seasonal and interannual variations in nitrification through control of microbial biomass and diversity. Variable, mixing-induced effects on functionally specialized microbial communities are likely relevant to biogeochemical transformation rates in other seasonally stratified water columns. The detailed study reveals a complex mechanism through which weather and climate variability impacts nitrogen speciation, with implications for coastal ecosystem productivity. It also emphasizes the value of high-frequency, multiparameter time series for identifying complex controls of biogeochemical processes in aquatic systems.


Assuntos
Nitrificação/genética , Ciclo do Nitrogênio/genética , Nitrosomonadaceae/genética , Água/metabolismo , Amônia/metabolismo , Compostos de Amônio/metabolismo , Archaea/genética , Archaea/metabolismo , Biomassa , Canadá , Desnitrificação/genética , Ecossistema , Humanos , Cinética , Nitratos , Nitritos/metabolismo , Nitrogênio/metabolismo , Nitrosomonadaceae/patogenicidade , Oxirredução , Filogenia , Fitoplâncton/genética , Fitoplâncton/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano
6.
mSphere ; 6(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441406

RESUMO

Soil microbial transformations of nitrogen (N) can be affected by soil health management practices. Here, we report in situ seasonal dynamics of the population size (gene copy abundances) and functional activity (transcript copy abundances) of five bacterial genes involved in soil N cycling (ammonia-oxidizing bacteria [AOB] amoA, nifH, nirK, nirS, and nosZ) in a long-term continuous cotton production system under different management practices (cover crops, tillage, and inorganic N fertilization). Hairy vetch (Vicia villosa Roth), a leguminous cover crop, most effectively promoted the expression of N cycle genes, which persisted after cover crop termination throughout the growing season. Moreover, we observed similarly high or even higher N cycle gene transcript abundances under vetch with no fertilizer as no cover crop with N fertilization throughout the cover crop peak and cotton growing seasons (April, May, and October). Further, both the gene and transcript abundances of amoA and nosZ were positively correlated to soil nitrous oxide (N2O) emissions. We also found that the abundances of amoA genes and transcripts both positively correlated to field and incubated net nitrification rates. Together, our results revealed relationships between microbial functional capacity and activity and in situ soil N transformations under different agricultural seasons and soil management practices.IMPORTANCE Conservation agriculture practices that promote soil health have distinct and lasting effects on microbial populations involved with soil nitrogen (N) cycling. In particular, using a leguminous winter cover crop (hairy vetch) promoted the expression of key functional genes involved in soil N cycling, equaling or exceeding the effects of inorganic N fertilizer. Hairy vetch also left a legacy on soil nutrient capacity by promoting the continued activity of N cycling microbes after cover crop termination and into the main growing season. By examining both genes and transcripts involved in soil N cycling, we showed different responses of functional capacity (i.e., gene abundances) and functional activity (i.e., transcript abundances) to agricultural seasons and management practices, adding to our understanding of the effects of soil health management practices on microbial ecology.


Assuntos
Agricultura/métodos , Bactérias/genética , Ciclo do Nitrogênio/genética , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos/genética , Nitrificação , Nitrogênio/metabolismo , Ciclo do Nitrogênio/fisiologia , Solo/química , Vicia/microbiologia
7.
Environ Microbiol ; 23(2): 1020-1037, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33073448

RESUMO

Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.


Assuntos
Estuários , Microbiota , Salinidade , Microbiologia do Solo , Áreas Alagadas , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Ciclo do Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Solo/química
8.
Environ Microbiol ; 23(2): 1199-1209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283951

RESUMO

Soil aggregates, with complex spatial and nutritional heterogeneity, are clearly important for regulating microbial community ecology and biogeochemistry in soils. However, how the taxonomic composition and functional attributes of N-cycling-microbes within different soil particle-size fractions under a long-term fertilization treatment remains largely unknown. Here, we examined the composition and metabolic potential for urease activity, nitrification, N2 O production and reduction of the microbial communities attached to different sized soil particles (2000-250, 250-53 and <53 µm) using a functional gene microarray (GeoChip) and functional assays. We found that urease activity and nitrification were higher in <53 µm fractions, whereas N2 O production and reduction rates were greater in 2000-250 and 250-53 µm across different fertilizer regimes. The abundance of key N-cycling genes involved in anammox, ammonification, assimilatory and dissimilatory N reduction, denitrification, nitrification and N2 -fixation detected by GeoChip increased as soil aggregate size decreased; and the particular key genes abundance (e.g., ureC, amoA, narG, nirS/K) and their corresponding activity were uncoupled. Aggregate fraction exerted significant impacts on N-cycling microbial taxonomic composition, which was significantly shaped by soil nutrition. Taken together, these findings indicate the important roles of soil aggregates in differentiating N-cycling metabolic potential and taxonomic composition, and provide empirical evidence that nitrogen metabolism potential and community are uncoupled due to aggregate heterogeneity.


Assuntos
Microbiota/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Fertilizantes/análise , Genes Microbianos , Microbiota/genética , Nitrificação/genética , Nitrogênio/análise , Ciclo do Nitrogênio/genética , Óxido Nitroso/metabolismo , Solo/química , Urease/genética , Urease/metabolismo
9.
Sci Rep ; 10(1): 13966, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811860

RESUMO

Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fiddler crabs and their carapace-associated microbial biofilm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial biofilm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fixation was among the most commonly predicted process. Net N fluxes between the biofilm-covered crabs and the water and microbial N transformation rates in suspended biofilm slurries portray these holobionts as a net N2 sink, with N2 fixation exceeding N losses, and as a significant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fiddler crab carapace-associated biofilms were within the range expected for fixed N, further suggesting active microbial N2 fixation. These results extend our knowledge on the diversity of invertebrate-microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems.


Assuntos
Braquiúros/metabolismo , Braquiúros/microbiologia , Fixação de Nitrogênio/fisiologia , Animais , Biofilmes/crescimento & desenvolvimento , Decápodes/metabolismo , Decápodes/microbiologia , Ecossistema , Microbiota/genética , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , Ciclo do Nitrogênio/fisiologia , RNA Ribossômico 16S/genética , Áreas Alagadas
10.
Environ Microbiol ; 22(11): 4545-4556, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32656968

RESUMO

Agricultural production is dependent on inputs of nitrogen (N) whose cycle relies on soil and crop microbiomes. Crop diversification has increased productivity; however, its impact on the expression of microbial genes involved in N-cycling pathways remains unknown. Here, we assessed N-cycling gene expression patterns in the root and rhizosphere microbiomes of five oilseed crops as influenced by three 2-year crop rotations. The first phase consisted of fallow, lentil or wheat, and the second phase consisted of one of five oilseed crops. Expression of bacterial amoA, nirK and nirS genes showed that the microbiome of Ethiopian mustard had the lowest and that of camelina the highest potential for N loss. A preceding rotation phase of lentil significantly increased the expression of nifH gene by 23% compared with wheat and improved nxrA gene expression by 51% with chemical fallow in the following oilseed crops respectively. Lentil substantially increased biological N2 fixation and reduced denitrification in the following oilseed crops. Our results also revealed that most N-cycling gene transcripts are more abundant in the microbiomes associated with roots than with the rhizosphere. The outcome of our investigation brings a new level of understanding on how crop diversification and rotation sequences are related to N-cycling in annual cropping systems.


Assuntos
Camellia/metabolismo , Produtos Agrícolas/microbiologia , Lens (Planta)/metabolismo , Mostardeira/metabolismo , Ciclo do Nitrogênio/fisiologia , Triticum/metabolismo , Agricultura/métodos , Bactérias/genética , Camellia/microbiologia , Produção Agrícola/métodos , Lens (Planta)/microbiologia , Microbiota/fisiologia , Mostardeira/microbiologia , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , Raízes de Plantas/microbiologia , Rizosfera , Solo , Microbiologia do Solo , Triticum/microbiologia
11.
PLoS One ; 15(6): e0228364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484823

RESUMO

Nitrogen transformation in soil is a complex process and the soil microbial population can regulate the potential for N mineralization, nitrification and denitrification. Here we show that agricultural soils under standard agricultural N-management are consistently characterized by a high presence of gene copies for some of the key biological activities related to the N-cycle. This led to a strong NO3- reduction (75%) passing from the soil surface (15.38 ± 11.36 g N-NO3 kg-1 on average) to the 1 m deep layer (3.92 ± 4.42 g N-NO3 kg-1 on average), and ensured low nitrate presence in the deepest layer. Under these circumstances the other soil properties play a minor role in reducing soil nitrate presence in soil. However, with excessive N fertilization, the abundance of bacterial gene copies is not sufficient to explain N leaching in soil and other factors, i.e. soil texture and rainfall, become more important in controlling these aspects.


Assuntos
Amônia/análise , Fertilizantes , Regulação da Expressão Gênica/efeitos dos fármacos , Minerais/farmacologia , Nitratos/análise , Ciclo do Nitrogênio/genética , Solo/química , Dosagem de Genes/efeitos dos fármacos , Ciclo do Nitrogênio/efeitos dos fármacos
12.
Arch Microbiol ; 202(7): 2005-2012, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436040

RESUMO

Grasses of the Urochloa genus have been widely used in crop-livestock integration systems or as cover crops in no-till systems such as in rotation with maize. Some species of Urochloa have mechanisms to reduce nitrification. However, the responses of microbial functions in crop-rotation systems with grasses and its consequence on soil N dynamics are not well-understood. In this study, the soil nitrification potential and the abundance of ammonifying microorganisms, total bacteria and total archaea (16S rRNA gene), nitrogen-fixing bacteria (NFB, nifH), ammonia-oxidizing bacteria (AOB, amoA) and archaea (AOA, amoA) were assessed in soil cultivated with ruzigrass (Urochloa ruziziensis), palisade grass (Urochloa brizantha) and Guinea grass (Panicum maximum). The abundance of ammonifying microorganisms was not affected by ruzigrass. Ruzigrass increased the soil nitrification potential compared with palisade and Guinea grass. Ruzigrass increased the abundance of N-fixing microorganisms at the middle and late growth stages. The abundances of nitrifying microorganisms and N-fixers in soil were positively correlated with the soil N-NH4+ content. Thus, biological nitrogen fixation might be an important input of N in systems of rotational production of maize with forage grasses. The abundance of microorganisms related to ammonification, nitrification and nitrogen fixing and ammonia-oxidizing archea was related to the development stage of the forage grass.


Assuntos
Agricultura , Produtos Agrícolas/microbiologia , Ciclo do Nitrogênio/genética , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Bactérias/genética , Nitrificação , Nitrogênio/metabolismo , Oxirredução , RNA Ribossômico 16S/genética , Solo/química , Zea mays
13.
Environ Microbiol ; 22(8): 3302-3314, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436362

RESUMO

Soils in the riparian zone, the interface between terrestrial and aquatic ecosystems, may decrease anthropogenic nitrogen (N) loads to streams through microbial transformations (e.g., denitrification). However, the ecological functioning of riparian zones is often compromised due to degraded conditions (e.g., vegetation clearing). Here we compare the efficacy of an urban remnant and a cleared riparian zone for supporting a putative denitrifying microbial community using 16S rRNA sequencing and quantitative polymerase chain reaction of archaeal and bacterial nitrogen cycling genes. Although we had no direct measure of denitrification rates, we found clear patterns in the microbial communities between the sites. Greater abundance of N-cycling genes was predicted by greater soil ammonium (N-NH4 ), organic phosphorus, and C:N. At the remnant site, we found positive correlations between microbial community composition, which was dominated by putative N oxidisers (Nitrosomonadaceae, Nitrospiraceae and Nitrosotaleaceae), and abundance of ammonia-oxidizing archaea (AOA), nirS, nirK and nosZ, whereas the cleared site had lower abundance of N-oxidisers and N cycling genes. These results were especially profound for the remnant riparian fringe, which suggests that this region maintains suitable soil conditions (via diverse vegetation structure and periodic saturation) to support putative N cyclers, which could amount to higher potential for N removal.


Assuntos
Compostos de Amônio/análise , Ecossistema , Rios/microbiologia , Microbiologia do Solo , Solo/química , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Desnitrificação , Microbiota/genética , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , RNA Ribossômico 16S/genética
14.
PLoS One ; 15(1): e0228165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31986180

RESUMO

Biodiversity is thought to prevent decline in community function in response to changing environmental conditions through replacement of organisms with similar functional capacity but different optimal growth characteristics. We examined how this concept translates to the within-gene level by exploring seasonal dynamics of within-gene diversity for genes involved in nitrogen cycling in hyporheic zone communities. Nitrification genes displayed low richness-defined as the number of unique within-gene phylotypes-across seasons. Conversely, denitrification genes varied in both richness and the degree to which phylotypes were recruited or lost. These results demonstrate that there is not a universal mechanism for maintaining community functional potential for nitrogen cycling activities, even across seasonal environmental shifts to which communities would be expected to be well adapted. As such, extreme environmental changes could have very different effects on the stability of the different nitrogen cycle activities. These outcomes suggest a need to modify existing conceptual models that link biodiversity to microbiome function to incorporate within-gene diversity. Specifically, we suggest an expanded conceptualization that 1) recognizes component steps (genes) with low diversity as potential bottlenecks influencing pathway-level function, and 2) includes variation in both the number of entities (e.g. species, phylotypes) that can contribute to a given process and the turnover of those entities in response to shifting conditions. Building these concepts into process-based ecosystem models represents an exciting opportunity to connect within-gene-scale ecological dynamics to ecosystem-scale services.


Assuntos
Biodiversidade , Microbiota/genética , Ciclo do Nitrogênio/genética , Estações do Ano , Fatores de Tempo
15.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851310

RESUMO

In view of their key roles in many soil- and plant-related processes, we hypothesized that soil microorganisms could play a larger role in determining wheat baking quality than nitrogen fertilization. A field experiment was conducted under bread wheat production conditions, where different fertilization treatments, ranging from 0-120 kg/ha NH4NO3, were applied. Soil samples were taken in May, June and July. Functional genes in the nitrogen cycle were quantified and amplicons of the 16S rRNA gene and the ITS region were sequenced. Wheat yields were measured, and the grain baking quality was analysed for each plot. Fertilisation did not significantly influence the yields and the grain quality. Many bacterial and fungal Amplicon Sequence Variants showed significant positive or negative correlations with yield and grain baking quality parameters. Among the functional gene quantified, the archaeal amoA showed strong negative correlations with the wheat yields and many grain and flour quality parameters. Regression models were able to explain up to 81% of the variability in grain quality based on the microbial data from the May sampling. A better understanding of the microbiology of wheat fields could lead to an optimized management of the N fertilization to maximize yields and grain quality.


Assuntos
Fertilizantes/análise , Nitrogênio/análise , Microbiologia do Solo , Triticum/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Ciclo do Nitrogênio/genética , RNA Ribossômico/genética , Solo/química , Triticum/crescimento & desenvolvimento
16.
mBio ; 10(6)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690672

RESUMO

Nitrification, the oxidative process converting ammonia to nitrite and nitrate, is driven by microbes and plays a central role in the global nitrogen cycle. Our earlier investigations based on 16S rRNA and amoA amplicon analysis, amoA quantitative PCR and metagenomics of groundwater-fed biofilters indicated a consistently high abundance of comammox Nitrospira Here, we hypothesized that these nonclassical nitrifiers drive ammonia-N oxidation. Hence, we used DNA and RNA stable isotope probing (SIP) coupled with 16S rRNA amplicon sequencing to identify the active members in the biofilter community when subjected to a continuous supply of NH4+ or NO2- in the presence of 13C-HCO3- (labeled) or 12C-HCO3- (unlabeled). Allylthiourea (ATU) and sodium chlorate were added to inhibit autotrophic ammonia- and nitrite-oxidizing bacteria, respectively. Our results confirmed that lineage II Nitrospira dominated ammonia oxidation in the biofilter community. A total of 78 (8 by RNA-SIP and 70 by DNA-SIP) and 96 (25 by RNA-SIP and 71 by DNA-SIP) Nitrospira phylotypes (at 99% 16S rRNA sequence similarity) were identified as complete ammonia- and nitrite-oxidizing, respectively. We also detected significant HCO3- uptake by Acidobacteria subgroup10, Pedomicrobium, Rhizobacter, and Acidovorax under conditions that favored ammonia oxidation. Canonical Nitrospira alone drove nitrite oxidation in the biofilter community, and activity of archaeal ammonia-oxidizing taxa was not detected in the SIP fractions. This study provides the first in situ evidence of ammonia oxidation by comammox Nitrospira in an ecologically relevant complex microbiome.IMPORTANCE With this study we provide the first in situ evidence of ecologically relevant ammonia oxidation by comammox Nitrospira in a complex microbiome and document an unexpectedly high H13CO3- uptake and growth of proteobacterial and acidobacterial taxa under ammonia selectivity. This finding raises the question of whether comammox Nitrospira is an equally important ammonia oxidizer in other environments.


Assuntos
Bactérias/genética , DNA/genética , Água Subterrânea/microbiologia , Nitrificação/genética , RNA Ribossômico 16S/genética , Amônia/metabolismo , Archaea/genética , Processos Autotróficos/genética , Isótopos , Nitratos/metabolismo , Nitritos/metabolismo , Ciclo do Nitrogênio/genética , Oxirredução
17.
Environ Pollut ; 252(Pt B): 1659-1670, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31284208

RESUMO

The Yangtze River, which is the largest in Euro-Asian, receives tremendous anthropogenic nitrogen input and is typically characterized by severe eutrophication and hypoxia. Two major processes, denitrification and anaerobic ammonium oxidation (anammox), play vital roles for removing nitrogen global in nitrogen cycling. In the current study, sediment samples were collected from both latitudinal and longitudinal transects along the coastal Yangtze River and the East China Sea (ECS). We investigated community composition and distributions of nosZ gene-encoded denitrifiers by high throughput sequencing, and also quantified the relative abundances of both denitrifying and anammox bacteria by q-PCR analysis. Denitrifying communities showed distinct spatial distribution patterns that were impacted by physical (water current and river runoffs) and chemical (nutrient availability and organic content) processes. Both denitrifying and anammox bacteria contributed to the nitrogen removal in Yangtze Estuary and the adjacent ECS, and these two processes shifted from coastal to open ocean with reverse trends: the abundance of nosZ gene decreased from coastal to open ocean while anammox exhibited an increasing trend based on quantifications of hzsB and 16S rRNA genes. Further correspondence correlation analysis revealed that salinity and nutrients were the main factors in structuring composition and distribution of denitrifying and anammox bacteria. This study improved our understanding of dynamic processes in nitrogen removal from estuarine to open ocean. We hypothesize that denitrification is the major nitrogen removal pathway in estuaries, but in open oceans, low nutrient and organic matter concentrations restrict denitrification, thus increasing the importance of anammox as a nitrogen removal process.


Assuntos
Amônia/metabolismo , Estuários , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Rios/microbiologia , Água do Mar/microbiologia , China , Desnitrificação , Genes Bacterianos , Ciclo do Nitrogênio/genética , Oceanos e Mares , Oxirredução , Rios/química , Salinidade , Água do Mar/química
18.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349588

RESUMO

Nitrogen (N) is one of the indispensable factors in rice growth and development. China holds a premier position in the production of rice and at the same time also faces higher N fertilizer costs along with serious damage to the environment. A better solution is much needed to address these issues, without disrupting the production of rice as an important cereal, while minimizing all the deleterious effects on the environment. Two isogenic lines Kitaake (WT) and its genetically modified line CIPK2 (RC), overexpressing the gene for Calcineurin B-like interacting protein kinase 2 (OsCIPK2) with better nitrogen use efficiency (NUE), were compared for their growth and development under low versus normal levels of N. NUE is a complex trait mainly related to a plant's efficiency in extraction, assimilation, and recycling of N from soil. The microbial population was analyzed using high-throughput Illumina Miseq 16S rRNA sequencing and found that RC with CIPK2, specifically expressed in rice root, not only performed better without nitrogen fertilizer (LN) but also increased the diversity of bacterial communities in rice rhizosphere compartments (rhizosphere, rhizoplane, and endosphere). The relative abundance of beneficial bacteria phyla increased, which are known to promote the circulation and transformation of N in rhizosphere soil. To further explore the potential of RC regarding better performance under LN, the ion fluxes in root apical were detected by non-invasive micro-test technique (NMT). We found that RC can absorb more Ca2+ and NO3- under LN as compared to WT. Finally, compared to WT, RC plants exhibited better growth of root and shoot, and increased yield and N uptake under LN, whereas there was no significant difference in the growth of two rice lines under normal nitrogen (NN) treatment. We are able to get preliminary results, dealing with the OsCIPK2 overexpressed rice line, by studying the rice molecular, physiological, and chemical parameters related to NUE. The results laid the foundation for further research on N absorption and utilization in rice from the soil and the interaction with microbial communities.


Assuntos
Expressão Gênica , Microbiota , Nitrogênio/metabolismo , Oryza/microbiologia , Oryza/fisiologia , Proteínas Serina-Treonina Quinases/genética , Rizosfera , Biodiversidade , Ciclo do Nitrogênio/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Solo/química , Microbiologia do Solo
19.
PLoS One ; 14(6): e0218779, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31246995

RESUMO

Integration of trees in agroforestry systems can increase the system sustainability compared to monocultures. The resulting increase in system complexity is likely to affect soil-N cycling by altering soil microbial community structure and functions. Our study aimed to assess the abundance of genes encoding enzymes involved in soil-N cycling in paired monoculture and agroforestry cropland in a Phaeozem soil, and paired open grassland and agroforestry grassland in Histosol and Anthrosol soils. The soil fungi-to-bacteria ratio was greater in the tree row than in the crop or grass rows of the monoculture cropland and open grassland in all soil types, possibly due to increased input of tree residues and the absence of tillage in the Phaeozem (cropland) soil. In the Phaeozem (cropland) soil, gene abundances of amoA indicated a niche differentiation between archaeal and bacterial ammonia oxidizers that distinctly separated the influence of the tree row from the crop row and monoculture system. Abundances of nitrate (napA and narG), nitrite (nirK and nirS) and nitrous oxide reductase genes (nosZ clade I) were largely influenced by soil type rather than management system. The soil types' effects were associated with their differences in soil organic C, total N and pH. Our findings show that in temperate regions, conversion of monoculture cropland and open grassland to agroforestry systems can alter the abundance of soil bacteria and fungi and soil-N-cycling genes, particularly genes involved in ammonium oxidation.


Assuntos
Agricultura/métodos , Agricultura Florestal/métodos , Pradaria , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Genes Bacterianos , Genes Fúngicos , Alemanha , Recursos Naturais , Ciclo do Nitrogênio/genética , Desenvolvimento Sustentável
20.
FEMS Microbiol Ecol ; 95(7)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31167230

RESUMO

In eastern Canada, climate change-related warming and increased precipitation may alter winter snow cover, with potential consequences for soil conditions, nitrogen (N) cycling, and microbes. We conducted a 2-year field study aimed at determining the influence of snow removal, snow accumulation, and ambient snow in a potato-barley crop system on the abundance and expression of denitrifier (nirS, nirK, nosZ) and nitrifier (ammonium oxidizing archaeal (AOA) and bacterial (AOB) amoA) genes. Denitrifier and nitrifier abundance and expression results were compared to N2O production, soil atmosphere accumulation, and surface fluxes. In the first winter, nirK abundance was lowest while AOB abundance was greatest in snow accumulation treatments. In the second winter, greatest abundances were observed in the ambient snow treatment, which had greatest N2O accumulation and spring thaw fluxes, suggesting a link between microbial populations and biogeochemical functioning. Treatment effects on gene expression were limited, but greatest AOA, AOB, and nosZ expression was measured near 0°C and above 15°C, indicating that activity was promoted by freeze-thaw conditions and at summer temperatures. Overall, effects of changing snow depth on denitrifier and nitrifier abundance were not solely due to change in soil temperature, but also to soil moisture and/or interactions between these parameters.


Assuntos
Agricultura , Ciclo do Nitrogênio/genética , Neve , Microbiologia do Solo , Agricultura/métodos , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Canadá , Nitrogênio/metabolismo , Óxido Nitroso/análise , Solo/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA