Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 81: 144-156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043641

RESUMO

Kynurenine pathway has a potential to convert L-tryptophan into multiple medicinal molecules. This study aims to explore the biosynthetic potential of kynurenine pathway for the efficient production of actinocin, an antitumor precursor selected as a proof-of-concept target molecule. Kynurenine pathway is first constructed in Escherichia coli by testing various combinations of biosynthetic genes from four different organisms. Metabolic engineering strategies are next performed to improve the production by inhibiting a competing pathway, and enhancing intracellular supply of a cofactor S-adenosyl-L-methionine, and ultimately to produce actinocin from glucose. Metabolome analysis further suggests additional gene overexpression targets, which finally leads to the actinocin titer of 719 mg/L. E. coli strain engineered to produce actinocin is further successfully utilized to produce 350 mg/L of kynurenic acid, a neuroprotectant, and 1401 mg/L of 3-hydroxyanthranilic acid, an antioxidant, also from glucose. These competitive production titers demonstrate the biosynthetic potential of kynurenine pathway as a source of multiple medicinal molecules. The approach undertaken in this study can be useful for the sustainable production of molecules derived from kynurenine pathway, which are otherwise chemically synthesized.


Assuntos
Escherichia coli , Cinurenina , Oxazinas , Cinurenina/genética , Cinurenina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Triptofano/genética , Triptofano/metabolismo , Glucose/genética , Glucose/metabolismo , Engenharia Metabólica , Vias Biossintéticas
2.
Sci Adv ; 9(5): eadd6995, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724291

RESUMO

One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.


Assuntos
Carcinoma Ductal Pancreático , Cinurenina , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Cinurenina/genética , Cinurenina/metabolismo , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
3.
Front Biosci (Landmark Ed) ; 27(9): 265, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36224022

RESUMO

BACKGROUND: Earlier studies reported alterations of the kynurenine (KYN) pathway of tryptophan (TRP) metabolism in Parkinson's disease (PD). The first rate-limiting enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase were observed upregulated, resulting elevated KYN/TRP ratios in the serum and cerebrospinal fluid samples of patients with PD. More and more single nucleotide polymorphisms (SNPs) have been identified in a population of PD. However, little is known about the impact of genetic variations of the IDO on the pathogenesis of PD. METHODS: SNP analysis of IDO1 was performed by allelic discrimination assay with fluorescently labelled TaqMan probes and a subgroup analysis was conducted according to the age of PD onset. The frame shifts variant rs34155785, intronic variant rs7820268, and promotor region variant rs9657182 SNPs of 105 PD patients without comorbidity were analyzed and compared to 129 healthy controls. RESULTS: No significant correlation was found in three SNPs between PD patients and healthy controls. However, the subgroup analysis revealed that A alleles of rs7820268 SNP or rs9657182 SNP carriers contribute to later onset of PD than non-carriers. CONCLUSIONS: The study suggested that SNPs of IDO1 influenced the age onset of PD and genotyping of SNPs in certain alleles potentially serves as a risk biomarker of PD.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina , Doença de Parkinson , Biomarcadores , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/genética , Cinurenina/metabolismo , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Triptofano/genética , Triptofano/metabolismo
4.
Dis Markers ; 2022: 5447017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118672

RESUMO

Background: Tryptophan 2,3-dioxygenase (TDO) encoded by TDO2, a rate-limiting enzyme in the kynurenine pathway, catabolizes tryptophan to kynurenine, evades immune surveillance, and promotes tumor growth. Although accumulating evidence suggests a crucial role of TDO2 during tumor formation and development, systematic evaluation of TDO2 across human cancers has rarely been reported. Methods: To shed more light on the role of TDO2 in human cancer, we explored the expression profiles of TDO2 and identified its prognostic value in pancancer analysis through TCGA, CCLE, and GTEx databases. We further utilized TCGA data to evaluate the association between TDO2 and tumor immunological features, such as mismatch repair (MMR), tumor immune infiltration, immune checkpoint-related genes, tumor mutational burden (TMB), microsatellite instability (MSI), and DNA methyltransferase (DNMT). Results: TDO2 exhibited different expression levels in various cancer cell lines. Frequently, TDO2 was detected to be highly expressed in the majority of cancers. In addition, high TDO2 expression was correlated with an unfavorable prognosis for patients in KIRP, LGG, TGCT, and UVM. Moreover, high TDO2 expression level positively correlated with higher immune infiltration, especially dendritic cells. Additionally, there is a close relationship between TDO2 and immune checkpoint-related gene markers, such as LAIR1, CD276, NRP1, CD80, and CD86. Finally, correlation analysis has demonstrated a high-correlation between TDO2 and TMB, MSI, MMR, and DNMT of multiple cancer types. Conclusion: Therefore, our results suggest that TDO2 can function as a potential prognostic biomarker due to its role in tumor immunity regulation.


Assuntos
Neoplasias , Triptofano Oxigenase , Antígenos B7/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , DNA , Humanos , Imunoterapia , Cinurenina/genética , Cinurenina/metabolismo , Metiltransferases/genética , Instabilidade de Microssatélites , Neoplasias/genética , Neoplasias/terapia , Prognóstico , Triptofano/genética , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
5.
J Reprod Immunol ; 153: 103692, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970080

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are key enzymes for tryptophan degradation, regulating immune tolerance during pregnancy. The intrauterine renin-angiotensin system is also involved in the progression of a healthy pregnancy. Angiotensin(1-7) maintains the integrity of fetal membranes via counteracting the pro-inflammatory actions of Angiotensin II. No data are available on placental Angiotensin(1-7) co-expression with TDO. We aimed to characterize TDO mRNA expression and its localization in different areas of the placenta of physiological pregnancies delivered at term; its co-expression with Angiotensin(1-7) and its correlation with the plasma kynurenine/tryptophan (Kyn/Trp) ratio was investigated. This prospective observational study included a nonconsecutive series of 20 singleton uncomplicated pregnancies delivered vaginally. TDO mRNA was expressed in both maternal and fetal sides of the placentas and TDO protein also in the villi and it was co-expressed with IDO1 in almost half of the placental cells at these sites. The percentage of TDO+ and IDO1+ cells appeared to be influenced by maternal pre-gestational smoking and newborn weight. A strong correlation was found between the percentage of TDO+ and IDO1+ cells in the villi. TDO+ cells also expressed Angiotensin(1-7), with a higher percentage on the fetal side and in the villi compared to the maternal one. Kyn/Trp plasma ratio was not correlated with IDO and TDO expression nor with the patient's characteristics. Collectively, our data indicate that TDO is detectable in placental tissue and is co-expressed with IDO and with Angiotensin(1-7)+ on the fetal side and in the villi.


Assuntos
Angiotensina I , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase , Fragmentos de Peptídeos , Placenta , Triptofano Hidroxilase , Angiotensina I/genética , Angiotensina I/imunologia , Angiotensina II/imunologia , Feminino , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Recém-Nascido , Cinurenina/análise , Cinurenina/genética , Cinurenina/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Placenta/enzimologia , Placenta/imunologia , Gravidez , RNA Mensageiro , Triptofano/análise , Triptofano/genética , Triptofano/imunologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/imunologia , Triptofano Oxigenase/genética , Triptofano Oxigenase/imunologia
6.
PeerJ ; 10: e13612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757166

RESUMO

Background: Genome-wide association studies have identified the alpha-ketoglutarate dependent dioxygenase gene (FTO) as the first susceptibility gene of obesity. In the present study, we utilized targeted metabolomics in an attempt to further elucidate mechanisms underlying the action of the FTO gene. Methods: This study was part of a health survey of employees of the Electricity Generating Authority of Thailand (n = 79, 10 female and 69 male). Targeted metabolomics was performed by liquid chromatography-mass spectrometry using Biocrates AbsoluteIDQ-p180 kit. Genotyping of FTO rs9939609 was performed by real-time PCR (TaqMan™ MGB probes). Results: Using OPLS-DA variable importance in projection (VIP), tryptophan was found to be among the metabolites with the 10 highest VIP scores. Pearson's correlation analysis showed that kynurenine and tryptophan were positively correlated only in subjects with the rs9939609 A allele (n = 32, r = 0.56, p < 0.001) and the correlation coefficients were significantly higher in subjects having the A allele than in those without the A allele (p < 0.05). Moreover, the kynurenine/tryptophan ratio was significantly associated with the presence of the A allele, independently of body mass index and sex. Conclusions: The FTO gene is likely to influences the conversion of tryptophan to kynurenine.


Assuntos
Cinurenina , Estado Pré-Diabético , Humanos , Masculino , Feminino , Cinurenina/genética , Genótipo , Estado Pré-Diabético/genética , Triptofano/genética , Estudo de Associação Genômica Ampla , Metabolômica , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
7.
J Mol Neurosci ; 72(8): 1724-1737, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35676593

RESUMO

Parkinson's disease (PD) is an ageing disorder caused by dopaminergic neuron depletion with age. Growing research in the field of metabolomics is expected to play a major role in PD diagnosis, prognosis and therapeutic development. In this study, we looked at how SNCA and GBA1 gene mutations, as well as metabolomic abnormalities of kynurenine and cholesterol metabolites, were linked to alpha-synuclein (α-syn) and clinical characteristics in three different PD age groups. In all three age groups, a metabolomics analysis revealed an increased amount of 27-hydroxycholesterol (27-OHC) and a lower level of kynurenic acid (KYNA). The effect of 27-OHC on SNCA and GBA1 modifications was shown to be significant (P < 0.05) only in the A53T variant of the SNCA gene in late-onset and early-onset PD groups, whereas GBA1 variants were not. Based on the findings, we observed that the increase in 27-OHC would have elevated α-syn expression, which triggered the changes in the SNCA gene but not in the GBA1 gene. Missense variations in the SNCA and GBA1 genes were investigated using the sequencing technique. SNCA mutation A53T has been linked to increased PD symptoms, but there is no phenotypic link between GBA1 and PD. As a result of the data, we hypothesise that cholesterol and kynurenine metabolites play an important role in PD, with the metabolite 27-OHC potentially serving as a PD biomarker. These findings will aid in the investigation of pathogenic causes as well as the development of therapeutic and preventative measures for PD.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Índia , Cinurenina/genética , Cinurenina/metabolismo , Cinurenina/uso terapêutico , Mutação , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Transgenic Res ; 30(6): 781-797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529208

RESUMO

Tryptophan 2,3-dioxygenase (TDO2) was an initial rate-limiting enzyme of the kynurenine (Kyn) pathway in tryptophan (Trp) metabolism. We undertook this study to determine a comprehensive analysis of TDO2 expression in immune cells and assess the characterization of immune cell phenotype in TDO2 knockout mice. The expression of TDO2 in various tissues of DBA/1 mice was detected by quantitative real-time PCR (qPCR) and immunohistochemistry. Both flow cytometry and immunofluorescence were used to analyze the expression of TDO2 in immune cells. Furthermore, TDO2 knockout (KO) mice were generated by CRISPR/Cas9 technology to detect immune cell phenotype. TDO2 protein level in liver was tested by western blot. High-performance liquid chromatography was used to detect the level of Trp and Kyn. Flow cytometry was used to test the proportions of splenic lymphocyte subsets in wild-type (WT) and TDO2 KO mice. We found that TDO2 was expressed in various tissues and immune cells, and TDO2 staining was mainly observed in the cytoplasm of cells. There was no difference in the development of immune cells between TDO2 KO mice and WT mice, including T cells, B cells, memory B cells, plasma cells, dendritic cells, and natural killer cells. Interestingly, the reduced M1/M2 ratio was observed in the peritoneal macrophages of TDO2 KO mice. Taken together, these findings enriched the known expression profile of TDO2, especially its expression in immune cells. Our study suggested that TDO2-mediated Trp-Kyn metabolism pathway might be involved in the immune response.


Assuntos
Cinurenina , Triptofano Oxigenase , Animais , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/genética , Cinurenina/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Fenótipo , Triptofano/genética , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo
9.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576041

RESUMO

The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.


Assuntos
Imunidade Adaptativa/genética , Doenças Autoimunes/imunologia , Doenças do Sistema Endócrino/imunologia , Imunidade Inata/imunologia , Cinurenina/genética , Doenças Autoimunes/genética , Doenças do Sistema Endócrino/genética , Humanos , Cinurenina/imunologia , Cinurenina/metabolismo , Transdução de Sinais/imunologia
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074779

RESUMO

Some methane-oxidizing bacteria use the ribosomally synthesized, posttranslationally modified natural product methanobactin (Mbn) to acquire copper for their primary metabolic enzyme, particulate methane monooxygenase. The operons encoding the machinery to biosynthesize and transport Mbns typically include genes for two proteins, MbnH and MbnP, which are also found as a pair in other genomic contexts related to copper homeostasis. While the MbnH protein, a member of the bacterial diheme cytochrome c peroxidase (bCcP)/MauG superfamily, has been characterized, the structure and function of MbnP, the relationship between the two proteins, and their role in copper homeostasis remain unclear. Biochemical characterization of MbnP from the methanotroph Methylosinus trichosporium OB3b now reveals that MbnP binds a single copper ion, present in the +1 oxidation state, with high affinity. Copper binding to MbnP in vivo is dependent on oxidation of the first tryptophan in a conserved WxW motif to a kynurenine, a transformation that occurs through an interaction of MbnH with MbnP. The 2.04-Å-resolution crystal structure of MbnP reveals a unique fold and an unusual copper-binding site involving a histidine, a methionine, a solvent ligand, and the kynurenine. Although the kynurenine residue may not serve as a CuI primary-sphere ligand, being positioned ∼2.9 Å away from the CuI ion, its presence is required for copper binding. Genomic neighborhood analysis indicates that MbnP proteins, and by extension kynurenine-containing copper sites, are widespread and may play diverse roles in microbial copper homeostasis.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Cinurenina/química , Metaloproteínas/química , Methylosinus trichosporium/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Cinurenina/biossíntese , Cinurenina/genética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Domínios Proteicos
11.
Cancer Sci ; 112(4): 1481-1494, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33523522

RESUMO

In this study, a new mathematical model was established and validated to forecast and define sensitive targets in the kynurenine pathway (Kynp) in pancreatic adenocarcinoma (PDAC). Using the Panc-1 cell line, genetic profiles of Kynp molecules were tested. qPCR data were implemented in the algorithm programming (fmincon and lsqnonlin function) to estimate 35 parameters of Kynp variables by Matlab 2017b. All tested parameters were defined as non-negative and bounded. Then, based on experimental data, the function of the fmincon equation was employed to estimate the approximate range of each parameter. These calculations were confirmed by qPCR and Western blot. The correlation coefficient (R) between model simulation and experimental data (72 hours, in intervals of 6 hours) of every variable was >0.988. The analysis of reliability and predictive accuracy depending on qPCR and Western blot data showed high predictive accuracy of the model; R was >0.988. Using the model calculations, kynurenine (x3, a6), GPR35 (x4, a8), NF-kßp105 (x7, a16), and NF-kßp65 (x8, a18) were recognized as sensitive targets in the Kynp. These predicted targets were confirmed by testing gene and protein expression responses. Therefore, this study provides new interdisciplinary evidence for Kynp-sensitive targets in the treatment of PDAC.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Cinurenina/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais/genética , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes , Neoplasias Pancreáticas
12.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970636

RESUMO

Hidradenitis suppurativa (HS) is a chronic skin disorder of unknown etiology that manifests as recurrent, painful lesions. Cutaneous dysbiosis and unresolved inflammation are hallmarks of active HS, but their origin and interplay remain unclear. Our metabolomic profiling of HS skin revealed an abnormal induction of the kynurenine pathway of tryptophan catabolism in dermal fibroblasts, correlating with the release of kynurenine pathway-inducing cytokines by inflammatory cell infiltrates. Notably, overactivation of the kynurenine pathway in lesional skin was associated with local and systemic depletion in tryptophan. Yet the skin microbiota normally degrades host tryptophan into indoles regulating tissue inflammation via engagement of the aryl hydrocarbon receptor (AHR). In HS skin lesions, we detected contextual defects in AHR activation coinciding with impaired production of bacteria-derived AHR agonists and decreased incidence of AHR ligand-producing bacteria in the resident flora. Dysregulation of tryptophan catabolism at the skin-microbiota interface thus provides a mechanism linking the immunological and microbiological features of HS lesions. In addition to revealing metabolic alterations in patients with HS, our study suggests that correcting AHR signaling would help restore immune homeostasis in HS skin.


Assuntos
Hidradenite Supurativa/genética , Inflamação/genética , Receptores de Hidrocarboneto Arílico/genética , Pele/metabolismo , Triptofano/metabolismo , Adulto , Axila/microbiologia , Axila/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Hidradenite Supurativa/microbiologia , Hidradenite Supurativa/patologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Inflamação/microbiologia , Inflamação/patologia , Cinurenina/genética , Masculino , Metabolismo/genética , Pessoa de Meia-Idade , Pele/microbiologia , Pele/patologia
14.
Br J Cancer ; 123(1): 137-147, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32390008

RESUMO

BACKGROUND: Indoleamine 2,3-dioxygenase (IDO), the first step in the kynurenine pathway (KP), is upregulated in some cancers and represents an attractive therapeutic target given its role in tumour immune evasion. However, the recent failure of an IDO inhibitor in a late phase trial raises questions about this strategy. METHODS: Matched renal cell carcinoma (RCC) and normal kidney tissues were subject to proteomic profiling. Tissue immunohistochemistry and gene expression data were used to validate findings. Phenotypic effects of loss/gain of expression were examined in vitro. RESULTS: Quinolate phosphoribosyltransferase (QPRT), the final and rate-limiting enzyme in the KP, was identified as being downregulated in RCC. Loss of QPRT expression led to increased potential for anchorage-independent growth. Gene expression, mass spectrometry (clear cell and chromophobe RCC) and tissue immunohistochemistry (clear cell, papillary and chromophobe), confirmed loss or decreased expression of QPRT and showed downregulation of other KP enzymes, including kynurenine 3-monoxygenase (KMO) and 3-hydroxyanthranilate-3,4-dioxygenase (HAAO), with a concomitant maintenance or upregulation of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in the NAD+ salvage pathway. CONCLUSIONS: Widespread dysregulation of the KP is common in RCC and is likely to contribute to tumour immune evasion, carrying implications for effective therapeutic targeting of this critical pathway.


Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/genética , Carcinoma de Células Renais/genética , Citocinas/genética , Quinurenina 3-Mono-Oxigenase/genética , Cinurenina/genética , Nicotinamida Fosforribosiltransferase/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Cinurenina/metabolismo , Redes e Vias Metabólicas/genética , Proteômica , Evasão Tumoral/genética , Evasão Tumoral/imunologia
15.
Signal Transduct Target Ther ; 5(1): 10, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32296044

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and tryptophan 2,3-dioxygenase (TDO) initiate the first step of the kynurenine pathway (KP), leading to the transformation of L-tryptophan (Trp) into L-kynurenine (Kyn) and other downstream metabolites. Kyn is known as an endogenous ligand of the aryl hydrocarbon receptor (AhR). Activation of AhR through TDO-derived Kyn is a novel mechanism to support tumor growth in gliomas. However, the role of IDO1 and IDO2 in this mechanism is still unknown. Herein, by using clinical samples, we found that the expression and activity of IDO1 and/or TDO (IDO1/TDO) rather than IDO2 were positively correlated with the pathologic grades of gliomas. The expression of IDO1/TDO rather than IDO2 was positively correlated with the Ki67 index and overall survival. The expression of IDO1/TDO was positively correlated with the expression of aquaporin 4 (AQP4), implying the potential involvement of IDO1/TDO in glioma cell motility. Mechanistically, we found that IDO1/TDO accounted for the release of Kyn, which activated AhR to promote cell motility via the Kyn-AhR-AQP4 signaling pathway in U87MG glioma cells. RY103, an IDO1/TDO dual inhibitor, could block the IDO1/TDO-Kyn-AhR-AQP4 signaling pathway and exert anti-glioma effects in GL261 orthotopic glioma mice. Together, our results showed that the IDO1/TDO-Kyn-AhR-AQP4 signaling pathway is a new mechanism underlying the malignancy of gliomas, and suggest that both IDO1 and TDO might be valuable therapeutic targets for gliomas.


Assuntos
Aquaporina 4/genética , Carcinogênese/genética , Glioma/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Triptofano Oxigenase/genética , Animais , Feminino , Glioma/patologia , Humanos , Antígeno Ki-67/genética , Cinurenina/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/genética
16.
Am J Physiol Cell Physiol ; 318(5): C818-C830, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208989

RESUMO

Tryptophan catabolism through the kynurenine pathway generates a variety of bioactive metabolites. Physical exercise can modulate kynurenine pathway metabolism in skeletal muscle and thus change the concentrations of select compounds in peripheral tissues and in the central nervous system. Here we review recent advances in our understanding of how exercise alters tryptophan-kynurenine metabolism in muscle and its subsequent local and distal effects. We propose that the effects of kynurenine pathway metabolites on skeletal muscle, adipose tissue, immune system, and the brain suggest that some of these compounds could qualify as exercise-induced myokines. Indeed, some of the more recently discovered biological activities for kynurenines include many of the best-known benefits of exercise: improved energy homeostasis, promotion of an anti-inflammatory environment, and neuroprotection. Finally, by considering the tissue expression of the different membrane and cytosolic receptors for kynurenines, we discuss known and potential biological activities for these tryptophan metabolites.


Assuntos
Sistema Nervoso Central/metabolismo , Cinurenina/metabolismo , Redes e Vias Metabólicas/fisiologia , Músculo Esquelético/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Sistema Nervoso Central/fisiologia , Exercício Físico/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiologia , Cinurenina/genética , Metabolismo/fisiologia , Músculo Esquelético/fisiologia , PPAR gama/genética , Triptofano/metabolismo
17.
Brain Behav ; 10(4): e01566, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101387

RESUMO

OBJECTIVES: A growing body of data indicates that the kynurenine pathway may play a role in the pathogenesis of postpartum depressive symptoms (PDS). Kynurenic aminotransferase (KAT) is an important kynurenine pathway enzyme, catalyzing kynurenine (KYN) into kynurenic acid (KYNA). This study investigated as to whether genetic variations in KAT are associated with PDS. METHODS: A cohort of 360 Chinese women scheduled to undergo cesarean delivery was enrolled into this study. PDS was determined by an Edinburgh Postnatal Depression Scale (EPDS) score ≥ 13. A total of eight KAT single nucleotide polymorphisms (SNPs) were genotyped and their association with PDS investigated. Serum concentrations of KYN, KYNA, and quinolinic acid (QUIN) in women with or without PDS were also measured. This allowed the determination of the KYNA/KYN ratio, which is reflective of KAT activity. RESULTS: Postpartum depressive symptoms incidence was 7.2%. Advanced maternal age, lower education, antenatal depression, and postpartum blues were risk factors for PDS (p < .05). Women with PDS, versus non-PDS, had heightened KYN levels one day prior to surgery (ante-d1) (p < .05), as well as having significantly lower KYNA and higher QUIN levels at postnatal day three (post-d3) (p < .05). Women with, versus without, PDS also had a significantly higher QUIN/KYNA ratio at post-d3 (p < .05). KAT activity was significantly lower in women with, versus without, PDS at ante-d3 (p < .05). No significant association was evident between the KAT SNPs and PDS. CONCLUSION: Our data support a role for alterations in the kynurenine pathway in the pathogenesis of PDS, although no significant association was found for the eight tested KAT SNPs with PDS.


Assuntos
Alelos , Depressão Pós-Parto/metabolismo , Cinurenina/metabolismo , Polimorfismo de Nucleotídeo Único , Transaminases/genética , Adulto , Cesárea/efeitos adversos , Depressão Pós-Parto/etiologia , Depressão Pós-Parto/genética , Feminino , Genótipo , Humanos , Ácido Cinurênico/metabolismo , Cinurenina/genética , Gravidez , Ácido Quinolínico/metabolismo , Transaminases/metabolismo
18.
Exp Gerontol ; 130: 110800, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31790802

RESUMO

Kynurenine, a metabolite of tryptophan breakdown, has been shown to increase with age, and plays a vital role in a number of age-related pathophysiological changes, including bone loss. Accumulation of kynurenine in bone marrow stromal cells (BMSCs) has been associated with a decrease in cell proliferation and differentiation, though the exact mechanism by which kynurenine mediates these changes is poorly understood. MiRNAs have been shown to regulate BMSC function, and accumulation of kynurenine may alter the miRNA expression profile of BMSCs. The aim of this study was to identify differentially expressed miRNAs in human BMSCs in response to treatment with kynurenine, and correlate miRNAs function in BMSCs biology through bioinformatics analysis. Human BMSCs were cultured and treated with and without kynurenine, and subsequent miRNA isolation was performed. MiRNA array was performed to identify differentially expressed miRNA. Microarray analysis identified 50 up-regulated, and 36 down-regulated miRNAs in kynurenine-treated BMSC cultures. Differentially expressed miRNA included miR-1281, miR-330-3p, let-7f-5p, and miR-493-5p, which are important for BMSC proliferation and differentiation. KEGG analysis found up-regulated miRNA targeting glutathione metabolism, a pathway critical for removing oxidative species. Our data support that the kynurenine dependent degenerative effect is partially due to changes in the miRNA profile of BMSCs.


Assuntos
Células da Medula Óssea/metabolismo , Cinurenina/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Células Estromais/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação para Baixo , Perfilação da Expressão Gênica , Humanos , Cinurenina/genética , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese , Transdução de Sinais/genética , Regulação para Cima
19.
Sci Rep ; 9(1): 13182, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515500

RESUMO

Deleterious mutations in patchd1 domain containing 1 (PTCHD1) gene have been identified in patients with intellectual disability and/or autism spectrum disorder (ASD). To clarify the causal relationship between Ptchd1 deficiency and behavioral defects relevant to neurodevelopmental disorders, we generated global Ptchd1 knockout (KO) mice. Ptchd1 KO mice displayed hyperlocomotion, increased impulsivity, and lower recognition memory, which resemble attention-deficit hyperactivity disorder (ADHD)-like behaviors. Acute or chronic treatment with atomoxetine ameliorated almost all behavioral deficits in Pthcd1 KO mice. We next determined possible involvement of the kynurenine pathway (KP) metabolites in neurodevelopmental disorders in Ptchd1 KO mice and assessed the potential of KP metabolites as biomarkers for ADHD and/or ASD. Ptchd1 KO mice showed drastic changes in KP metabolite concentrations in the serum and the brain, indicating that the activated KP is associated with ADHD-like behaviors. Our findings indicate that Ptchd1 KO mice can be used as an animal model of human ADHD and/or ASD, and KP metabolites are potential diagnostic biomarkers for neurodevelopmental disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Cinurenina/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Cinurenina/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout
20.
Theranostics ; 9(20): 5976-6001, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534532

RESUMO

Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Cisplatino/toxicidade , Galectina 3/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Receptor 2 Toll-Like/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Citometria de Fluxo , Galectina 3/genética , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/genética , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA