Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Sci Rep ; 14(1): 23293, 2024 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375359

RESUMO

Alzheimer disease (AD) is among the most prevalent neurodegenerative diseases globally, marked by cognitive and behavioral disruptions. Ferroptosis is a form of controlled cell death characterized by intracellular iron accumulation associated with lipid peroxide formation, which subsequently promotes AD initiation and progression. We hypothesized that targeting the ferroptosis pathway may help in AD management. Therefore, our study aimed to evaluate the potential neuroprotective effect of the antifungal Ciclopirox olamine (CPX-O) that acts through iron chelation. We employed CPX-O separately or in combination with the JNK inhibitor (SP600125) in a mice model of AlCl3-induced AD. Animals underwent examination for behavioral, biochemical, histological, and immunohistochemical findings. Our results revealed that AlCl3 was associated with disruptions in learning and memory parameters, neuronal degeneration in the hippocampus, increased immunoreactivity of amyloid-ß and tau proteins, a significant rise in iron, nitric oxide (NO), malondialdehyde (MDA), JNK, and P53 levels, along with the significant decrease in glutathione peroxidase activity. Interestingly, the administration of CPX-O alone or in combination with SP600125 in the AlCl3-induced AD model caused an improvement in the previously described examination findings. Therefore, CPX-O may be a promising candidate for AD treatment, and future clinical trials will be required to confirm these preclinical findings.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Ferroptose , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Ciclopirox/farmacologia , Antracenos/farmacologia , Masculino , Cloreto de Alumínio , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Ferro/metabolismo
2.
BMC Mol Cell Biol ; 25(1): 22, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385121

RESUMO

Retinal ischemia-reperfusion (IR) injury is a basic pathological procedure in clinic and associated with various ischemic retinal diseases, including glaucoma, diabetic retinopathy, retinal vascular occlusion, etc. The purpose of this work is to investigate the effect of ciclopirox olamine (CPX) on retinal IR injury and further explore the underlying mechanism. In vitro assay exhibited that CPX exhibited significant neuroprotection against oxygen glucose deprivation (OGD) and oxidative stress-induced injuries in 661W photoreceptor cells. OGD injury showed a proinflammatory phenotype characterized by significantly increased production of cytokines (IL-6, IL-23 and TNF-α), while CPX significantly inhibited their secretion. In addition, the in vivo experiment demonstrated that CPX significantly preserved the normal thickness of the retina. Therefore, we suggest that CPX is identified in our research as a prospective therapeutic agent for retinal IR injury.


Assuntos
Ciclopirox , Fármacos Neuroprotetores , Estresse Oxidativo , Traumatismo por Reperfusão , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Citocinas/metabolismo , Glucose/metabolismo , Linhagem Celular , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia
3.
J Inorg Biochem ; 260: 112696, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142055

RESUMO

Mitophagy is an important target for antitumor drugs development. A series of ciclopirox (CPX) platinum(IV) hybrids targeting PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitophagy were designed and prepared as antitumor agents. The dual CPX platinum(IV) complex with cisplatin core was screened out as a candidate, which displayed promising antitumor activities both in vitro and in vivo. Mechanistically, it caused serious DNA damage in tumor cells. Then, remarkable mitochondrial damage was induced accompanied by the mitochondrial membrane depolarization and reactive oxygen species generation, which further promoted apoptosis through the Bcl-2/Bax/Caspase3 pathway. Furthermore, mitophagy was ignited via the PINK1/Parkin/P62/LC3 axis, and exhibited positive influence on promoting the apoptosis of tumor cells. The antitumor immunity was boosted by the block of immune check point programmed cell death ligand-1 (PD-L1), which further increased the density of T cells in tumors. Subsequently, the metastasis of tumor cells was inhibited by inhibiting angiogenesis in tumors.


Assuntos
Antineoplásicos , Ciclopirox , Mitofagia , Ciclopirox/farmacologia , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos , Mitofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Platina/química , Platina/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
5.
Eur J Drug Metab Pharmacokinet ; 49(5): 619-629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990427

RESUMO

BACKGROUND AND OBJECTIVE: Ciclopirox is a widely used antifungal drug, redisposition of which has drawn increasing attentions due to multiple promising activities. The drug undergoes extensive glucuronidation, which acts as a major obstacle in the ongoing novel application and still remains poorly understood. The current study aims to phenotype ciclopirox glucuronidation pathway and as well to decipher the related species differences. METHODS: Ciclopirox glucuronidation was investigated in liver microsomes from humans (HLM) and various experimental animals. Assays with recombinant uridine diphosphate glucuronosyltransferases (UGTs), enzyme kinetic analyses and selective inhibitors were used to determine the role of individual UGTs in ciclopirox glucuronidation. RESULTS: HLM is highly active in ciclopirox glucuronidation with Michaelis-Menten constant (Km), maximum velocity (Vmax), and intrinsic clearance (CLint) values of 139 µM, 7.89 nmol/min/mg, and 56 µL/min/mg, respectively. UGT1A9 displays by far the highest activity, whereas several other isoforms (UGT1A6, UGT1A7, and UGT1A8) catalyze formation of traced glucuronides. Further kinetic analysis demonstrates that UGT1A9 has a closed Km value (167 µM) to HLM. UGT1A9 selective inhibitor (magnolol) can potently inhibit ciclopirox glucuronidation in HLM with the IC50 value of 0.12 µM. The reaction displays remarkable differences across liver microsomes from mice, rats, cynomolgus monkey, minipig, and beagle dog, with the CLint values in the range of 26-369 µL/min/mg. In addition, ciclopirox glucuronidation activities of experimental animals' liver microsomes were less sensitive to magnolol than that of HLM. CONCLUSIONS: Ciclopirox glucuronidation displays remarkable species differences with UGT1A9 as a dominant contributor in humans. It is suggested that the pharmacological or toxicological effects of ciclopirox may be UGT1A9 and species dependent.


Assuntos
Antifúngicos , Ciclopirox , Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Microssomos Hepáticos/metabolismo , Ciclopirox/metabolismo , Animais , Humanos , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Suínos , Glucuronídeos/metabolismo , Ratos , Camundongos , Cães , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Masculino , Especificidade da Espécie , Macaca fascicularis , Cinética , Ratos Sprague-Dawley
6.
J Mycol Med ; 34(1): 101464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367460

RESUMO

INTRODUCTION: The cases of dermatophytosis are increasing and they are associated with a higher number of therapeutic failures leading the doctor to prescribe combinations of antifungals as therapy. The objective was to evaluate the interaction of terbinafine and ciclopirox, the most commonly antifungals used in the clinic, in dermatophyte isolates. METHODOLOGY: The minimum inhibitory concentrations (MIC) of ciclopirox and terbinafine were determined by the broth microdilution method according CLSI and the checkerboard assay was used to evaluate the interaction between the antifungal agents. RESULTS: For terbinafine the mic50 was 0.125 ug/mL and mic90 was 0.250 ug/mL. For ciclopirox the values were 2.0 ug/mL for mic50 and 4.0 ug/mL for mic90. No synergistic interaction was observed for the dermatophyte isolates tested. CONCLUSION: These results suggest that the use of terbinafine in combination with ciclopirox, which is widely used in the clinic, may not be a good choice for the treatment of onychomycosis.


Assuntos
Antifúngicos , Onicomicose , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Ciclopirox/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Naftalenos/farmacologia , Naftalenos/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Testes de Sensibilidade Microbiana
7.
Mycoses ; 67(3): e13710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414346

RESUMO

BACKGROUND: Onychomycoses are difficult-to-treat fungal infections with high relapse rates. Combining oral and topical antifungal drugs is associated with higher success rates. Additive or synergistic modes of action are expected to enhance treatment success rates. OBJECTIVES: Investigation of the combined effects of antifungal drugs in vitro with different modes of action and application on clinical isolates from mycotic nails. METHODS: Isolates of Trichophyton rubrum, Trichophyton interdigitale and Scopulariopsis brevicaulis were collected from infected toenail specimens of patients with onychomycosis. Susceptibility testing was performed in 96-well polystyrene plates using a standard stepwise microdilution protocol. Additive or synergistic activity at varying concentrations was investigated by the checkerboard method. RESULTS: Combining terbinafine with amorolfine tended to be more effective than terbinafine in conjunction with ciclopirox. In most combinations, additive effects were observed. Synergy was detected in combinations with involving amorolfine in S. brevicaulis. These additive and synergistic interactions indicate that combined therapy with topical amorolfine and oral terbinafine is justified. Sublimation of amorolfine (and terbinafine) may enhance the penetration in and through the nail plate, and support treatment efficacy. CONCLUSIONS: These in vitro results support the notion that combining oral terbinafine and topical amorolfine is beneficial to patients with onychomycosis, particularly if the pathogen is a non-dermatophyte fungus such as S. brevicaulis.


Assuntos
Morfolinas , Onicomicose , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Antifúngicos/uso terapêutico , Naftalenos
8.
Eur J Pharmacol ; 967: 176369, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325796

RESUMO

Hypertrophic scars are a common complication of burn injuries, yet there are no medications to prevent their formation. During scar formation, resident fibroblasts are transformed to myofibroblasts which become resistant to apoptosis. Previously, we have shown that hydroxypyridone anti-fungals can inhibit transformation of fibroblasts, isolated from hypertrophic scars, to myofibroblasts. This study aimed to investigate if these drugs can also target myofibroblast persistence. Primary human dermal fibroblasts, derived from burn scar tissue, were exposed to transforming growth factor beta-1 (TGF-ß1) for 72 h to induce myofibroblast transformation. The cells were then incubated with three hydroxypyridone anti-fungals (ciclopirox, ciclopirox ethanolamine and piroctone olamine; 0.03-300 µM) for a further 72 h. The In-Cell ELISA method was utilised to quantify myofibroblast transformation by measuring alpha-smooth muscle actin (α-SMA) expression and DRAQ5 staining, to measure cell viability. TUNEL staining was utilised to assess if the drugs could induce apoptosis. When given to established myofibroblasts, the three hydroxypyridones did not reverse myofibroblast transformation, but instead elicited a concentration-dependent decrease in cell viability. TUNEL staining confirmed that the hydroxypyridone anti-fungals induced apoptosis in established myofibroblasts. This is the first study to show that hydroxypyridone anti-fungals are capable of inducing apoptosis in established myofibroblasts. Together with our previous results, we suggest that hydroxypyridone anti-fungals can prevent scar formation by preventing the formation of new myofibroblasts and by reducing the number of existing myofibroblasts.


Assuntos
Cicatriz Hipertrófica , Miofibroblastos , Humanos , Miofibroblastos/patologia , Cicatriz Hipertrófica/metabolismo , Ciclopirox/metabolismo , Ciclopirox/uso terapêutico , Fibroblastos/metabolismo , Apoptose , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Células Cultivadas , Diferenciação Celular
9.
Mycoses ; 67(1): e13660, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840154

RESUMO

Onychomycosis, defined as a fungal nail infection, affects 5.5% of the global population. Our objectives were to analyse prescription trends of onychomycosis medications using the Medicare Part D Prescribers database from 2016 to 2020, stratified by physician specialty. There was a 4% annual increase in the total cost of onychomycosis medications, with a notable decrease of 12.8% in 2020 during the COVID-19 pandemic. Physicians demonstrated a strong consideration for price when selecting treatments, with the least expensive medications (ciclopirox and terbinafine) accounting for nearly 99% of all prescriptions. In contrast, the more costly medications (efinaconazole and tavaborole) were rarely prescribed. In addition, physicians often opted for the less costly generic versions of ciclopirox and itraconazole, prescribing them 99% and 91% of the time, respectively. Notably, physician assistants and nurse practitioners had higher overall increases in prescription rates, at 15%, compared to 1%-6% for other specialties. There are no recent United States onychomycosis guidelines, and our study emphasizes cost considerations when prescribing onychomycosis treatments.


Assuntos
Medicare Part D , Onicomicose , Idoso , Humanos , Estados Unidos , Onicomicose/tratamento farmacológico , Onicomicose/epidemiologia , Antifúngicos/uso terapêutico , Ciclopirox/uso terapêutico , Estudos Retrospectivos , Pandemias
10.
Comput Methods Biomech Biomed Engin ; 27(6): 765-774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37781969

RESUMO

The Ni and Co doping effect on the ciclopirox (CPX) drug delivery performance of a ZnO nanosheet (ZnO-NS) was investigated theoretically. Doping Ni and Co metals into the ZnO-NS increased the adsorption energy of CPX from -7.9 to -27.4 and -31.7 kcal/mol, respectively. The CPX adsorption reduced the ZnO-NS gap (Eg) from 3.81 to 3.46 eV, while the CPX adsorption reduced the Eg of the Ni- and Co-doped ZnO-NS from 2.74 and 2.68 eV to 1.87 and 1.71 eV, respectively. The CPX adsorption performance increased after doping process. A drug release mechanism was introduced in cancerous tissues based on the PH. .


Assuntos
Antineoplásicos , Óxido de Zinco , Ciclopirox/farmacologia , Teoria da Densidade Funcional , Metais
11.
Dermatologie (Heidelb) ; 74(11): 864-873, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37823916

RESUMO

For more than 30 years, an 82-year-old man has been suffering from tinea corporis generalisata in the sense of Trichophyton rubrum syndrome. The patient received long-term treatment with terbinafine. Fluconazole had no effect. There was an increase in liver enzymes with itraconazole. Super bioavailability (SUBA) itraconazole was initially not tolerated. A therapy attempt with voriconazole was successful, but was stopped due to side effects. The Trichophyton (T.) rubrum strain isolated from skin scales was tested for terbinafine resistance using the breakpoint method and found to be (still) sensitive. Sequencing of the squalene epoxidase (SQLE) gene revealed a previously unknown point mutation of the codon for isoleucine ATC→ACC with amino acid substitution I479T (isoleucine479 threonine). Long-term therapy with terbinafine 250 mg had been given every 3 days since 2018. In addition, bifonazole cream, ciclopirox solution, and occasionally terbinafine cream were used. The skin condition was stable until an exacerbation of the dermatophytosis in 2021. There were erythematosquamous, partly atrophic, centrifugal, scaly, confluent plaques on the integument and the extremities. Fingernails and toenails had white to yellow-brown discoloration, and were hyperkeratotic and totally dystrophic. T. rubrum was cultured from skin scales from the integument, from the feet, from nail shavings from the fingernails and also toenails and detected by PCR. In the breakpoint test, the T. rubrum isolates from tinea corporis and nail samples showed a minimum inhibitory concentration (MIC) of 0.5 µg ml-1 (terbinafine resistance in vitro). Sequencing of the SQLE gene of the T. rubrum isolate revealed evidence of a further point mutation that led to amino acid substitution I479V (isoleucine 479 valine). Long-term therapy was started with SUBA itraconazole: 14 days 2â€¯× 1 capsule daily, then twice weekly administration of 2â€¯× 50 mg. During breaks in therapy, the mycosis regularly flared up again. Finally, 50 mg SUBA itraconazole was given 5 days a week, which completely suppressed the dermatophytosis. Topically, ciclopirox and miconazole cream were used alternately. In conclusion, in the case of recurrent and therapy-refractory dermatophytoses caused by T. rubrum, terbinafine resistance must also be considered in individual cases. An in vitro resistance test and point mutation analysis of the squalene epoxidase gene confirms the diagnosis. Itraconazole, also in the form of SUBA itraconazole, is the drug of choice for the oral antifungal treatment of these patients.


Assuntos
Itraconazol , Tinha , Masculino , Humanos , Idoso de 80 Anos ou mais , Terbinafina/farmacologia , Itraconazol/farmacologia , Ciclopirox/uso terapêutico , Esqualeno Mono-Oxigenase/genética , Disponibilidade Biológica , Isoleucina/metabolismo , Tinha/tratamento farmacológico
12.
J Drugs Dermatol ; 22(9): SF378719-SF378719s10, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683068

RESUMO

Onychomycosis is a prevalent condition affecting the United States and global population. Treatment options are limited, with only 3 topical anti-fungal medications garnering approval in the US within the last 25 years: ciclopirox, tavaborole, and efinaconazole. The economic impact and quality of life burden due to onychomycosis are high. Here we provide an up-to-date review of all approved topical anti-fungal therapies for toenail onychomycosis. We discuss treatment efficacies, pharmacology, and use in special populations, as well as current evidence for complementary and alternative medicine.  J Drugs Dermatol. 2023;22:9(Suppl 1):s5-10.


Assuntos
Onicomicose , Humanos , Ciclopirox , Onicomicose/tratamento farmacológico , Preparações Farmacêuticas , Qualidade de Vida , Estados Unidos/epidemiologia
13.
Front Endocrinol (Lausanne) ; 14: 1149997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534217

RESUMO

Background: Pituitary neuroendocrine tumors (PitNETs), which originate from the pituitary gland, account for 10%-15% of all intracranial neoplasms. Recent studies have indicated that enhancer RNAs (eRNAs) exert regulatory effects on tumor growth. However, the mechanisms underlying the eRNA-mediated tumorigenesis of PitNETs have not been elucidated. Methods: Normal pituitary and PitNETs tissues were used to identify the differentially expressed eRNAs (DEEs). Immune gene sets and hallmarks of cancer gene sets were quantified based on single sample gene set enrichment analysis (ssGSEA) algorithm using GSVA. The perspective of immune cells among all samples was calculated by the CIBERSORT algorithm. Moreover, the regulatory network composed of key DEEs, target genes of eRNAs, hallmarks of cancer gene sets, differentially expressed TF, immune cells and immune gene sets were constructed by Pearson correlation analysis. Small molecular anti-PitNETs drugs were explored by CMap analysis and the accuracy of the study was verified by in vitro and in vivo experiments, ATAC-seq and ChIP-seq. Results: In this study, data of 134 PitNETs and 107 non-tumorous pituitary samples were retrieved from a public database to identify differentially expressed genes. In total, 1128 differentially expressed eRNAs (DEEs) (494 upregulated eRNAs and 634 downregulated eRNAs) were identified. Next, the correlation of DEEs with cancer-related and immune-related gene signatures was examined to establish a co-expression regulatory network comprising 18 DEEs, 50 potential target genes of DEEs, 5 cancer hallmark gene sets, 2 differentially expressed transcription factors, 4 immune cell types, and 4 immune gene sets. Based on this network, the following four therapeutics for PitNETs were identified using Connectivity Map analysis: ciclopirox, bepridil, clomipramine, and alexidine. The growth-inhibitory effects of these therapeutics were validated using in vitro experiments. Ciclopirox exerted potential growth-inhibitory effects on PitNETs. Among the DEEs, GNLY, HOXB7, MRPL33, PRDM16, TCF7, and ZNF26 were determined to be potential diagnostic and therapeutic biomarkers for PitNETs. Conclusion: This study illustrated the significant influence of eRNAs on the occurrence and development of PitNETs. By constructing the co-expression regulation network, GNLY, HOXB6, MRPL33, PRDM16, TCF7, and ZNF26 were identified as relatively significant DEEs which were considered as the novel biomarkers of diagnosis and treatment of PitNETs. This study demonstrated the roles of eRNAs in the occurrence and development of PitNETs and revealed that ciclopirox was a potential therapeutic for pituitary adenomas.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Ciclopirox , RNA/genética , Fatores de Transcrição/genética , Hipófise/patologia , Proteínas de Homeodomínio
14.
Braz J Microbiol ; 54(3): 1513-1521, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540461

RESUMO

The aim of this study was to evaluate the efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates. Initially, 24-1 fractional experimental design was carried out to obtain an optimized formulation of liposomes containing CPO (CPO-LipoC), which were then used to prepare stealth liposomes (CPO-LipoS). Liposomal formulations were characterized by their mean size diameter, polydispersity index (PDI), and drug encapsulation efficiency (EE%). Immunosuppressed mice were exposed to CPO-LipoS at 0.5 mg/kg/day for 14 days to verify possible histopathological alterations in the liver and kidneys. Immunosuppressed mice infected with C. neoformans were treated with CPO-LipoS at 0.5 mg/kg/day for 14 days to quantify the fungal burden in spleen, liver, lungs, and brain. CPO-LipoS presented a mean size diameter, PDI, and EE% of 101.4 ± 0.7 nm, 0.307, and 96.4 ± 0.9%, respectively. CPO-LipoS was non-toxic for the liver and kidneys of immunosuppressed mice. At the survival curve, all infected animals submitted to treatment with CPO-LipoS survived until the end of the experiment. Treatment with CPO-LipoS reduced C. neoformans cells in the spleen (59.3 ± 3.4%), liver (75.0 ± 3.6%), lungs (75.7 ± 6.7%), and brain (54.2 ± 3.2%). CPO-LipoS exhibit antifungal activity against C. neoformans, and the encapsulation of CPO into stealth liposomes allows its use as a systemic drug for treating cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Ciclopirox/uso terapêutico , Lipossomos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Criptococose/microbiologia
15.
Immunopharmacol Immunotoxicol ; 45(6): 701-708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606515

RESUMO

OBJECTIVE: Septic shock, the most severe stage of sepsis, is a deadly inflammatory disorder with high mortality. Ciclopirox (CPX) is a broad-spectrum antimycotic agent which also exerts anti-inflammatory effects in human diseases. However, whether CPX can relieve inflammatory response in LPS-induced septic shock remains unclear. MATERIALS AND METHODS: Male C57BL/6 mice LPS were injected intraperitoneally with LPS to simulate septic shock in vivo. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were subject to LPS treatment to simulate septic shock in vitro. ELISA was applied to detect the level of pro-inflammatory cytokines. Cell viability was assessed by CCK-8 assay. Protein levels was detected by western blotting. RESULTS: CPX enhanced the survival rate and attenuated inflammation in mice with LPS-induced septic shock. Similarly, CPX dose-dependently mitigated LPS-induced inflammation in BMDMs. It was also found that Sortilin 1 (SORT1) was upregulated in both in vivo and in vitro models of LPS-induced septic shock. In addition, SORT1 overexpression counteracted the alleviative effects of CPX on the inflammation response of LPS-challenged BMDMs by activating the Wnt/ß-Catenin signaling. Furthermore, BML-284 (a Wnt/ß-Catenin agonist) treatment also abrogated CPX-mediated moderation of LPS-triggered inflammatory reaction in BMDMs. CONCLUSIONS: In sum, we found that CPX protected against LPS-induced septic shock by mitigating inflammation via SORT1-mediated Wnt/ß-Catenin signaling pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Ciclopirox , Inflamação , Choque Séptico , Via de Sinalização Wnt , Ciclopirox/farmacologia , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Lipopolissacarídeos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/genética , Inflamação/tratamento farmacológico
16.
Blood Adv ; 7(24): 7407-7417, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37487020

RESUMO

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.


Assuntos
Células-Tronco Hematopoéticas , Ferro , Humanos , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Ferro/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Etanolaminas/metabolismo , Etanolaminas/farmacologia
17.
Int J Cancer ; 153(3): 654-668, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141410

RESUMO

Glioblastoma (GB) is the most aggressive neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness and drug resistance. Only a small fraction of GB patients survives longer than 24 months from the time of diagnosis (ie, long-term survivors [LTS]). In our study, we aimed to identify molecular markers associated with favorable GB prognosis as a basis to develop therapeutic applications to improve patients' outcome. We have recently assembled a proteogenomic dataset of 87 GB clinical samples of varying survival rates. Following RNA-seq and mass spectrometry (MS)-based proteomics analysis, we identified several differentially expressed genes and proteins, including some known cancer-related pathways and some less established that showed higher expression in short-term (<6 months) survivors (STS) compared to LTS. One such target found was deoxyhypusine hydroxylase (DOHH), which is known to be involved in the biosynthesis of hypusine, an unusual amino acid essential for the function of the eukaryotic translation initiation factor 5A (eIF5A), which promotes tumor growth. We consequently validated DOHH overexpression in STS samples by quantitative polymerase chain reaction (qPCR) and immunohistochemistry. We further showed robust inhibition of proliferation, migration and invasion of GB cells following silencing of DOHH with short hairpin RNA (shRNA) or inhibition of its activity with small molecules, ciclopirox and deferiprone. Moreover, DOHH silencing led to significant inhibition of tumor progression and prolonged survival in GB mouse models. Searching for a potential mechanism by which DOHH promotes tumor aggressiveness, we found that it supports the transition of GB cells to a more invasive phenotype via epithelial-mesenchymal transition (EMT)-related pathways.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ciclopirox , Sobreviventes
18.
PLoS One ; 18(5): e0285941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196004

RESUMO

The Hepatitis B virus (HBV) core protein is an attractive target for preventing capsid assembly and viral replication. Drug repurposing strategies have introduced several drugs targeting HBV core protein. This study used a fragment-based drug discovery (FBDD) approach to reconstruct a repurposed core protein inhibitor to some novel antiviral derivatives. Auto Core Fragment in silico Screening (ACFIS) server was used for deconstruction-reconstruction of Ciclopirox in complex with HBV core protein. The Ciclopirox derivatives were ranked based on their free energy of binding (ΔGB). A quantitative structure affinity relationship (QSAR) was established on the Ciclopirox derivatives. The model was validated by a Ciclopirox-property-matched decoy set. A principal component analysis (PCA) was also assessed to define the relationship of the predictive variable of the QSAR model. 24-derivatives with a ΔGB (-16.56±1.46 Kcal.mol-1) more than Ciclopirox was highlighted. A QSAR model with a predictive power of 88.99% (F-statistics = 9025.78, corrected df(25), Pr > F = 0.0001) was developed by four predictive descriptors (ATS1p, nCs, Hy, F08[C-C]). The model validation showed no predictive power for the decoy set (Q2 = 0). No significant correlation was observed between predictors. By directly attaching to the core protein carboxyl-terminal domain, Ciclopirox derivatives may be able to suppress HBV virus assembly and subsequent viral replication inhibition. Hydrophobic residue Phe23 is a critical amino acid in the ligand binding domain. These ligands share the same physicochemical properties that lead to the development of a robust QSAR mode. The same strategy may also be used for future drug discovery of viral inhibitors.


Assuntos
Hepatite B , Montagem de Vírus , Humanos , Vírus da Hepatite B/metabolismo , Ciclopirox/farmacologia , Replicação Viral , Antivirais/química , Proteínas do Capsídeo/metabolismo , Descoberta de Drogas , Proteínas do Core Viral/química
19.
Eur J Dermatol ; 33(1): 19-24, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154811

RESUMO

BACKGROUND: Onychomycosis affects up to 50% of patients in the older population. OBJECTIVES: This study aimed to explore heat sensitivity of Trichophyton rubrum and Trichophyton interdigitale as pathogens of onychomycosis. MATERIALS & METHODS: The fungi were heated in sterile saline solution up to 100°C for five or 10 minutes with or without additional previous treatment with 1% ciclopirox solution or chitinase and 1,3 -galactidase or for 45 minutes at 40°C or 60°C with washing powder. Subsequently, the fungi were cultured and regrowth was assessed after one week. RESULTS: After heating T. rubrum for five minutes at 60°C, growth was completely inhibited. After heating T. interdigitale for five minutes at 60°C, all of the samples regrew, and at 95°C, none of the samples regrew. No difference between five and 10-minute heating was observed. Previous incubation with 1% ciclopirox solution for 24 hours inhibited the growth of T. rubrum completely. T. interdigitale was still able to regrow to 100% after five minutes at 40°C, to 33% after 60°C, and to 22% after 80°C. Incubation for 45 minutes with washing powder solution at 40°C or 60°C did not lead to significant growth reduction of T. rubrum or interdigitale. Two hours incubation with -1,3-glucanase and chitinase prior to five minutes of heating to 60°C and 80°C reduced the heat resistance of T. interdigitale; growth was inhibited in 56% and 100% of the samples, respectively. CONCLUSION: The heat resistance of T. rubrum and interdigitale should be considered using non-medical thermal treatment.


Assuntos
Onicomicose , Humanos , Trichophyton , Ciclopirox/farmacologia , Temperatura Alta , Pós
20.
Biochem Biophys Res Commun ; 659: 10-19, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37030020

RESUMO

The activating receptor natural killer group 2D (NKG2D) expressed by Natural killer (NK) cells functions as a "master-switch" in governing the awakening status of NK cells. The NKG2D-mediated cytotoxicity has been declared to be related with the expression levels of NKG2D ligands (NKG2DLs) expressed on tumor cells. Therefore, selective induction of NKG2DLs could be a reliable approach to enhance the efficacy of NK cell-mediated immunotherapy. Our existing study demonstrated that Ciclopirox Olamine (CPX), an off-patent antifungal agent, effectively elevated the expression of NKG2DLs on leukemia cells and sensitized leukemia cells to NK-cell mediated cytolysis. Induction of ROS production and AKT phosphorylation by CPX is essential for the up-regulation of NKG2DLs expressions. Inhibition of AKT by using AKT inhibitor MK2206 decreased both NKG2DLs expressions and NK cell cytotoxicity. These data indicated that increased sensitivity of CPX-treated leukemia cells to NK cell cytolysis was attributed to higher NKG2DLs expressions, resulting from activated AKT signaling pathway. Our findings support the ongoing development of CPX as an anti-tumor agent and suggest its promising immunotherapeutic value in the medication of leukemia.


Assuntos
Leucemia , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA