Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
STAR Protoc ; 2(4): 100774, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34841272

RESUMO

This protocol measures the 3D Euclidean distance (Δ3D) between two/three fluorescently labeled kinetochore components in fixed samples using Kinetochore Delta software (KiDv1.0.1, MATLAB based). Overestimation of mean Δ3D is corrected through a Bayesian algorithm, with ΔEC distances reflecting the ensemble average positions of fluorophores within a kinetochore population. This package also enables kinetochore categorization, which can be used to sub-sample kinetochores and measure ΔEC. Together, this allows the dynamic architecture of human kinetochores to be investigated (tested in hTERT-RPE1 cells). For complete details on the use and execution of this protocol, please refer to Roscioli et al. (2020).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espaço Intracelular/fisiologia , Microscopia de Fluorescência/métodos , Algoritmos , Células Cultivadas , Corantes Fluorescentes/química , Humanos , Cinetocoros/fisiologia , Software
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810257

RESUMO

Kinetochores, a protein complex assembled on centromeres, mediate chromosome segregation. In most eukaryotes, centromeres are epigenetically specified by the histone H3 variant CENP-A. CENP-T, an inner kinetochore protein, serves as a platform for the assembly of the outer kinetochore Ndc80 complex during mitosis. How CENP-T is regulated through the cell cycle remains unclear. Ccp1 (counteracter of CENP-A loading protein 1) associates with centromeres during interphase but delocalizes from centromeres during mitosis. Here, we demonstrated that Ccp1 directly interacts with CENP-T. CENP-T is important for the association of Ccp1 with centromeres, whereas CENP-T centromeric localization depends on Mis16, a homolog of human RbAp48/46. We identified a Ccp1-interaction motif (CIM) at the N terminus of CENP-T, which is adjacent to the Ndc80 receptor motif. The CIM domain is required for Ccp1 centromeric localization, and the CIM domain-deleted mutant phenocopies ccp1Δ. The CIM domain can be phosphorylated by CDK1 (cyclin-dependent kinase 1). Phosphorylation of CIM weakens its interaction with Ccp1. Consistent with this, Ccp1 dissociates from centromeres through all stages of the cell cycle in the phosphomimetic mutant of the CIM domain, whereas in the phospho-null mutant of the domain, Ccp1 associates with centromeres during mitosis. We further show that the phospho-null mutant disrupts the positioning of the Ndc80 complex during mitosis, resulting in chromosome missegregation. This work suggests that competitive exclusion between Ccp1 and Ndc80 at the N terminus of CENP-T via phosphorylation ensures precise kinetochore assembly during mitosis and uncovers a previously unrecognized mechanism underlying kinetochore assembly through the cell cycle.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína Quinase CDC2/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/metabolismo , Interfase , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose , Fosforilação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia
3.
Methods Mol Biol ; 2289: 3-22, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270060

RESUMO

Haploid production is of great importance in plant breeding programs. Doubled haploid technology accelerates the generation of inbred lines with homozygosity in all loci in a single year. Haploids can be induced in vitro via cultivating the haploid gametes or in vivo through inter- and intraspecific hybridization. Haploid induction through centromere engineering is a novel system that is theoretically applicable to many plant species. The present review chapter discusses the proposed molecular mechanisms of selective chromosome elimination in early embryogenesis and the effects of kinetochore component modifications on proper chromosome segregation. Finally, the advantages and limitations of the CENH3-mediated haploidization approach and its applications are highlighted.


Assuntos
Centrômero/genética , Plantas/genética , Animais , Produtos Agrícolas/genética , Genoma de Planta/genética , Haploidia , Humanos , Hibridização Genética/genética , Cinetocoros/fisiologia , Melhoramento Vegetal/métodos
4.
Mol Biol Cell ; 32(13): 1241-1255, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33956511

RESUMO

Mitotic kinetochores assemble via the hierarchical recruitment of numerous cytosolic components to the centromere region of each chromosome. However, how these orderly and localized interactions are achieved without spurious macromolecular assemblies forming from soluble kinetochore components in the cell cytosol remains poorly understood. We developed assembly assays to monitor the recruitment of green fluorescent protein-tagged recombinant proteins and native proteins from human cell extracts to inner kinetochore components immobilized on microbeads. In contrast to prior work in yeast and Xenopus egg extracts, we find that human mitotic cell extracts fail to support de novo assembly of microtubule-binding subcomplexes. A subset of interactions, such as those between CENP-A-containing nucleosomes and CENP-C, are permissive under these conditions. However, the subsequent phospho-dependent binding of the Mis12 complex is less efficient, whereas recruitment of the Ndc80 complex is blocked, leading to weak microtubule-binding activity of assembled particles. Using molecular variants of the Ndc80 complex, we show that auto-inhibition of native Ndc80 complex restricts its ability to bind to the CENP-T/W complex, whereas inhibition of the Ndc80 microtubule binding is driven by a different mechanism. Together, our work reveals regulatory mechanisms that guard against the spurious formation of cytosolic microtubule-binding kinetochore particles.


Assuntos
Centrômero/metabolismo , Cinetocoros/metabolismo , Mitose/fisiologia , Extratos Celulares , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo
5.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851957

RESUMO

To establish chromosome biorientation, aberrant kinetochore-microtubule interaction must be resolved (error correction) by Aurora B kinase. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still unclear how kinetochore-microtubule interactions are exchanged during error correction. Here, we reconstituted the budding yeast kinetochore-microtubule interface in vitro by attaching the Ndc80 complexes to nanobeads. These Ndc80C nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. Similar reconstitutions with purified kinetochore particles were used for comparison. We suggest the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment, and promotes the exchange to a new lateral attachment, leading to error correction.


Assuntos
Aurora Quinase B/metabolismo , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Mitose , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aurora Quinase B/genética , Cinetocoros/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
6.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33904910

RESUMO

To ensure accurate chromosome segregation, interactions between kinetochores and microtubules are regulated by a combination of mechanics and biochemistry. Tension provides a signal to discriminate attachment errors from bi-oriented kinetochores with sisters correctly attached to opposite spindle poles. Biochemically, Aurora B kinase phosphorylates kinetochores to destabilize interactions with microtubules. To link mechanics and biochemistry, current models regard tension as an input signal to locally regulate Aurora B activity. Here, we show that the outcome of kinetochore phosphorylation depends on tension. Using optogenetics to manipulate Aurora B at individual kinetochores, we find that kinase activity promotes microtubule release when tension is high. Conversely, when tension is low, Aurora B activity promotes depolymerization of kinetochore-microtubules while maintaining attachment. Thus, phosphorylation converts a catch-bond, in which tension stabilizes attachments, to a slip-bond, which releases microtubules under tension. We propose that tension is a signal inducing distinct error-correction pathways, with release or depolymerization being advantageous for typical errors characterized by high or low tension, respectively.


Assuntos
Aurora Quinase B/metabolismo , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Mitose , Tensinas/metabolismo , Aurora Quinase B/genética , Segregação de Cromossomos , Células HeLa , Humanos , Fosforilação
7.
Mol Biol Cell ; 32(10): 1020-1032, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788584

RESUMO

In prophase of meiosis I, homologous chromosomes pair and become connected by cross-overs. Chiasmata, the connections formed by cross-overs, enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiotic spindle forms in prometaphase, most bivalents are associated with one spindle pole and then go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent become bioriented-attached to microtubules from opposite sides of the spindle. The conserved kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is needed for efficient triggering of the migration of microtubule-attached kinetochores toward the poles and promotes microtubule depolymerization. Our data support the model Mps1 acts at the kinetochore to coordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to then move the chromosome.


Assuntos
Cromossomos/fisiologia , Prometáfase/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Polaridade Celular , Pareamento Cromossômico , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Mutação , Prometáfase/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales
8.
Mol Biol Cell ; 32(8): 712-721, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596090

RESUMO

Similar to other core biological processes, the vast majority of cell division components are essential for viability across human cell lines. However, recent genome-wide screens have identified a number of proteins that exhibit cell line-specific essentiality. Defining the behaviors of these proteins is critical to our understanding of complex biological processes. Here, we harness differential essentiality to reveal the contributions of the four-subunit centromere-localized CENP-O complex, whose precise function has been difficult to define. Our results support a model in which the CENP-O complex and BUB1 act in parallel pathways to recruit a threshold level of PLK1 to mitotic kinetochores, ensuring accurate chromosome segregation. We demonstrate that targeted changes to either pathway sensitizes cells to the loss of the other component, resulting in cell-state dependent requirements. This approach also highlights the advantage of comparing phenotypes across diverse cell lines to define critical functional contributions and behaviors that could be exploited for the targeted treatment of disease.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Centrômero/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Histonas/genética , Histonas/fisiologia , Humanos , Cinetocoros/fisiologia , Mitose/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Quinase 1 Polo-Like
9.
Mol Biol Cell ; 32(9): 880-891, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33085580

RESUMO

Accurate chromosome alignment at metaphase facilitates the equal segregation of sister chromatids to each of the nascent daughter cells. Lack of proper metaphase alignment is an indicator of defective chromosome congression and aberrant kinetochore-microtubule attachments which in turn promotes chromosome missegregation and aneuploidy, hallmarks of cancer. Tools to sensitively, accurately, and quantitatively measure chromosome alignment at metaphase will facilitate understanding of the contribution of chromosome segregation errors to the development of aneuploidy. In this work, we have developed and validated a method based on analytical geometry to measure several indicators of chromosome misalignment. We generated semiautomated and flexible ImageJ2/Fiji pipelines to quantify kinetochore misalignment at metaphase plates as well as lagging chromosomes at anaphase. These tools will ultimately allow sensitive and systematic quantitation of these chromosome segregation defects in cells undergoing mitosis.


Assuntos
Segregação de Cromossomos/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Metáfase/fisiologia , Cromátides , Células HeLa , Humanos , Cinetocoros/fisiologia , Microscopia de Fluorescência/métodos , Microtúbulos/fisiologia , Mitose/fisiologia , Modelos Teóricos , Fuso Acromático
10.
Mol Biol Cell ; 31(14): 1453-1473, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401635

RESUMO

The conserved kinetochore-associated NDC80 complex (composed of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including 1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments and 2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex--microtubule interface.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Cinetocoros/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos , Proteínas do Citoesqueleto/fisiologia , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitose , Proteínas Nucleares/metabolismo , Fosforilação
11.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32435797

RESUMO

At cell division, the mammalian kinetochore binds many spindle microtubules that make up the kinetochore-fiber. To segregate chromosomes, the kinetochore-fiber must be dynamic and generate and respond to force. Yet, how it remodels under force remains poorly understood. Kinetochore-fibers cannot be reconstituted in vitro, and exerting controlled forces in vivo remains challenging. Here, we use microneedles to pull on mammalian kinetochore-fibers and probe how sustained force regulates their dynamics and structure. We show that force lengthens kinetochore-fibers by persistently favoring plus-end polymerization, not by increasing polymerization rate. We demonstrate that force suppresses depolymerization at both plus and minus ends, rather than sliding microtubules within the kinetochore-fiber. Finally, we observe that kinetochore-fibers break but do not detach from kinetochores or poles. Together, this work suggests an engineering principle for spindle structural homeostasis: different physical mechanisms of local force dissipation by the k-fiber limit force transmission to preserve robust spindle structure. These findings may inform how other dynamic, force-generating cellular machines achieve mechanical robustness.


Assuntos
Segregação de Cromossomos , Células Epiteliais/fisiologia , Rim/fisiologia , Cinetocoros/fisiologia , Mecanotransdução Celular , Fuso Acromático/fisiologia , Animais , Linhagem Celular , Dipodomys , Células Epiteliais/metabolismo , Rim/citologia , Rim/metabolismo , Cinetocoros/metabolismo , Fuso Acromático/metabolismo , Estresse Mecânico , Fatores de Tempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
12.
FASEB J ; 34(6): 8057-8067, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32329130

RESUMO

Chromosome segregation errors in mammalian embryos are common and jeopardize embryo health. Here, we perform for the first time 4-Dimensional imaging and tracking of chromosomes and centromeres through each preimplantation mitotic cell division in mouse embryos to define the normal dynamics of chromosome segregation. We show that a microtubule (MT)-dependent inward movement of chromosomes occurs at the time of nuclear envelope breakdown (NEBD), particularly in the earliest cell divisions, to position chromosomes prior to spindle assembly. Establishment of a rudimentary metaphase plate occurs immediately after NEBD, and is followed by a progressive alignment and biorientation of mitotic chromosomes. Stable end-on kinetochore-MT attachments form rapidly and attachment errors are uncommon. Altogether our data describe a rapid and efficient spindle assembly pathway that apparently minimizes the need for canonical MT attachment error correction in normally dividing embryos.


Assuntos
Embrião de Mamíferos/fisiologia , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Fuso Acromático/fisiologia , Animais , Segregação de Cromossomos/fisiologia , Feminino , Masculino , Camundongos
13.
PLoS Genet ; 16(3): e1008646, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150559

RESUMO

Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.


Assuntos
Centrômero/genética , Oomicetos/genética , Phytophthora/genética , Alveolados/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Heterocromatina/genética , Histonas/genética , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Phytophthora/metabolismo , Rhizaria/genética , Estramenópilas/genética
14.
J Cell Physiol ; 235(1): 26-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219174

RESUMO

Microtubule-interfering agents have been very useful both as biological tools in studying mitosis and as chemotherapeutic agents against cancer. It remains poorly understood how these agents converge on the spindle assembly checkpoint (SAC) to halt mitotic progression, while inhibiting microtubule dynamics by different mechanisms. Cells arrested at mitosis by various microtubule-interfering agents exhibit strikingly different defects in the mitotic spindle. However, all the arrested cells possess the 3F3/2 phosphoepitope at the sister kinetochores of chromosomes, indicating the decrease of tension across the paired kinetochores. In addition, microtubule-interfering agents result in a comparable reduction in the distance between sister kinetochores, suggesting that these agents decrease interkinetochore tension to similar degrees. Here, we discuss recent progress that suggests impairment of kinetochore-microtubule attachment and reduction of interkinetochore tension as common mechanisms underlying the persistent SAC activation in response to diverse microtubule-interfering agents.


Assuntos
Cinetocoros/fisiologia , Microtúbulos/fisiologia , Humanos , Mitose/fisiologia , Fuso Acromático/genética , Fuso Acromático/fisiologia
15.
Mol Biol Cell ; 31(3): 184-195, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825721

RESUMO

Metaphase spindles exert pole-directed forces on still-connected sister kinetochores. The spindle must counter these forces with extensive forces to prevent spindle collapse. In small spindles, kinetochore microtubules (KMTs) connect directly with the poles, and countering forces are supplied either by interdigitating MTs that form interpolar bundles or by astral MTs connected to the cell cortex. In bigger spindles, particularly those without structured poles, the origin of extensive forces is less obvious. We have used electron tomography of well-preserved metaphase cells to obtain structural evidence about interactions among different classes of MTs in metaphase spindles from Chlamydomonas rheinhardti and two strains of cultured mammalian cells. In all these spindles, KMTs approach close to and cross-bridge with the minus ends of non-KMTs, which form a framework that interdigitates near the spindle equator. Although this structure is not pole-connected, its organization suggests that it can support kinetochore tension. Analogous arrangements of MTs have been seen in even bigger spindles, such as metaphase spindles in Haemanthus endosperm and frog egg extracts. We present and discuss a hypothesis that rationalizes changes in spindle design with spindle size based on the negative exponential distribution of MT lengths in dynamically unstable populations of tubulin polymers.


Assuntos
Metáfase/fisiologia , Microtúbulos/fisiologia , Fuso Acromático/fisiologia , Linhagem Celular , Células Cultivadas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Humanos , Cinetocoros/fisiologia , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)
16.
Cells ; 9(1)2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878213

RESUMO

Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system.


Assuntos
Cinetocoros/metabolismo , Microcefalia/genética , Fuso Acromático/metabolismo , Proliferação de Células/genética , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Humanos , Cinetocoros/fisiologia , Microcefalia/metabolismo , Mitose/fisiologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fuso Acromático/genética
17.
Curr Biol ; 29(22): 3791-3802.e6, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679929

RESUMO

Centromeres are rapidly evolving across eukaryotes, despite performing a conserved function to ensure high-fidelity chromosome segregation. CENP-A chromatin is a hallmark of a functional centromere in most organisms. Due to its critical role in kinetochore architecture, the loss of CENP-A is tolerated in only a few organisms, many of which possess holocentric chromosomes. Here, we characterize the consequence of the loss of CENP-A in the fungal kingdom. Mucor circinelloides, an opportunistic human pathogen, lacks CENP-A along with the evolutionarily conserved CENP-C but assembles a monocentric chromosome with a localized kinetochore complex throughout the cell cycle. Mis12 and Dsn1, two conserved kinetochore proteins, were found to co-localize to a short region, one in each of nine large scaffolds, composed of an ∼200-bp AT-rich sequence followed by a centromere-specific conserved motif that echoes the structure of budding yeast point centromeres. Resembling fungal regional centromeres, these core centromere regions are embedded in large genomic expanses devoid of genes yet marked by Grem-LINE1s, a novel retrotransposable element silenced by the Dicer-dependent RNAi pathway. Our results suggest that these hybrid features of point and regional centromeres arose from the absence of CENP-A, thus defining novel mosaic centromeres in this early-diverging fungus.


Assuntos
Centrômero/metabolismo , Cinetocoros/fisiologia , Mucor/genética , Centrômero/fisiologia , Proteína Centromérica A/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Histonas/metabolismo , Cinetocoros/metabolismo , Mucor/metabolismo
18.
Curr Biol ; 29(22): 3749-3765.e7, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679939

RESUMO

Chromosome segregation errors during female meiosis are a leading cause of pregnancy loss and human infertility. The segregation of chromosomes is driven by interactions between spindle microtubules and kinetochores. Kinetochores in mammalian oocytes are subjected to special challenges: they need to withstand microtubule pulling forces over multiple hours and are built on centromeric chromatin that in humans is decades old. In meiosis I, sister kinetochores are paired and oriented toward the same spindle pole. It is well established that they progressively separate from each other with advancing female age. However, whether aging also affects the internal architecture of centromeres and kinetochores is currently unclear. Here, we used super-resolution microscopy to study meiotic centromere and kinetochore organization in metaphase-II-arrested eggs from three mammalian species, including humans. We found that centromeric chromatin decompacts with advancing maternal age. Kinetochores built on decompacted centromeres frequently lost their integrity and fragmented into multiple lobes. Fragmentation extended across inner and outer kinetochore regions and affected over 30% of metaphase-II-arrested (MII) kinetochores in aged women and mice, making the lobular architecture a prominent feature of the female meiotic kinetochore. We demonstrate that a partial cohesin loss, as is known to occur in oocytes with advancing maternal age, is sufficient to trigger centromere decompaction and kinetochore fragmentation. Microtubule pulling forces further enhanced the fragmentation and shaped the arrangement of kinetochore lobes. Fragmented kinetochores were frequently abnormally attached to spindle microtubules, suggesting that kinetochore fragmentation could contribute to the maternal age effect in mammalian eggs.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/metabolismo , Oócitos/metabolismo , Envelhecimento , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/fisiologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Feminino , Células HEK293 , Humanos , Cinetocoros/fisiologia , Meiose/fisiologia , Camundongos , Microtúbulos/metabolismo , Células NIH 3T3 , Oócitos/fisiologia , Óvulo/metabolismo , Óvulo/fisiologia , Fuso Acromático/fisiologia , Suínos , Coesinas
19.
Crit Rev Biochem Mol Biol ; 54(4): 352-370, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31573359

RESUMO

Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.


Assuntos
Segregação de Cromossomos/fisiologia , Cinetocoros/fisiologia , Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Humanos , Microtúbulos/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Filogenia , Fuso Acromático/metabolismo , Coesinas
20.
Curr Biol ; 29(18): 3072-3080.e5, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31495582

RESUMO

Centromeres and centrosomes are crucial mitotic players. Centromeres are unique chromosomal sites characterized by the presence of the histone H3-variant centromere protein A (CENP-A) [1]. CENP-A recruits the majority of centromere components, collectively named the constitutive centromere associated network (CCAN) [2]. The CCAN is necessary for kinetochore assembly, a multiprotein complex that attaches spindle microtubules (MTs) and is required for chromosome segregation [3]. In most animal cells, the dominant site for MT nucleation in mitosis are the centrosomes, which are composed of two centrioles, surrounded by a protein-rich matrix of electron-dense pericentriolar material (PCM) [4]. The PCM is the site of MT nucleation during mitosis [5]. Even if centromeres and centrosomes are connected via MTs in mitosis, it is not known whether defects in either one of the two structures have an impact on the function of the other. Here, using high-resolution microscopy combined with rapid removal of CENP-A in human cells, we found that perturbation of centromere function impacts mitotic spindle pole integrity. This includes release of MT minus-ends from the centrosome, leading to PCM dispersion and centriole mis-positioning at the spindle poles. Mechanistically, we show that these defects result from abnormal spindle MT dynamics due to defective kinetochore-MT attachments. Importantly, restoring mitotic spindle pole integrity following centromere inactivation lead to a decrease in the frequency of chromosome mis-segregation. Overall, our work identifies an unexpected relationship between centromeres and maintenance of the mitotic pole integrity necessary to ensure mitotic accuracy and thus to maintain genetic stability.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Fuso Acromático/metabolismo , Linhagem Celular , Centríolos/metabolismo , Centrômero/fisiologia , Proteína Centromérica A/fisiologia , Centrossomo/metabolismo , Centrossomo/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Microtúbulos/metabolismo , Mitose/fisiologia , Fuso Acromático/fisiologia , Polos do Fuso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA