Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
PLoS Genet ; 17(5): e1009592, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34033659

RESUMO

The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.


Assuntos
Anáfase , Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Segregação de Cromossomos , Cinetocoros/química , Cinetocoros/efeitos dos fármacos , Viabilidade Microbiana/genética , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/efeitos dos fármacos , Fatores de Tempo
2.
Cell Rep ; 32(5): 107987, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755581

RESUMO

Advanced maternal age is highly associated with a decline in oocyte quality, but effective approaches to improve it have still not been fully determined. Here, we report that in vivo supplementation of nicotinamide mononucleotide (NMN) efficaciously improves the quality of oocytes from naturally aged mice by recovering nicotinamide adenine dinucleotide (NAD+) levels. NMN supplementation not only increases ovulation of aged oocytes but also enhances their meiotic competency and fertilization ability by maintaining the normal spindle/chromosome structure and the dynamics of the cortical granule component ovastacin. Moreover, single-cell transcriptome analysis shows that the beneficial effect of NMN on aged oocytes is mediated by restoration of mitochondrial function, eliminating the accumulated ROS to suppress apoptosis. Collectively, our data reveal that NMN supplementation is a feasible approach to protect oocytes from advanced maternal age-related deterioration, contributing to the improvement of reproductive outcome of aged women and assisted reproductive technology.


Assuntos
Envelhecimento/fisiologia , Senescência Celular , Mononucleotídeo de Nicotinamida/farmacologia , Oócitos/citologia , Animais , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Dano ao DNA , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fertilização/efeitos dos fármacos , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Masculino , Meiose/efeitos dos fármacos , Metaloproteases/metabolismo , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NAD/metabolismo , Oócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Transcriptoma/genética
3.
Open Biol ; 10(7): 200101, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32634373

RESUMO

The distance between fluorescent spots formed by various kinetochore proteins (delta) is commonly interpreted as a manifestation of intrakinetochore tension (IKT) caused by microtubule-mediated forces. However, large-scale changes of the kinetochore architecture (such as its shape or dimensions) may also contribute to the value of delta. To assess contributions of these non-elastic changes, we compare behaviour of delta values in human kinetochores with small yet mechanically malleable kinetochores against compound kinetochores in Indian muntjac (IM) cells whose architecture remains constant. Due to the micrometre-scale length of kinetochore plates in IM, their shape and orientation are discernible in conventional light microscopy, which enables precise measurements of IKT independent of contributions from changes in overall architecture of the organelle. We find that delta in IM kinetochores remains relatively constant when microtubule-mediated forces are suppressed by Taxol, but it prominently decreases upon detachment of microtubules. By contrast, large decreases of delta observed in Taxol-treated human cells coincide with prominent changes in length and curvature of the kinetochore plate. These observations, supported by computational modelling, suggest that at least 50% of the decrease in delta in human cells reflects malleable reorganization of kinetochore architecture rather than elastic recoil due to IKT.


Assuntos
Cromossomos/efeitos dos fármacos , Cinetocoros/efeitos dos fármacos , Mitose/genética , Proteínas Nucleares/genética , Animais , Proteína Centromérica A/genética , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/genética , Cromossomos/genética , Proteínas do Citoesqueleto/genética , Humanos , Metáfase/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitose/efeitos dos fármacos , Cervo Muntjac/genética , Proteínas Nucleares/antagonistas & inibidores , Paclitaxel/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/genética
4.
Methods Cell Biol ; 158: 91-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32423652

RESUMO

During mitosis, spindle microtubules dynamically attach to and detach from kinetochores in a precise and regulated fashion. To ensure mitotic fidelity, kinetochore-microtubule (k-MT) attachments must be stable enough to satisfy the spindle assembly checkpoint (SAC), but sufficiently unstable to facilitate the correction of maloriented attachments. Different methods are available to assess k-MT stability in both live and fixed cells, but a comparative survey of these methods has not yet been reported. Here, we evaluate several quantitative and semiquantitative methods for determining k-MT stability and apply each technique to illustrate changes in spindle microtubule dynamics upon perturbation with physiologically relevant concentrations of microtubule stabilizing (Taxol) and destabilizing (UMK57 and nocodazole) compounds. We discuss the utility of each technique for defining specific features of spindle microtubule dynamics and k-MT attachment stability.


Assuntos
Técnicas Citológicas/métodos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Cálcio/farmacologia , Linhagem Celular , Resposta ao Choque Frio/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Cinetocoros/efeitos dos fármacos , Luz , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
5.
J Cell Physiol ; 235(10): 7030-7042, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017059

RESUMO

Histone deacetylase 6 (HDAC6) participates in mouse oocyte maturation by deacetylating α-tubulin. However, how HDAC6 expression is regulated in oocytes remains unknown. In the present study, we discovered that mouse oocytes had a high level of HDAC6 expression and a low level of DNA methylation status in their promoter region. Then, a selective HDAC6 inhibitor, tubastatin A (Tub-A) was chosen to investigate the role of HDAC6 in oocyte maturation. Our results revealed that inhibition of HDAC6 caused meiotic progression arrest, disturbed spindle/chromosome organization, and kinetochore-microtubule attachments without impairing spindle assembly checkpoint function. Moreover, inhibition of HDAC6 not only increased the acetylation of α-tubulin but also elevated the acetylation status of H4K16 and decreased the phosphorylation level of H3T3 and H3S10. Conversely, depressed H3T3 phosphorylation by its kinase inhibitor increased the acetylation level of H4K16. Finally, single cell RNA-seq analysis revealed that the cell cycle-related genes CCNB1, CDK2, SMAD3, YWHAZ and the methylation-related genes DNMT1 and DNMT3B were strongly repressed in Tub-A treated oocytes. Taken together, our results indicate that HDAC6 plays important roles in chromosome condensation and kinetochore function via regulating several key histone modifications and messenger RNA transcription during oocyte meiosis.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Acetilação/efeitos dos fármacos , Animais , Segregação de Cromossomos/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
6.
Int J Biol Sci ; 15(11): 2408-2418, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595158

RESUMO

Meiotic maturation of oocyte is an important process for successful fertilization, in which cytoskeletal integrality takes a significant role. The p-21 activated kinases (PAKs) belong to serine/threonine kinases that affect wide range of processes that are crucial for cell motility, survival, cell cycle, and proliferation. In this study, we used a highly selective inhibitor of PAK4, PF-3758309, to investigate the functions of PAK4 during meiotic maturation of mouse oocytes. We found that PAK4 inhibition resulted in meiotic arrest by inducing abnormal microfilament and microtubule dynamics. PAK4 inhibition impaired the microtubule stability and led to the defective kinetochore-microtubule (K-M) attachment which inevitably resulted in aneuploidy. Also, PAK4 inhibition induced abnormal acentriolar centrosome assembly during meiotic maturation. In conclusion, all these combined results suggest that PAK4 is necessary for the oocyte meiosis maturation as a regulator of cytoskeleton.


Assuntos
Actinas/metabolismo , Meiose/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Centrossomo/efeitos dos fármacos , Centrossomo/metabolismo , Segregação de Cromossomos/efeitos dos fármacos , Feminino , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Pirazóis/farmacologia , Pirróis/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores
7.
PLoS One ; 14(5): e0217828, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150492

RESUMO

The discovery of 20 unconventional kinetochore proteins in Trypanosoma brucei has opened a new and interesting area of evolutionary research to study a biological process previously thought to be highly conserved in all eukaryotes. In addition, the discovery of novel proteins involved in a critical cellular process provides an opportunity to exploit differences between kinetoplastid and human kinetochore proteins to develop therapeutics for diseases caused by kinetoplastid parasites. Consequently, we identified two of the unconventional kinetochore proteins as key targets (the highly related kinases KKT10 and KKT19). Recombinant T. brucei KKT19 (TbKKT19) protein was produced, a peptide substrate phosphorylated by TbKKT19 identified (KKLRRTLSVA), Michaelis constants for KKLRRTLSVA and ATP were determined (179 µM and 102 µM respectively) and a robust high-throughput compatible biochemical assay developed. This biochemical assay was validated pharmacologically with inhibition by staurosporine and hypothemycin (IC50 values of 288 nM and 65 nM respectively). Surprisingly, a subsequent high-throughput screen of a kinase-relevant compound library (6,624 compounds) yielded few hits (8 hits; final hit rate 0.12%). The low hit rate observed was unusual for a kinase target, particularly when screened against a compound library enriched with kinase hinge binding scaffolds. In an attempt to understand the low hit rate a TbKKT19 homology model, based on human cdc2-like kinase 1 (CLK1), was generated. Analysis of the TbKKT19 sequence and structure revealed no obvious features that could explain the low hit rates. Further work will therefore be necessary to explore this unique kinetochore kinase as well as to assess whether the few hits identified can be developed into tool molecules or new drugs.


Assuntos
Peptídeos/antagonistas & inibidores , Fosfotransferases/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/dietoterapia , Animais , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/enzimologia , Peptídeos/química , Fosfotransferases/química , Fosfotransferases/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Estaurosporina/farmacologia , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/parasitologia , Zearalenona/análogos & derivados , Zearalenona/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31138411

RESUMO

Topoisomerase II (topo II) inhibitors are commonly used as chemotherapy to treat multiple types of cancer, though their use is also associated with the development of therapy related acute leukemias. While the chromosome-damaging effects of etoposide, a topo II poison, have been proposed to act through a threshold mechanism, little is known about the chromosome damaging effects and dose responses for the catalytic inhibitors of the enzyme. The current study was designed to further investigate the potencies and concentration-response relationships of several topoisomerase II inhibitors, including the topoisomerase II poison etoposide, as well as catalytic inhibitors aclarubicin, merbarone, ICRF-154 and ICRF-187 using both a traditional in vitro micronucleus assay as well as a flow-cytometry based version of the assay. Benchmark dose (BMD) analysis was used to identify models that best fit the data and estimate a BMD, in this case the concentration at which a one standard deviation increase above the control frequency would be expected. All of the agents tested were potent in inducing micronuclei in human lymphoblastoid TK6 cells, with significant increases seen at low micromolar, and in the cases of aclarubicin and etoposide, at low nanomolar concentrations. Use of the anti-kinetochore CREST antibody with the microscopy-based assay demonstrated that the vast majority of the micronuclei originated from chromosome breakage. In comparing the two versions of the micronucleus assay, significant increases in micronucleated cells were observed at similar or lower concentrations using the traditional microscopy-based assay. BMD modeling of the data exhibited several advantages and proved to be a valuable alternative for concentration-response analysis, producing points of departure comparable to those derived using traditional no-observed or lowest-observed genotoxic effect level (NOGEL or LOGEL) approaches.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Linhagem Celular , Etoposídeo/farmacologia , Humanos , Cinetocoros/efeitos dos fármacos , Testes para Micronúcleos/métodos
9.
Cell Cycle ; 18(12): 1349-1363, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31122175

RESUMO

During mitosis, Aurora B kinase is required for forming proper bi-oriented kinetochore-microtubule attachments. Current models suggest that tension exerted between a pair of sister-kinetochores (inter-kinetochore stretch) produces a spatial separation of Aurora B kinase from kinetochore-associated microtubule binding substrates, such as the Knl1-Mis12-Ndc80 (KMN) network, resulting in a decrease of phosphorylation and, thus, an increase of affinity for microtubules. Using Single-Molecule High-Resolution Colocalization (SHREC) microscopy analysis of the kinetochore-associated motor CENP-E, we now show that CENP-E undergoes structural rearrangements prior to and after tension generation at the kinetochore, and displays a bi-modal Gaussian distribution on a pair of bi-oriented sister kinetochores. The conformational change of CENP-E depends on its microtubule-stimulated motor motility and the highly flexible coiled-coil between its motor and kinetochore-binding tail domains. Chemical inhibition of the motor motility or perturbations of the coiled-coil domain of CENP-E increases Aurora B-mediated Ndc80 phosphorylation in a tension-independent manner. Metaphase chromosome misalignment caused by CENP-E inhibition can be rescued by chemical inhibition of Aurora B kinase. Furthermore, a pair of monotelic sister-kinetochores shows asymmetric levels of Aurora B-mediated phosphorylation in mono-polar spindles depending on CENP-E motor activity. These results collectively suggest a tension-independent mechanism to reduce Aurora B-mediated phosphorylation of outer kinetochore components in response to microtubule capture by CENP-E.


Assuntos
Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Aurora Quinase B/antagonistas & inibidores , Fenômenos Biomecânicos , Proteínas Cromossômicas não Histona/química , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
10.
Toxicol In Vitro ; 59: 115-125, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30980863

RESUMO

Bisphenol A [BPA, 2,2-bis-(4-hydroxyphenyl)propane] is one of the most prevalent synthetic environmental estrogens; as an endocrine disruptor, it is associated with endocrine-related cancers including breast, ovarian, and prostate. However, the mechanisms by which BPA contributes to carcinogenesis are unclear. This study aims to clarify its toxic effects on mitotic cells and investigate the molecular mechanism. In vitro effects of BPA on mitotic progression were examined by performing experiments on HeLa cells. Proteins involved in mitotic processes were detected by Western blot, live cell imaging, and immunofluorescence staining. The results showed that BPA increased chromosomal instability by perturbing mitotic processes such as bipolar spindle formation and spindle microtubule attachment to the kinetochore. BPA prolonged mitotic progression by disturbing spindle attachment and concomitant activating spindle assembly checkpoint (SAC). Mechanistically, BPA interfered proper localization of HURP to the proximal ends of spindle microtubules, Kif2a to the minus ends of spindle microtubules, and TPX2 on the mitotic spindle. This mislocalization of microtubule associated proteins (MAPs) is postulated to lead to spindle attachment failure. Furthermore, BPA caused multipolar spindle by inducing centriole overduplication and premature disengagement. Although BPA acts as an estrogen receptor (ER) agonist, mitotic defects caused by BPA occurred in an ER-independent manner. Our findings indicate that BPA may stimulate carcinogenesis not only by acting as an endocrine disruptor but also by increasing chromosomal instability during mitosis.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Mitose/efeitos dos fármacos , Fenóis/toxicidade , Carcinogênese/induzido quimicamente , Centríolos/efeitos dos fármacos , Instabilidade Cromossômica/efeitos dos fármacos , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Células MCF-7 , Proteínas de Neoplasias/metabolismo
11.
Environ Mol Mutagen ; 60(3): 227-242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30561837

RESUMO

The in vitro micronucleus test according to OECD Test Guideline 487 (TG 487) is widely used to investigate the genotoxic potential of drugs. Besides the identification of in vitro genotoxicants, the assay can be complemented with kinetochore staining for the differentiation between clastogens and aneugens. This differentiation constitutes a major contribution to risk assessment as especially aneugens show a threshold response. Thus, a novel method for automated MN plus kinetochore (k+) scoring by image analysis was developed based on the OECD TG 487. Compound-induced increases in MN frequency can be detected using the cytokinesis-block (cytochalasin B) method in V79 cells after 24 h in a 96-well format. Nuclei, MN, and kinetochores were labeled with nuclear counterstain and anti-kinetochore antibodies, respectively, to score MN in binuclear or multinuclear cells and to differentiate compound-induced MN by the presence of kinetochores. First, a reference data set was created by manual scoring using two clastogens and aneugens. After developing the automated scoring process, a set of 14 reference genotoxicants were studied. The automated image analysis yielded the expected results: 5/5 clastogens and 6/6 aneugens (sensitivity: 100%) as well as 3/3 non-genotoxicants (specificity: 100%) were correctly identified. Further, a threshold was determined for identifying aneugens. Based on the data for our internally characterized reference compounds, unknown compounds that induce ≥53.8% k+ MN are classified as aneugens. The current data demonstrate excellent specificity and sensitivity and the methodology is superior to manual microscopic analysis in terms of speed and throughput as well as the absence of human bias. Environ. Mol. Mutagen. 60:227-242, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Aneugênicos/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Cinetocoros/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos/métodos , Mutagênicos/farmacologia , Animais , Linhagem Celular , Cricetinae , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Coloração e Rotulagem/métodos
12.
Elife ; 72018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30475206

RESUMO

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Mitose , Proteínas Nucleares/genética , Fatores de Processamento de RNA/genética , Animais , Anticorpos Neutralizantes/farmacologia , Segregação de Cromossomos/efeitos dos fármacos , Sequência Conservada , Proteínas do Citoesqueleto , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mitose/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Ligação Proteica , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
13.
Cell Cycle ; 17(9): 1087-1091, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895228

RESUMO

The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Anaphase is delayed by the generation of the mitotic checkpoint complex (MCC) composed of the checkpoint proteins Mad2 and BubR1/Bub3 bound to the protein Cdc20. Current models assume that MCC production is catalyzed at unattached kinetochores and that the Mad1/Mad2 complex is instrumental in the conversion of Mad2 from an open form (O-Mad2) to a closed form (C-Mad2) that can bind to Cdc20. Importantly the levels of Mad2 at kinetochores correlate with SAC activity but whether C-Mad2 at kinetochores exclusively represents its complex with Mad1 is not fully established. Here we use a recently established C-Mad2 specific monoclonal antibody to show that Cdc20 and C-Mad2 levels correlate at kinetochores and that depletion of Cdc20 reduces Mad2 but not Mad1 kinetochore levels. Importantly reintroducing wild type Cdc20 but not Cdc20 R132A, a mutant form that cannot bind Mad2, restores Mad2 levels. In agreement with this live cell imaging of fluorescent tagged Mad2 reveals that Cdc20 depletion strongly reduces Mad2 localization to kinetochores. These results support the presence of Mad2-Cdc20 complexes at kinetochores in agreement with current models of the SAC but also argue that Mad2 levels at kinetochores cannot be used as a direct readout of Mad1 levels.


Assuntos
Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Mad2/metabolismo , Anáfase , Anticorpos Monoclonais , Sítios de Ligação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Células HeLa , Humanos , Cinetocoros/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/imunologia , Nocodazol/farmacologia , Dobramento de Proteína , Quinolinas/farmacologia , Tiazóis/farmacologia
14.
Mol Biol Cell ; 29(11): 1332-1345, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29851559

RESUMO

During metaphase, sister chromatids are connected to microtubules extending from the opposite spindle poles via kinetochores to protein complexes on the chromosome. Kinetochores congress to the equatorial plane of the spindle and oscillate around it, with kinesin-8 motors restricting these movements. Yet, the physical mechanism underlying kinetochore movements is unclear. We show that kinetochore movements in the fission yeast Schizosaccharomyces pombe are regulated by kinesin-8-promoted microtubule catastrophe, force-induced rescue, and microtubule dynamic instability. A candidate screen showed that among the selected motors only kinesin-8 motors Klp5/Klp6 are required for kinetochore centering. Kinesin-8 accumulates at the end of microtubules, where it promotes catastrophe. Laser ablation of the spindle resulted in kinetochore movement toward the intact spindle pole in wild-type and klp5Δ cells, suggesting that kinetochore movement is driven by pulling forces. Our theoretical model with Langevin description of microtubule dynamic instability shows that kinesin-8 motors are required for kinetochore centering, whereas sensitivity of rescue to force is necessary for the generation of oscillations. We found that irregular kinetochore movements occur for a broader range of parameters than regular oscillations. Thus, our work provides an explanation for how regulation of microtubule dynamic instability contributes to kinetochore congression and the accompanying movements around the spindle center.


Assuntos
Cinesinas/metabolismo , Cinetocoros/metabolismo , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Cromossomos Fúngicos/metabolismo , Hidroxiureia/farmacologia , Cinetocoros/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Movimento , Mutação/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
15.
J Cell Sci ; 131(7)2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29555820

RESUMO

During the prometaphase stage of mitosis, the cell builds a bipolar spindle of microtubules that mechanically segregates sister chromatids between two daughter cells in anaphase. The spindle assembly checkpoint (SAC) is a quality control mechanism that monitors proper attachment of microtubules to chromosome kinetochores during prometaphase. Segregation occurs only when each chromosome is bi-oriented with each kinetochore pair attached to microtubules emanating from opposite spindle poles. Overexpression of the protein kinase Aurora A is a feature of various cancers and is thought to enable tumour cells to bypass the SAC, leading to aneuploidy. Here, we took advantage of a chemical and chemical-genetic approach to specifically inhibit Aurora A kinase activity in late prometaphase. We observed that a loss of Aurora A activity directly affects SAC function, that Aurora A is essential for maintaining the checkpoint protein Mad2 on unattached kinetochores and that inhibition of Aurora A leads to loss of the SAC, even in the presence of nocodazole or Taxol. This is a new finding that should affect the way Aurora A inhibitors are used in cancer treatments.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Aurora Quinase A/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Mad2/genética , Prometáfase/genética , Anáfase/genética , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Linhagem Celular Tumoral , Cromátides/genética , Segregação de Cromossomos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Cinetocoros/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Mitose/genética , Nocodazol/farmacologia , Paclitaxel/farmacologia , Prometáfase/efeitos dos fármacos , Pirimidinas/farmacologia , Fuso Acromático/genética
16.
FASEB J ; 32(1): 342-352, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904021

RESUMO

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant and carcinogen that is frequently found in particulate matter, with a diameter of ≤2.5 µm (PM2.5). It has been reported to interrupt the normal reproductive system, but the exact molecular basis has not been clearly defined. To understand the underlying mechanisms regarding how BaP exposure disrupts female fertility, we evaluated oocyte quality by assessing the critical regulators and events during oocyte meiotic maturation and fertilization. We found that BaP exposure compromised the mouse oocyte meiotic progression by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment, consequently leading to the generation of aneuploid eggs. In addition, BaP administration significantly decreased the fertilization rate of mouse eggs by reducing the number of sperm binding to the zona pellucida, which was consistent with the premature cleavage of N terminus of zona pellucida sperm-binding protein 2 and precocious exocytosis of ovastacin. Furthermore, BaP exposure interfered with the gamete fusion process by perturbing the localization and protein level of Juno. Notably, we found that BaP exposure induced oxidative stress with an increased level of reactive oxygen species and apoptosis in oocytes and thereby led to the deterioration of critical regulators and events during oocyte meiotic progression and fertilization. Our data document that BaP exposure reduces female fertility via impairing oocyte maturation and fertilization ability induced by oxidative stress and early apoptosis in murine models.-Zhang, M., Miao, Y., Chen, Q., Cai, M., Dong, W., Dai, X., Lu, Y., Zhou, C., Cui, Z., Xiong, B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility.


Assuntos
Benzo(a)pireno/toxicidade , Fertilização/efeitos dos fármacos , Infertilidade Feminina/induzido quimicamente , Oócitos/efeitos dos fármacos , Oócitos/patologia , Aneugênicos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Feminino , Infertilidade Feminina/patologia , Cinetocoros/efeitos dos fármacos , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interações Espermatozoide-Óvulo/efeitos dos fármacos
17.
Curr Biol ; 28(1): 130-139.e3, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29276128

RESUMO

Cell division with partitioning of the genetic material should take place only when paired chromosomes named bivalents (meiosis I) or sister chromatids (mitosis and meiosis II) are correctly attached to the bipolar spindle in a tension-generating manner. For this to happen, the spindle assembly checkpoint (SAC) checks whether unattached kinetochores are present, in which case anaphase onset is delayed to permit further establishment of attachments. Additionally, microtubules are stabilized when they are attached and under tension. In mitosis, attachments not under tension activate the so-named error correction pathway depending on Aurora B kinase substrate phosphorylation. This leads to microtubule detachments, which in turn activates the SAC [1-3]. Meiotic divisions in mammalian oocytes are highly error prone, with severe consequences for fertility and health of the offspring [4, 5]. Correct attachment of chromosomes in meiosis I leads to the generation of stretched bivalents, but-unlike mitosis-not to tension between sister kinetochores, which co-orient. Here, we set out to address whether reduction of tension applied by the spindle on bioriented bivalents activates error correction and, as a consequence, the SAC. Treatment of oocytes in late prometaphase I with Eg5 kinesin inhibitor affects spindle tension, but not attachments, as we show here using an optimized protocol for confocal imaging. After Eg5 inhibition, bivalents are correctly aligned but less stretched, and as a result, Aurora-B/C-dependent error correction with microtubule detachment takes place. This loss of attachments leads to SAC activation. Crucially, SAC activation itself does not require Aurora B/C kinase activity in oocytes.


Assuntos
Cinetocoros/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Meiose/fisiologia , Oócitos/fisiologia , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Cisteína/análogos & derivados , Cisteína/farmacologia , Feminino , Cinesinas/antagonistas & inibidores , Cinetocoros/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Paclitaxel/farmacologia , Pirimidinas/farmacologia , Tionas/farmacologia , Moduladores de Tubulina/farmacologia
18.
J Cell Biol ; 216(12): 3949-3957, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978643

RESUMO

The spindle assembly checkpoint (SAC) prevents chromosome missegregation by coupling anaphase onset with correct chromosome attachment and tension to microtubules. It does this by generating a diffusible signal from free kinetochores into the cytoplasm, inhibiting the anaphase-promoting complex (APC). The volume in which this signal remains effective is unknown. This raises the possibility that cell volume may be the reason the SAC is weak, and chromosome segregation error-prone, in mammalian oocytes. Here, by a process of serial bisection, we analyzed the influence of oocyte volume on the ability of the SAC to inhibit bivalent segregation in meiosis I. We were able to generate oocytes with cytoplasmic volumes reduced by 86% and observed changes in APC activity consistent with increased SAC control. However, bivalent biorientation remained uncoupled from APC activity, leading to error-prone chromosome segregation. We conclude that volume is one factor contributing to SAC weakness in oocytes. However, additional factors likely uncouple chromosome biorientation with APC activity.


Assuntos
Tamanho Celular , Segregação de Cromossomos , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Gonadotropinas Equinas/farmacologia , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Milrinona/farmacologia , Nocodazol/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/ultraestrutura , RNA Complementar/genética , RNA Complementar/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/ultraestrutura
19.
Development ; 144(19): 3475-3486, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851706

RESUMO

Mouse oocytes carrying DNA damage arrest in meiosis I, thereby preventing creation of embryos with deleterious mutations. The arrest is dependent on activation of the spindle assembly checkpoint, which results in anaphase-promoting complex (APC) inhibition. However, little is understood about how this checkpoint is engaged following DNA damage. Here, we find that within minutes of DNA damage checkpoint proteins are assembled at the kinetochore, not at damage sites along chromosome arms, such that the APC is fully inhibited within 30 min. Despite this robust response, there is no measurable loss in k-fibres, or tension across the bivalent. Through pharmacological inhibition we observed that the response is dependent on Mps1 kinase, aurora kinase and Haspin. Using oocyte-specific knockouts we find the response does not require the DNA damage response kinases ATM or ATR. Furthermore, checkpoint activation does not occur in response to DNA damage in fully mature eggs during meiosis II, despite the divisions being separated by just a few hours. Therefore, mouse oocytes have a unique ability to sense DNA damage rapidly by activating the checkpoint at their kinetochores.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Oócitos/citologia , Oócitos/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Aurora Quinases/metabolismo , Centrômero/efeitos dos fármacos , Centrômero/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinetocoros/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Meiose/efeitos dos fármacos , Camundongos , Modelos Biológicos , Oócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo
20.
Cancer Lett ; 403: 74-85, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28602975

RESUMO

Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers.


Assuntos
Antimitóticos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Indóis/farmacologia , Mitose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Azepinas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Cinetocoros/efeitos dos fármacos , Cinetocoros/patologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Paclitaxel/farmacologia , Prometáfase/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/patologia , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vincristina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA