Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Fish Shellfish Immunol ; 140: 108967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488041

RESUMO

The tryptophan-kynurenine (TRP-KYN) pathway is involved in several biological functions, including immunosuppression, inflammatory response, and tumor suppression. Six TRP-KYN pathway-related genes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 2 (IDO2), aminoadipate aminotransferase (AADAT), glutamate oxaloacetate transaminase 2 (GOT2), kynurenine monooxygenase (KMO), and kynureninase (KYNU) have been identified and cloned from the jawless vertebrate lamprey (Lampetra japonica) to gain insights into their evolution and characterization. Expression distribution showed that the key gene Lj-TDO was highly expressed in the oral gland. Real-time quantitative PCR showed that TRP-KYN pathway-related genes were significantly overexpressed after multi-stimulation. RNA interference showed that Lj-IDO2 knockdown regulated the expression of inflammatory factors. In conclusion, our study successfully clarified the ancestral features and functions of the TRP-KYN pathway, while providing valuable insights into the involvement of this pathway in the immune responses of a jawless vertebrate.


Assuntos
Cinurenina , Triptofano , Animais , Triptofano/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Lampreias/genética , Lampreias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Imunidade Inata/genética
2.
Clin Chim Acta ; 547: 117441, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321530

RESUMO

Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.


Assuntos
Cinurenina , Triptofano , Humanos , Cinurenina/análise , Cinurenina/metabolismo , Triptofano/metabolismo , Cromatografia Líquida , Plasma/química , Biomarcadores
3.
J Reprod Immunol ; 153: 103692, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970080

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are key enzymes for tryptophan degradation, regulating immune tolerance during pregnancy. The intrauterine renin-angiotensin system is also involved in the progression of a healthy pregnancy. Angiotensin(1-7) maintains the integrity of fetal membranes via counteracting the pro-inflammatory actions of Angiotensin II. No data are available on placental Angiotensin(1-7) co-expression with TDO. We aimed to characterize TDO mRNA expression and its localization in different areas of the placenta of physiological pregnancies delivered at term; its co-expression with Angiotensin(1-7) and its correlation with the plasma kynurenine/tryptophan (Kyn/Trp) ratio was investigated. This prospective observational study included a nonconsecutive series of 20 singleton uncomplicated pregnancies delivered vaginally. TDO mRNA was expressed in both maternal and fetal sides of the placentas and TDO protein also in the villi and it was co-expressed with IDO1 in almost half of the placental cells at these sites. The percentage of TDO+ and IDO1+ cells appeared to be influenced by maternal pre-gestational smoking and newborn weight. A strong correlation was found between the percentage of TDO+ and IDO1+ cells in the villi. TDO+ cells also expressed Angiotensin(1-7), with a higher percentage on the fetal side and in the villi compared to the maternal one. Kyn/Trp plasma ratio was not correlated with IDO and TDO expression nor with the patient's characteristics. Collectively, our data indicate that TDO is detectable in placental tissue and is co-expressed with IDO and with Angiotensin(1-7)+ on the fetal side and in the villi.


Assuntos
Angiotensina I , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase , Fragmentos de Peptídeos , Placenta , Triptofano Hidroxilase , Angiotensina I/genética , Angiotensina I/imunologia , Angiotensina II/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Recém-Nascido , Cinurenina/análise , Cinurenina/genética , Cinurenina/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Placenta/enzimologia , Placenta/imunologia , Gravidez , RNA Mensageiro , Triptofano/análise , Triptofano/genética , Triptofano/imunologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/imunologia , Triptofano Oxigenase/genética , Triptofano Oxigenase/imunologia
4.
J Pathol ; 256(3): 256-261, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34859884

RESUMO

COVID-19 is a pandemic with high morbidity and mortality. In an autopsy cohort of COVID-19 patients, we found extensive accumulation of the tryptophan degradation products 3-hydroxy-anthranilic acid and quinolinic acid in the lungs, heart, and brain. This was not related to the expression of the tryptophan-catabolizing indoleamine 2,3-dioxygenase (IDO)-1, but rather to that of its isoform IDO-2, which otherwise is expressed rarely. Bioavailability of tryptophan is an absolute requirement for proper cell functioning and synthesis of hormones, whereas its degradation products can cause cell death. Markers of apoptosis and severe cellular stress were associated with IDO-2 expression in large areas of lung and heart tissue, whereas affected areas in brain were more restricted. Analyses of tissue, cerebrospinal fluid, and sequential plasma samples indicate early initiation of the kynurenine/aryl-hydrocarbon receptor/IDO-2 axis as a positive feedback loop, potentially leading to severe COVID-19 pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Encéfalo/enzimologia , COVID-19/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Pulmão/enzimologia , Miocárdio/enzimologia , Ácido 3-Hidroxiantranílico/análise , Adulto , Idoso , Apoptose , Autopsia , Encéfalo/patologia , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Humanos , Cinurenina/análise , Pulmão/patologia , Pessoa de Meia-Idade , Miocárdio/patologia , Estudos Prospectivos , Ácido Quinolínico/análise , Índice de Gravidade de Doença , Triptofano/análise
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201647

RESUMO

Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.


Assuntos
Biomarcadores/análise , Cinurenina/metabolismo , Doença de Parkinson/metabolismo , Sistema Nervoso Central/metabolismo , Microbioma Gastrointestinal , Humanos , Cinurenina/análise , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Terapia de Alvo Molecular/métodos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/microbiologia
6.
Medicine (Baltimore) ; 100(23): e25313, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114978

RESUMO

ABSTRACT: Changes in tryptophan metabolism affect human physiology including the immune system, mood, and sleep and are associated with human immunodeficiency virus (HIV) pathogenesis. This study investigates whether the treatment of HIV-infected individuals with the neurokinin-1 receptor antagonist, aprepitant, alters tryptophan metabolism.This study utilized archival samples from 3 phase 1B clinical trials "Anti-HIV Neuroimmunomodulatory Therapy with Neurokinin-1 Antagonist Aprepitant"-2 double-blinded, placebo-controlled, and 1 open-label study. We tested samples from a total of 57 individuals: 26 combination antiretroviral therapy (cART) naïve individuals receiving aprepitant, 19 cART naïve individuals receiving placebo, and 12 individuals on a ritonavir-containing cART regimen receiving aprepitant. We evaluated the effect of aprepitant on tryptophan metabolism by measuring levels of kynurenine and tryptophan in archival plasma samples and calculating the kynurenine to tryptophan ratio.Aprepitant treatment affected tryptophan metabolism in both cART treated and cART naïve individuals with more profound effects in patients receiving cART. While aprepitant treatment affected tryptophan metabolism in all HIV-infected patients, it only significantly decreased kynurenine to tryptophan ratio in cART treated individuals. Aprepitant treatment offers an opportunity to target inflammation and mood disorders frequently co-existing in chronic HIV infection.


Assuntos
Aprepitanto , Infecções por HIV , Transtornos do Humor , Neuroimunomodulação/efeitos dos fármacos , Ritonavir , Triptofano/metabolismo , Adulto , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Aprepitanto/administração & dosagem , Aprepitanto/efeitos adversos , Contagem de Linfócito CD4/métodos , Método Duplo-Cego , Quimioterapia Combinada/efeitos adversos , Quimioterapia Combinada/métodos , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/psicologia , Infecções por HIV/virologia , Humanos , Cinurenina/análise , Masculino , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/etiologia , Antagonistas dos Receptores de Neurocinina-1/administração & dosagem , Antagonistas dos Receptores de Neurocinina-1/efeitos adversos , Ritonavir/administração & dosagem , Ritonavir/efeitos adversos , Resultado do Tratamento
7.
Sci Rep ; 11(1): 11092, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045580

RESUMO

The aim of the study was the detection of TRP, kynurenine (KYN), and kynurenic acid (KYNA) in human sweat, and determining whether physical activity affects their content in this secrete. Two different methods were used simultaneously-collection of sweat by means of an absorption pad from the inter scapular region, and collection of a drop of sweat from the region of the forehead. Quantitative determinations of TRP, KYN and KYNA were performed using high performance liquid chromatography with ultraviolet and fluorescence detection. Determinations of sodium was carried out by the method of inductively coupled plasma collision/reaction cell ionization mass spectrophotometry. It was found that physical exercises evoked a decrease in the amount of KYN, and an increase in the amount of KYNA in sweat recorded on day 14, but not on day 28 of training. It appears that physical exercises result in a long-term increase in the kynurenine transaminase activity responsible for the formation of KYNA from KYN. Based on this results, it can be suggested that measurement of TRP, KYN and KYNA in sweat may have diagnostic potential and may help to establish an exercise regime appropriate for the age, gender and health status of rehabilitation patients.


Assuntos
Exercício Físico/fisiologia , Ácido Cinurênico/análise , Cinurenina/análise , Suor/química , Triptofano/análise , Adulto , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
8.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758082

RESUMO

Human cytomegalovirus (HCMV) replication depends on the activities of several host regulators of metabolism. Hypoxia-inducible factor 1α (HIF1α) was previously proposed to support virus replication through its metabolic regulatory function. HIF1α protein levels rise in response to HCMV infection in nonhypoxic conditions, but its effect on HCMV replication was not investigated. We addressed the role of HIF1α in HCMV replication by generating primary human cells with HIF1α knocked out using CRISPR/Cas9. When HIF1α was absent, we found that HCMV replication was enhanced, showing that HIF1α suppresses viral replication. We used untargeted metabolomics to determine if HIF1α regulates metabolite concentrations in HCMV-infected cells. We discovered that in HCMV-infected cells, HIF1α suppresses intracellular and extracellular concentrations of kynurenine. HIF1α also suppressed the expression of indoleamine 2,3-dioxygenase 1 (IDO1), the rate-limiting enzyme in kynurenine synthesis. In addition to its role in tryptophan metabolism, kynurenine acts as a signaling messenger by activating aryl hydrocarbon receptor (AhR). Inhibiting AhR reduces HCMV replication, while activating AhR with an exogenous ligand increases virus replication. Moreover, we found that feeding kynurenine to cells promotes HCMV replication. Overall, our findings indicate that HIF1α reduces HCMV replication by regulating metabolism and metabolite signaling.IMPORTANCE Viruses, including human cytomegalovirus (HCMV), reprogram cellular metabolism using host metabolic regulators to support virus replication. Alternatively, in response to infection, the host can use metabolism to limit virus replication. Here, our findings show that the host uses hypoxia-inducible factor 1α (HIF1α) as a metabolic regulator to reduce HCMV replication. Further, we found that HIF1α suppresses kynurenine synthesis, a metabolite that can promote HCMV replication by signaling through the aryl hydrocarbon receptor (AhR). In infected cells, the rate-limiting enzyme in kynurenine synthesis, indoleamine 2,3-dioxygenase 1 (IDO1), is suppressed by a HIF1α-dependent mechanism. Our findings describe a functional connection between HIF1α, IDO1, and AhR that allows HIF1α to limit HCMV replication through metabolic regulation, advancing our understanding of virus-host interactions.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/patogenicidade , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cinurenina/antagonistas & inibidores , Replicação Viral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Interações entre Hospedeiro e Microrganismos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Metabolômica/métodos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
9.
Angew Chem Int Ed Engl ; 60(18): 9869-9874, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33565680

RESUMO

The immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO1) strengthens cancer immune escape, and inhibition of IDO1 by means of new chemotypes and mechanisms of action is considered a promising opportunity for IDO1 inhibitor discovery. IDO1 is a cofactor-binding, redox-sensitive protein, which calls for monitoring of IDO1 activity in its native cellular environment. We developed a new, robust fluorescence-based assay amenable to high throughput, which detects kynurenine in cells. Screening of a ca. 150 000-member compound library discovered unprecedented, potent IDO1 modulators with different mechanisms of action, including direct IDO1 inhibitors, regulators of IDO1 expression, and inhibitors of heme synthesis. Three IDO1-modulator chemotypes were identified that bind to apo-IDO1 and compete with the heme cofactor. Our new cell-based technology opens up novel opportunities for medicinal chemistry programs in immuno-oncology.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Linhagem Celular Tumoral , Cumarínicos/química , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Estrutura Molecular
10.
Cancer Sci ; 112(3): 1038-1047, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410234

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a key enzyme associated with immunomodulation through its regulation of the tryptophan-kynurenine (Kyn) pathway in advanced cancers, including metastatic renal cell carcinoma (mRCC). However, the failure of IDO1 inhibitors when used in combination with immune checkpoint inhibitors (ICIs), as observed in clinical trials, raises a number of questions. This study aimed to investigate the association of tryptophan 2,3-dioxygenase (TDO) and IDO1 with cancer development and resistance to immunotherapy in patients with RCC. In our analysis of RCC tissue samples, tissue Kyn levels were elevated in advanced-stage RCC and correlated well with TDO expression levels in RCC tumor cells. In patients with mRCC, TDO rather than IDO1 was expressed in RCC tumor cells, showing a strong association with Kyn expression. Furthermore, immunohistochemical staining of TDO was strongly associated with the staining intensity of forkhead box P3, as well as ICI therapy response and survival in patients with mRCC. Our study is the first to show that TDO expression in tumor tissues is associated with progression and survival, confirming its potential as a predictive biomarker of primary resistance to immunotherapy in patients with mRCC. Our findings suggest that strategies aimed at inhibiting TDO, rather than IDO1, in combination with ICI therapy may aid in the control of mRCC progression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Células Renais/terapia , Neoplasias Renais/terapia , Rim/patologia , Triptofano Oxigenase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Rim/cirurgia , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Cinurenina/análise , Cinurenina/metabolismo , Masculino , Pessoa de Meia-Idade , Nefrectomia , Intervalo Livre de Progressão , Triptofano/metabolismo , Triptofano Oxigenase/análise , Triptofano Oxigenase/antagonistas & inibidores
11.
J Chromatogr Sci ; 59(1): 40-46, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107556

RESUMO

This paper is a continuation of lipophilicity research on 14 compounds (tryptophan, kynurenine pathway products, auxin pathway products, serotonin pathway products, tryptamine, as well as two synthetic auxin analogs): indole-2-acetic acid sodium salt (IAA), serotonin, 5-hydroxy-L-tryptophan, tryptamine, L-tryptophan, L-kynurenine (KYN), kynurenic acid (KYA), 3-hydroxy-DL-kynurenine, naphtyl-1-acetamide, indole-3-propionic acid (IPA), naphthalene-1-acetic acid (NAA), indole-3-butyric acid (IBA), indole-3-pyruvic acid (IPV), as well as melatonin. They were chromatographed in high performance liquid chromatography gradient conditions on tree stationary phases (C18, CN, DIOL) using three modifiers on each phase (methanol, acetonitrile and acetone). The resulting retention data was correlated with computational lipophilicity indices. Six compounds were proven to be ionized in neutral pH physiological conditions (IAA, KYA, IPA, NAA, IBA and IPV) and they were rechromatographed with acidic mobile phase to enhance the resulting dataset. It can be concluded that the retention times are highly correlated with lipophilicity regardless of used modifier and column and the main differentiating trend can be only connected to presence of naphthalene or indole ring. The principal component analysis, additive linear modeling, as well as multiplicative trilinear parallel factor analysis (PARAFAC) modeling helped to understand the internal structure of the obtained results.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Triptofano/química , Interações Hidrofóbicas e Hidrofílicas , Indóis/análise , Indóis/química , Cinurenina/análise , Cinurenina/química , Análise de Componente Principal , Triptofano/análise
12.
Alcohol ; 90: 1-9, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33031882

RESUMO

Anxiety and depression are symptoms associated with ethanol withdrawal that lead individuals to relapse. In the kynurenine pathway, the enzyme indoleamine 2,3 dioxygenase (IDO) is responsible for the conversion of tryptophan to kynurenine, and dysregulation of this pathway has been associated with psychiatric disorders, such as anxiety and depression. The present study evaluated the early and late behavioral and biochemical effects of ethanol withdrawal in rats. Male Wistar rats were submitted to increasing concentrations of ethanol in drinking water during 21 days. In experiment 1, both control and withdrawal groups were submitted to a battery of behavioral tests 3, 5, 10, 19, and 21 days following ethanol removal. In experiment 2, animals were euthanized 3 days (short-term) or 21 days (long-term) after withdrawal, and the brains were dissected altogether, following kynurenine concentration analysis in prefrontal cortex, hippocampus, and striatum. Short-term ethanol withdrawal decreased the exploration of the open arms in the elevated plus-maze. In the forced swimming test, long-term ethanol-withdrawn rats displayed higher immobility time than control animals. Ethanol withdrawal altered neither locomotion nor motor coordination of rats. In experiment 2, kynurenine concentrations were increased in the prefrontal cortex after a long-term period of withdrawal. In conclusion, short-term ethanol withdrawal produced anxiety-like behaviors, while long-term withdrawal favored depressive-like behaviors. Long-term ethanol withdrawal elevated kynurenine levels, specifically in the prefrontal cortex, suggesting that the depressive-like responses observed after long-term withdrawal might be related to the increased IDO activity.


Assuntos
Encéfalo/enzimologia , Etanol , Indolamina-Pirrol 2,3,-Dioxigenase , Síndrome de Abstinência a Substâncias , Animais , Ansiedade , Depressão , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Masculino , Ratos , Ratos Wistar
13.
J Dermatol Sci ; 99(3): 177-184, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32782183

RESUMO

BACKGROUND: Interferon-gamma (IFN-γ) represents a potent inducer for keratinocyte inflammatory and immune activation in vitro. Since tryptophan (trp) conversion to kynurenine (kyn) is involved in inflammation, the topical kyn/trp ratio may serve as a biomarker of skin inflammation. However, the trp metabolism in keratinocytes exposed to IFN-γ is not yet fully understood. OBJECTIVE: The aim of this study was to establish a human epidermis model in order to quantify cytokine and kyn/trp secretion from IFN-γ stimulated cells and tissues. Moreover, to compare the cell response of 2D-cultured keratinocytes and the 3D epidermis model. METHODS: Polycarbonate filters were used on which primary keratinocytes could attach and stratify in order to form the typical layers of reconstructed human epidermis (RHE). After IFN-γ treatment, secretion of kyn/trp was measured by high performance liquid chromatography. Gene and protein expression of indoleamine 2,3-dioxygenase 1 (IDO) was analyzed with real-time PCR and immunohistochemistry. The secretion of cytokines was quantified with ELISA. RESULTS: Trp catabolism to kyn was significantly increased (P < 0.01) in the 2D culture in response to IFN-γ treatment. Before kyn secretion, IDO was strongly upregulated (P < 0.001). IFN-γ treatment also increased the secretion of IL-6 and IL-8 from the keratinocytes. In the RHE, IDO was upregulated by IFN-γ, and kyn secretion could be detected. Interestingly, IDO expression was only present in the basal cells of the RHE. CONCLUSION: Our results suggest that IFN-γ acts as an inducer of trp degradation preferentially in undifferentiated keratinocytes, indicated by the IDO expression in the basal layer of the RHE.


Assuntos
Meios de Cultura/metabolismo , Epiderme/imunologia , Interferon gama/metabolismo , Queratinócitos/imunologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Epiderme/metabolismo , Humanos , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Redes e Vias Metabólicas/imunologia , Cultura Primária de Células/métodos , Proteínas Recombinantes/metabolismo , Triptofano/análise , Triptofano/metabolismo
14.
Anal Chem ; 92(13): 8836-8844, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32490663

RESUMO

Reference standardization was developed to address quantification and harmonization challenges for high-resolution metabolomics (HRM) data collected across different studies or analytical methods. Reference standardization relies on the concurrent analysis of calibrated pooled reference samples at predefined intervals and enables a single-step batch correction and quantification for high-throughput metabolomics. Here, we provide quantitative measures of approximately 200 metabolites for each of three pooled reference materials (220 metabolites for Qstd3, 211 metabolites for CHEAR, 204 metabolites for NIST1950) and show application of this approach for quantification supports harmonization of metabolomics data collected from 3677 human samples in 17 separate studies analyzed by two complementary HRM methods over a 17-month period. The results establish reference standardization as a method suitable for harmonizing large-scale metabolomics data and extending capabilities to quantify large numbers of known and unidentified metabolites detected by high-resolution mass spectrometry methods.


Assuntos
Metaboloma , Metabolômica/normas , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinurenina/análise , Cinurenina/metabolismo , Cinurenina/normas , Espectrometria de Massas , Metabolômica/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Triptofano/análise , Triptofano/metabolismo , Triptofano/normas
15.
Sci Rep ; 10(1): 10250, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581232

RESUMO

Oncogenic drivers of progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) such as c-MYC have downstream effects on intracellular metabolic pathways of clonal plasma cells (PCs). Thus, extracellular environments such as the bone marrow (BM) plasma likely have unique metabolite profiles that differ from patients with MGUS compared to MM. This study utilized an untargeted metabolite and targeted complex lipid profiling of BM plasma to identify significant differences in the relative metabolite levels between patients with MGUS and MM from an exploratory cohort. This was followed by verification of some of the metabolite differences of interest by targeted quantification of the metabolites using isotopic internal standards in the exploratory cohort as well as an independent validation cohort. Significant differences were noted in the amino acid profiles such as decreased branch chain amino acids (BCAAs) and increased catabolism of tryptophan to the active kynurenine metabolite 3-hydroxy-kynurenine between patients with MGUS and MM. A decrease in the total levels of complex lipids such as phosphatidylethanolamines (PE), lactosylceramides (LCER) and phosphatidylinositols (PI) were also detected in the BM plasma samples from MM compared to MGUS patients. Thus, metabolite and complex lipid profiling of the BM plasma identifies differences in levels of metabolites and lipids between patients with MGUS and MM. This may provide insight into the possible differences of the intracellular metabolic pathways of their clonal PCs.


Assuntos
Metabolômica/métodos , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Mieloma Múltiplo/diagnóstico , Plasmócitos/metabolismo , Aminoácidos de Cadeia Ramificada/análise , Diagnóstico Diferencial , Humanos , Cinurenina/análise , Lactosilceramidas/análise , Lipidômica/métodos , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Mieloma Múltiplo/sangue , Mieloma Múltiplo/metabolismo , Fosfatidiletanolaminas/análise , Fosfatidilinositóis/análise , Estudos Prospectivos
16.
Drug Res (Stuttg) ; 70(5): 206-213, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32198742

RESUMO

The World Health Organization (WHO) has ranked depression the 4th leading cause of disability worldwide. Thymoquinone (TQ), is an active constituent of Nigella sativa having various medicinal properties but has poor solubility and bioavailability. This problem was overcome by developing nanoformulation of TQ. Previously TQ reported good antioxidant and anti-inflammatory effects. Recently TQ's anti-depressant effect was demonstrated. However, the mechanisms underlying the antidepressant effect of TQ still needs evaluation. Activation of Indoleamine-2,3-dioxygenase (IDO), (an enzyme that participates in the tryptophan metabolism), leads to a decrease of serotonin (5-HT) levels. The expression of this enzyme is associated with immune system activation, which has been proposed as a common mechanism that links depression. The present study was performed in stressed animals where hippocampal levels of pro-inflammatory cytokines (IL-6 and TNF α levels), brain derived neurotropic factor (BDNF) and hippocampal kynurenine (KYN), tryptophan (TRP) and serotonin (5-HT) levels were estimated. Treatment with TQ solid lipid nanoparticles (TQSLN 20 mg/kg p.o) and TQ suspension (20 mg/kg p.o) demonstrated antidepressant-like activity in chronic forced-swim stress model. Further, it reduced the elevated hippocampal IL-6 & TNFα and reversed the increased activity of IDO as measured by ratio of hippocampal KYN/TRP and 5HT/TRP in stressed rats. The results of the present study confirm anti-inflammatory and neuroprotective effects of TQ which may be associated with 5-HT pathway. Thus, the present study offers a newer approach to reduce symptoms of depression using TQSLN. Our results are preliminary, further research is needed for more conclusive view.


Assuntos
Antidepressivos/administração & dosagem , Benzoquinonas/administração & dosagem , Depressão/tratamento farmacológico , Portadores de Fármacos/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Depressão/diagnóstico , Depressão/etiologia , Depressão/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Lipídeos/química , Masculino , Nanopartículas/química , Nigella sativa/química , Ratos , Serotonina/análise , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triptofano/análise , Triptofano/metabolismo
17.
J Am Soc Mass Spectrom ; 31(2): 379-385, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031396

RESUMO

Tryptophan is an essential amino acid that plays an important role in cell metabolism, and kynurenine is its main metabolic pathway. By using ultra-high-performance liquid chromatography coupled to electrospray ionization triple-quadrupole mass spectrometry, tryptophan and kynurenine were determined using amlodipine as an internal standard. The analysis was carried out on an ACE-C18 (4.6 mm × 50 mm, 5 µm) reversed-phase analytical column using the gradient elution mode. For quantitative determination, amlodipine was used as an internal standard. Detection was performed using multiple reaction monitoring in electrospray ionization mode at m/z 205.1 → 117.7 and 187.9 for tryptophan, m/z 209.1 → 146 and 93.9 for kynurenine, and m/z 409.2 → 294.1 for the internal standard. Good linearity of the analyte to internal standard peak area ratios was seen in the concentration range 1.25-4000 ng/mL for tryptophan and 0.5-1600 ng/mL for kynurenine. The method showed excellent linearity with regression coefficients of 0.99 for kynurenine and 0.996 for tryptophan. The limits of quantification were 0.55 ng/mL for tryptophan and 0.47 ng/mL for kynurenine. The % RSD for all analytes ranged from 0.3 to 3.4% for intraday and 0.4 to 8.9% for interday experiments. A simple LC-MS/MS method has been developed and validated for measuring Kyn and Trp by using an affordable and more easily available internal standard, which is amlodipine.


Assuntos
Anlodipino/análise , Cromatografia Líquida de Alta Pressão/métodos , Cinurenina/análise , Espectrometria de Massas em Tandem/métodos , Triptofano/análise , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
18.
Talanta ; 209: 120574, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892056

RESUMO

The paper outlines the first report of application of a differential pulse voltammetry for simultaneous quantification of clinically important molecular markers - tryptophan and its metabolite - kynurenine. The analytes were determined in less than 60 s at the boron-doped diamond electrode modified in situ with bismuth film (BiF/BDDE). Proper adjustment of a supporting electrolyte composition allowed to obtain good separation of tryptophan and kynurenine oxidation peaks that appeared at potential of 0.88 and 1.05 V (vs. Ag/AgCl), respectively. Studies using an optical profilometer have confirmed an increase in electrode surface area after deposition of Bi film. At the optimized conditions, the obtained detection limits of tryptophan and kynurenine were at 30 nM concentrations. The method was validated for linearity, precision, accuracy, selectivity and recovery. We have investigated an impact of numerous relevant interfering organic compounds (including amino acids and different tryptophan metabolites of kynurenine pathway) on voltammetric signals of the measured analytes. Finally, for proof-of-technology, the sensor was used for tryptophan and kynurenine quantification in culture medium collected from human cancer cell lines (breast MDA-MB-231 and ovary SK-OV-3). The target molecules were analyzed directly, without any sample preparation step. The sensor showed good accuracy in presence of the sample matrix components that was confirmed by high performance liquid chromatography measurements. Our work emphasizes the advantages of application of the herein proposed, easy to fabricate voltammetric sensor, instead of popular chromatographic assays or previously proposed potentiometric immunosensor. The method might serve for rapid assessment of kynurenine pathway activity in cancer cells.


Assuntos
Meios de Cultura/metabolismo , Cinurenina/metabolismo , Neoplasias/metabolismo , Triptofano/metabolismo , Técnicas Biossensoriais , Boro/química , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Diamante/química , Técnicas Eletroquímicas , Eletrodos , Humanos , Cinurenina/análise , Neoplasias/química , Triptofano/análise
19.
J Pharm Biomed Anal ; 180: 113018, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31851908

RESUMO

Altered serotonergic neurotransmission is a key factor in several neurologic and psychiatric disorders such as migraine. Human and animal studies suggest that chronically low interictal serotonin levels of plasma and brain may facilitate increased activity of the trigeminovascular pathway, and may contribute to development of repeated migraine attacks. However, brain serotonin synthesis is affected by the concentration of tryptophan, its metabolites and a number of amino acids. In this work a simple and robust LC-MS/MS method for the quantitative determination of valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, serotonin and kynurenine in human plasma has been developed and validated. Sample preparation was achieved by protein precipitation, using trifluoroacetic acid. Chromatographic separation was carried out on a Supelco Ascentis® Express C18 column (3.0 mm i.d. × 150 mm, 2.7 µm) equipped with an Agilent Zorbax Eclipse XDB C8 guard-column under isocratic conditions at a flow rate of 0.4 mL/min, over a 6.5 min run time. Mobile phase was 0.2% trifluoroacetic acid - acetonitrile (85:15, v/v). The eight analytes and two internal standards were ionized by positive electrospray ionization and detected in multiple reaction monitoring mode. A "fit-for-purpose" validation approach was adopted using surrogate matrix for the preparation of calibration samples. The calibration curves of all analytes showed excellent linearities with a correlation coefficient (r2) of 0.998 or better. Spiked surrogate matrix samples and pooled human plasma were used as quality control samples. Intra-day and inter-day precisions were less than 11.8% and 14.3%, and accuracies were within the ranges of 87.4-114.3% and 87.7-113.3%, respectively. Stability of the components in standard solutions, surrogate matrix, pooled plasma and processed samples were found to be acceptable under all relevant conditions. No significant carryover effect was observed. The surrogate matrix behaved parallel to human plasma when assessed by standard addition method and diluting the authentic matrix with surrogate matrix. The method was successfully applied for analysis of 800 human plasma samples to support a clinical study.


Assuntos
Aminoácidos/sangue , Serotonina/sangue , Espectrometria de Massas em Tandem/métodos , Aminoácidos/metabolismo , Técnicas Biossensoriais , Calibragem , Cromatografia Líquida de Alta Pressão , Humanos , Cinurenina/análise , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solventes/química , Espectrometria de Massas por Ionização por Electrospray , Triptofano/metabolismo
20.
Methods Enzymol ; 629: 235-256, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31727243

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first and rate-limiting reaction of l-tryptophan (Trp) conversion into l-kynurenine (Kyn). The depletion of Trp, and the accumulation of Kyn have been proposed as mechanisms that contribute to the suppression of the immune response-primarily evidenced by in vitro study. IDO1 is therefore considered to be an immunosuppressive modulator and quantification of IDO1 metabolism may be critical to understanding its role in select immunopathologies, including autoimmune- and oncological-conditions, as well as for determining the potency of IDO1 enzyme inhibitors. Because tryptophan 2,3-dioxygenase (TDO), and to a significantly lesser extent, IDO2, also catabolize Trp into Kyn, it's important to differentiate the contribution of each enzyme to Trp catabolism and Kyn generation. Moreover, a great variety of detection methods have been developed for the quantification of Trp metabolites, but choosing the suitable protocol remains challenging. Here, we review the differential expression of IDO1/TDO/IDO2 in normal and malignant tissues, followed by a comprehensive analysis of methodologies for quantifying Trp and Kyn in vitro and in vivo, with an emphasis on the advantages/disadvantages for each application.


Assuntos
Ensaios Enzimáticos/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Neoplasias/patologia , Animais , Ensaios Enzimáticos/instrumentação , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Camundongos , Triptofano/análise , Triptofano/metabolismo , Triptofano Oxigenase/análise , Triptofano Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA