RESUMO
Liver fibrosis is a compensatory response to the tissue repair process. The activation and proliferation of hepatic stellate cells (HSCs) are thought to be related to the occurrence of hepatic fibrosis. Therefore, inhibiting the activation and proliferation of HSCs is a key step in alleviating liver fibrosis. As a non-specific inhibitor of transient receptor potential melastatin 7 (TRPM7), carvacrol has anti-tumor, anti-inflammatory and anti-hepatic fibrosis activities. This study aimed to explore the protective effect of carvacrol on liver fibrosis and related molecular mechanisms. A CCl4-induced liver fibrosis mouse model and platelet-derived growth factor (PDGF-BB)-activated HSC-T6 cells (a rat hepatic stellate cell line) were employed for in vivo and in vitro experiments. C57BL/6J mice were orally administered different concentrations of carvacrol every day for 6 weeks during the development of CCl4-induced liver fibrosis. The results show that carvacrol could effectively reduce liver damage and the progression of liver fibrosis in mice, which are expressed as fibrotic markers levels were reduced and histopathological characteristics were improved. Moreover, carvacrol inhibited the proliferation and activation of HSC-T6 cells induced by PDGF-BB. In addition, it was found that carvacrol inhibits the expression of TRPM7 and mediated through mitogen-activated protein kinases (MAPK). Collectively, our study shows that carvacrol can reduce liver fibrosis by inhibiting the activation and proliferation of hepatic stellate cells, and the MAPK signaling pathway might be involved in this process.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cimenos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Becaplermina/farmacologia , Tetracloreto de Carbono , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Ratos , Transdução de Sinais , Canais de Cátion TRPM/metabolismoRESUMO
Nonalcoholic steatohepatitis (NASH) could progress to hepatic fibrosis in the absence of effective control. The purpose of our experiment was to investigate the protective effect of drinking water with a high concentration of hydrogen, namely, hydrogen-rich water (HRW), on mice with nonalcoholic fatty liver disease to elucidate the mechanism underlying the therapeutic action of molecular hydrogen. The choline-supplemented, l-amino acid-defined (CSAA) or the choline-deficient, l-amino acid-defined (CDAA) diet for 20 wk was used to induce NASH and fibrosis in the mice model and simultaneously treated with the high-concentration 7-ppm HRW for different periods (4 wk, 8 wk, and 20 wk). Primary hepatocytes were stimulated by palmitate to mimic liver lipid metabolism during fatty liver formation. Primary hepatocytes were cultured in a closed vessel filled with 21% O2 + 5% CO2 + 3.8% H2 and N2 as the base gas to verify the response of primary hepatocytes in a high concentration of hydrogen gas in vitro. Mice in the CSAA + HRW group had lower serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and milder histological damage. The inflammatory cytokines were expressed at lower levels in the HRW group than in the CSAA group. Importantly, HRW reversed hepatocyte fatty acid oxidation and lipogenesis as well as hepatic inflammation and fibrosis in preexisting hepatic fibrosis specimens. Molecular hydrogen inhibits the lipopolysaccharide-induced production of inflammation cytokines through increasing heme oxygenase-1 (HO-1) expression. Furthermore, HRW improved hepatic steatosis in the CSAA + HRW group. Sirtuin 1 (Sirt1) induction by molecular hydrogen via the HO-1/adenosine monophosphate activated protein kinase (AMPK)/peroxisome proliferator-activated receptor α (PPARα)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway suppresses palmitate-mediated abnormal fat metabolism. Orally administered HRW suppressed steatosis induced by CSAA and attenuated fibrosis induced by CDAA, possibly by reducing oxidative stress and the inflammation response.NEW & NOTEWORTHY The mRNA expression of inflammatory cytokines in the HRW group was lower than in the CSAA group. HRW reversed hepatocyte apoptosis as well as hepatic inflammation and fibrosis in NASH specimens. Molecular hydrogen inhibits LPS-induced inflammation via an HO-1/interleukin 10 (IL-10)-independent pathway. HRW improved hepatic steatosis in the CSAA + HRW group. Sirt1 induction by molecular hydrogen via the HO-1/AMPK/PPARα/PPARγ pathway suppresses palmitate-mediated abnormal fat metabolism.
Assuntos
Heme Oxigenase-1/metabolismo , Hepatócitos/efeitos dos fármacos , Hidrogênio/farmacologia , Interleucina-10/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Sirtuína 1/metabolismo , Água/farmacologia , Animais , Hepatócitos/enzimologia , Hepatócitos/patologia , Hidrogênio/química , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Lipólise/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Células RAW 264.7 , Transdução de SinaisRESUMO
Polycystic liver disease (PLD) is a hereditary liver disease in which the number of cysts increases over time, causing various abdominal symptoms and poor quality of life. Although effective treatment for PLD has not been established, we recently reported that long-term exercise ameliorated liver cyst formation and fibrosis with the activation of AMP-activated protein kinase (AMPK) in polycystic kidney (PCK) rats, a PLD model. Therefore, the aim of this study was to investigate whether metformin, an indirect AMPK activator, was effective in PCK rats. PCK rats were randomly divided into a control (Con) group and a metformin-treated (Met) group. The Met group was treated orally with metformin in drinking water. After 12 wk, liver function, histology, and signaling cascades of PLD were examined in the groups. Metformin did not affect the body weight or liver weight, but it reduced liver cyst formation, cholangiocyte proliferation, and fibrosis around the cyst. Metformin increased the phosphorylation of AMPK and tuberous sclerosis complex 2 and decreased the phosphorylation of mammalian target of rapamycin, S6, and extracellular signal-regulated kinase and the expression of cystic fibrosis transmembrane conductance regulator, aquaporin I, transforming growth factor-ß, and type 1 collagen without changes in apoptosis or collagen degradation factors in the liver. Metformin slows the development of cyst formation and fibrosis with the activation of AMPK and inhibition of signaling cascades responsible for cellular proliferation and fibrosis in the liver of PCK rats.NEW & NOTEWORTHY This study indicates that metformin, an indirect AMPK activator slows liver cyst formation and fibrosis in PLD rat model. Metformin attenuates excessive cell proliferation in the liver with the inactivation of mTOR and ERK pathways. Metformin also reduces the expression of proteins responsible for cystic fluid secretion and liver fibrosis. Metformin and AMPK activators may be potent drugs for polycystic liver disease.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células/efeitos dos fármacos , Cistos/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Cirrose Hepática Experimental/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Metformina/farmacologia , Animais , Cistos/enzimologia , Cistos/patologia , Progressão da Doença , Ativação Enzimática , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Hepatopatias/enzimologia , Hepatopatias/patologia , Masculino , Fosforilação , Ratos , Transdução de Sinais , Fatores de TempoRESUMO
Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Matriz Extracelular/enzimologia , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Sirtuína 1/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Progressão da Doença , Matriz Extracelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de SinaisRESUMO
Hepatic stellate cell (HSC) activation plays an important role in the pathogenesis of liver fibrosis, and epithelial-mesenchymal transition (EMT) is suggested to potentially promote HSC activation. Superoxide dismutase 3 (SOD3) is an extracellular antioxidant defense against oxidative damage. Here, we found downregulation of SOD3 in a mouse model of liver fibrosis induced by carbon tetrachloride (CCl4 ). SOD3 deficiency induced spontaneous liver injury and fibrosis with increased collagen deposition, and further aggravated CCl4 -induced liver injury in mice. Depletion of SOD3 enhanced HSC activation marked by increased α-smooth muscle actin and subsequent collagen synthesis primarily collagen type I in vivo, and promoted transforming growth factor-ß1 (TGF-ß1)-induced HSC activation in vitro. SOD3 deficiency accelerated EMT process in the liver and TGF-ß1-induced EMT of AML12 hepatocytes, as evidenced by loss of E-cadherin and gain of N-cadherin and vimentin. Notably, SOD3 expression and its pro-fibrogenic effect were positively associated with sirtuin 1 (SIRT1) expression. SOD3 deficiency inhibited adenosine monophosphate-activated protein kinase (AMPK) signaling to downregulate SIRT1 expression and thus involving in liver fibrosis. Enforced expression of SIRT1 inhibited SOD3 deficiency-induced HSC activation and EMT, whereas depletion of SIRT1 counteracted the inhibitory effect of SOD3 in vitro. These findings demonstrate that SOD3 deficiency contributes to liver fibrogenesis by promoting HSC activation and EMT process, and suggest a possibility that SOD3 may function through modulating SIRT1 via the AMPK pathway in liver fibrosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Colágeno Tipo I/metabolismo , Transição Epitelial-Mesenquimal , Células Estreladas do Fígado/enzimologia , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Superóxido Dismutase/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Tetracloreto de Carbono , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Superóxido Dismutase/genéticaRESUMO
Physcion 8-O-ß-glucopyranoside (PSG), an anthraquinone extracted from Rumex japonicus Houtt, has various pharmacological effects, however, the effect of PSG on liver fibrosis and its related mechanism remain to be determined. We here showed that PSG ameliorated liver injury and liver fibrosis, decreased collagen deposition and inhibited inflammation in carbon tetrachloride (CCl4)-induced rats. Consistent with the in vivo results, PSG suppressed the transforming growth factor-ß1 (TGF-ß1)-induced cell viability, liver fibrosis and secretion of inflammatory factors in hepatic stellate cells (HSCs). Interestingly, PSG increased the enzyme activity and promoter activity of sirtuin 3 (SIRT3) in fibrotic liver and activated HSCs. In addition, PSG notably increased the mRNA and protein expression of SIRT3 both in vivo and in vitro. Depletion of SIRT3 either by using 3-TYP (SIRT3 selective inhibitor) or SIRT3 siRNA attenuated the anti-inflammatory effect of PSG in activated HSCs. Further study found that TGF-ß1 increased the nuclear expression of NF-κB p65, but showed no obvious effect on the total NF-κB p65 expression. Compared to the control adenovirus (Ad.mk), overexpression of SIRT3 by infecting adenovirus encoding SIRT3 (Ad.SIRT3) notably decreased the nuclear expression of NF-κB p65 in activated HSCs. Our results demonstrated that PSG attenuated inflammation by regulating SIRT3-mediated NF-κB P65 nuclear expression in liver fibrosis, providing novel molecular insights into the anti-fibrotic effect of PSG.
Assuntos
Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Emodina/análogos & derivados , Glucosídeos/farmacologia , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Sirtuínas/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Tetracloreto de Carbono , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Emodina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuínas/genéticaRESUMO
Kynurenine (Kyn) plays an important role as an immune check-point molecule and regulates various immune responses through its aryl hydrocarbon receptor (Ahr). Kyn is synthesized by indoleamine 2,3-dioxygenase (Ido) and tryptophan 2,3-dioxygenase (Tdo). Ido contributes approximately 90% of tryptophan catabolism. Although Kyn is increased in various liver disorders, the roles of Kyn in liver injury are complicated because Ido1, Ido2, and Tdo are activated in different cell types. In this study, the roles of Ido2 in carbon tetrachloride (CCl4; 1 ml/kg, i.p.)-induced acute liver injury were examined using Ido2 knockout mice and Ido2 inhibitor. After CCl4 treatment, the ratio of Kyn to tryptophan and levels of Kyn in the liver were increased, accompanied by activation of Ahr-mediated signaling, as revealed by increased nuclear Ahr and Cyp1a1 mRNA. Knockout of Ido2 (Ido2-/-) and treatment with Ido2 inhibitor 1-methyl-D-tryptophan (D-1MT; 100 mg/kg, i.p.) attenuated CCl4-induced liver injury, with decreased induction of Ahr-mediated signaling. Administration of D-Kyn (100 mg/kg, i.p.) to Ido2-/- mice canceled the effect of Ido2 deficiency and exacerbated acute liver damage by CCl4 treatment. In addition, liver fibrosis induced by repeated CCl4 administration was suppressed in Ido2-/- mice. In conclusion, the action of Ido2 and Kyn in the liver may prevent severe hepatocellular damage and liver fibrosis.
Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de SinaisRESUMO
Angiotensin II (Ang II) has been reported to aggravate hepatic fibrosis by inducing NADPH oxidase (NOX)-dependent oxidative stress. Alamandine (ALA) protects against fibrosis by counteracting Ang II via the MAS-related G-protein coupled (MrgD) receptor, though the effects of alamandine on hepatic fibrosis remain unknown. Autophagy activated by reactive oxygen species (ROS) is a novel mechanism of hepatic fibrosis. However, whether autophagy is involved in the regulation of Ang II-induced hepatic fibrosis still requires investigation. We explored the effect of alamandine on hepatic fibrosis via regulation of autophagy by redox balance modulation. In vivo, alamandine reduced CCl4-induced hepatic fibrosis, hydrogen peroxide (H2O2) content, protein levels of NOX4 and autophagy impairment. In vitro, Ang II treatment elevated NOX4 protein expression and ROS production along with up-regulation of the angiotensin converting enzyme (ACE)/Ang II/Ang II type 1 receptor (AT1R) axis. These changes resulted in the accumulation of impaired autophagosomes in hepatic stellate cells (HSCs). Treatment with NOX4 inhibitor VAS2870, ROS scavenger N-acetylcysteine (NAC), and NOX4 small interfering RNA (siRNA) inhibited Ang II-induced autophagy and collagen synthesis. Alamandine shifted the balance of renin-angiotensin system (RAS) toward the angiotensin converting enzyme 2 (ACE2)/alamandine/MrgD axis, and inhibited both Ang II-induced ROS and autophagy activation, leading to attenuation of HSCs migration or collagen synthesis. In summary, alamandine attenuated liver fibrosis by regulating autophagy induced by NOX4-dependent ROS.
Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Oligopeptídeos/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Tetracloreto de Carbono , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/ultraestrutura , Fígado/enzimologia , Fígado/ultraestrutura , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de SinaisRESUMO
Recent studies suggest that Src family kinase (SFK) plays important roles in systemic sclerosis and pulmonary fibrosis. However, how SFKs contributed to the pathogenesis of liver fibrosis remains largely unknown. Here, we investigated the role of Fyn, a member of SFK, in hepatic stellate cell (HSC) activation and liver fibrosis, and evaluated the anti-fibrotic effects of Saracatinib, a clinically proven safe Fyn inhibitor. Fyn activation was examined in human normal and fibrotic liver tissues. The roles of Fyn in HSC activation and liver fibrosis were evaluated in HSC cell lines by using Fyn siRNA and in Fyn knockout mice. The effects of Saracatinib on HSC activation and liver fibrosis were determined in primary HSCs and CCl4 induced liver fibrosis model. We showed that the Fyn was activated in the liver of human fibrosis patients. TGF-ß induced the activation of Fyn in HSC cell lines. Knockdown of Fyn significantly blocked HSC activation, proliferation, and migration. Fyn deficient mice were resistant to CCl4 induced liver fibrosis. Saracatinib treatment abolished the activation of Fyn, downregulated the Fyn/FAK/N-WASP signaling in HSCs, and subsequently prevented the activation of HSCs. Saracatinib treatment significantly reduced the severity liver fibrosis induced by CCl4 in mice. In conclusions, our findings supported the critical role of Fyn in HSC activation and development of liver fibrosis. Fyn could serve as a promising drug target for liver fibrosis treatment. Fyn inhibitor Saracatinib significantly inhibited HSC activation and attenuated liver fibrosis in mouse model.
Assuntos
Benzodioxóis/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Tetracloreto de Carbono , Estudos de Casos e Controles , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Transdução de SinaisRESUMO
Gambogic acid (GA), a major ingredient of Garcinia hanburryi, is known to have diverse biological effects. The present study was designed to evaluate the anti-fibrotic effects of GA on hepatic fibrosis and reveal its underlying mechanism. We investigated the anti-fibrotic effect of GA on dimethylnitrosamine and bile duct ligation induced liver fibrosis in rats in vivo. The rat and human hepatic stellate cell lines (HSCs) lines were chose to evaluate the effect of GA in vitro. Our results indicated that GA could significantly ameliorate liver fibrosis associated with improving serum markers, decrease in extracellular matrix accumulation and HSCs activation in vivo. GA significantly inhibited the proliferation of HSC cells and induced the cell cycle arrest at the G1 phase. Moreover, GA triggered autophagy at early time point and subsequent initiates mitochondrial mediated apoptotic pathway resulting in HSC cell death. The mechanism of GA was related to inhibit heat shock protein 90 (HSP90) and degradation of the client proteins inducing PI3K/AKT and MAPK signaling pathways inhibition. This study demonstrated that GA effectively ameliorated liver fibrosis in vitro and in vivo, which provided new insights into the application of GA for liver fibrosis.
Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Xantonas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ducto Colédoco/cirurgia , Dimetilnitrosamina , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/ultraestrutura , Humanos , Ligadura , Fígado/enzimologia , Fígado/ultraestrutura , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
INTRODUCTION: Hepatopulmonary syndrome and portopulmonary hypertension are common complications of liver disorders. This study aimed to determine roles of ET-B receptors and endothelial-derived NO synthase in the regulation of pulmonary hemodynamic in cirrhotic rats. METHODS: Male Sprague-Dawley rats were divided into the Sham and common bile duct ligation (CBDL) groups. After 28 days, animals were anesthetized, and the right ventricle, femoral artery, and vein cannulated. Then, intravenous injection of BQ-788 (a selective ET-B receptor antagonist) and L-NAME (eNOS inhibitor) were performed sequentially. RESULTS: After the first injection of BQ-788, the right ventricular systolic pressure (RVSP) and mean arterial systemic pressure increased only in the Sham group. L-NAME increased RVSP in the Sham and CBDL groups, whereas mean arterial systemic pressure elevated only in the Sham group significantly. Reinjection of BQ-788 increased RVSP in the Sham group, whereas it decreased RVSP in the CBDL group. Both plasma NO metabolites and lung endothelin-1 increased in the CBDL group. CONCLUSION: ET-B receptors on the endothelial cells play roles in the regulation of pulmonary and systemic vascular tone in normal condition through the NO-mediated pathway, whereas ET-B receptors on the smooth muscle cells have a role in the pulmonary vascular tone in liver cirrhosis.
Assuntos
Hemodinâmica , Síndrome Hepatopulmonar/enzimologia , Cirrose Hepática Experimental/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/enzimologia , Circulação Pulmonar , Receptor de Endotelina B/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Células Endoteliais/enzimologia , Endotelina-1/metabolismo , Síndrome Hepatopulmonar/fisiopatologia , Cirrose Hepática Experimental/fisiopatologia , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais , Função Ventricular Direita/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacosRESUMO
OBJECTIVE: Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid. Here, we investigated the impact of MAGL on inflammation and fibrosis during chronic liver injury. DESIGN: C57BL/6J mice and mice with global invalidation of MAGL (MAGL -/- ), or myeloid-specific deletion of either MAGL (MAGLMye-/-), ATG5 (ATGMye-/-) or CB2 (CB2Mye-/-), were used. Fibrosis was induced by repeated carbon tetrachloride (CCl4) injections or bile duct ligation (BDL). Studies were performed on peritoneal or bone marrow-derived macrophages and Kupffer cells. RESULTS: MAGL -/- or MAGLMye-/- mice exposed to CCl4 or subjected to BDL were more resistant to inflammation and fibrosis than wild-type counterparts. Therapeutic intervention with MJN110, an MAGL inhibitor, reduced hepatic macrophage number and inflammatory gene expression and slowed down fibrosis progression. MAGL inhibitors also accelerated fibrosis regression and increased Ly-6Clow macrophage number. Antifibrogenic effects exclusively relied on MAGL inhibition in macrophages, since MJN110 treatment of MAGLMye-/- BDL mice did not further decrease liver fibrosis. Cultured macrophages exposed to MJN110 or from MAGLMye-/- mice displayed reduced cytokine secretion. These effects were independent of the cannabinoid receptor 2, as they were preserved in CB2Mye-/- mice. They relied on macrophage autophagy, since anti-inflammatory and antifibrogenic effects of MJN110 were lost in ATG5Mye-/- BDL mice, and were associated with increased autophagic flux and autophagosome biosynthesis in macrophages when MAGL was pharmacologically or genetically inhibited. CONCLUSION: MAGL is an immunometabolic target in the liver. MAGL inhibitors may show promising antifibrogenic effects during chronic liver injury.
Assuntos
Anti-Inflamatórios/uso terapêutico , Cirrose Hepática Experimental/tratamento farmacológico , Fígado/enzimologia , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Autofagia/efeitos dos fármacos , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Tetracloreto de Carbono , Contagem de Células , Células Cultivadas , Citocinas/metabolismo , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Hidrolases/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Monoacilglicerol Lipases/fisiologia , Receptor CB2 de Canabinoide/metabolismo , Succinimidas/farmacologia , Succinimidas/uso terapêuticoRESUMO
Essentials Fibrin clots are often implicated in the progression of liver fibrosis. Liver fibrosis was induced in transgenic mice with defects in clot formation or stabilization. Liver fibrosis and fibrin(ogen) deposition do not require fibrin polymerization or factor XIIIa. Fibrin(ogen) is an in vivo substrate of tissue transglutaminase in experimental liver fibrosis. SUMMARY: Background Intravascular fibrin clots and extravascular fibrin deposits are often implicated in the progression of liver fibrosis. However, evidence supporting a pathological role of fibrin in hepatic fibrosis is indirect and based largely on studies using anticoagulant drugs that inhibit activation of the coagulation protease thrombin, which has other downstream targets that promote fibrosis. Therefore, the goal of this study was to determine the precise role of fibrin deposits in experimental hepatic fibrosis. Methods Liver fibrosis was induced in mice expressing mutant fibrinogen insensitive to thrombin-mediated proteolysis (i.e. locked in the monomeric form), termed FibAEK mice, and factor XIII A2 subunit-deficient (FXIII-/- ) mice. Female wild-type mice, FXIII-/- mice and homozygous FibAEK mice were challenged with carbon tetrachloride (CCl4 ) twice weekly for 4 weeks or 6 weeks (1 mL kg-1 , intraperitoneal). Results Hepatic injury and fibrosis induced by CCl4 challenge were unaffected by FXIII deficiency or inhibition of thrombin-catalyzed fibrin polymer formation (in FibAEK mice). Surprisingly, hepatic deposition of crosslinked fibrin(ogen) was not reduced in CCl4 -challenged FXIII-/- mice or FibAEK mice as compared with wild-type mice. Rather, deposition of crosslinked hepatic fibrin(ogen) following CCl4 challenge was dramatically reduced in tissue transglutaminase-2 (TGM2)-deficient (TGM2-/- ) mice. However, the reduction in crosslinked fibrin(ogen) in TGM2-/- mice did not affect CCl4 -induced liver fibrosis. Conclusions These results indicate that neither traditional fibrin clots, formed by the thrombin-activated FXIII pathway nor atypical TGM2-crosslinked fibrin(ogen) contribute to experimental CCl4 -induced liver fibrosis. Collectively, the results indicate that liver fibrosis occurs independently of intrahepatic fibrin(ogen) deposition.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Fibrinogênio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Transglutaminases/metabolismo , Animais , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Fator XIII/genética , Fator XIII/metabolismo , Deficiência do Fator XIII/enzimologia , Deficiência do Fator XIII/genética , Fator XIIIa/genética , Feminino , Fibrinogênio/genética , Fígado/patologia , Cirrose Hepática Experimental/sangue , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Especificidade por SubstratoRESUMO
BACKGROUND: Previous research suggested that insulin-like growth factor binding protein related protein 1 (IGFBPrP1), as a novel mediator, contributes to hepatic fibrogenesis. Matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) play an essential role in hepatic fibrogenesis by regulating homeostasis and remodeling of the extracellular matrix (ECM). However, the interaction between IGFBPrP1 and MMP/TIMP is not clear. The present study was to knockdown IGFBPrP1 to investigate the correlation between IGFBPrP1 and MMP/TIMP in hepatic fibrosis. METHODS: Hepatic fibrosis was induced by thioacetamide (TAA) in mice. Knockdown of IGFBPrP1 expression by ultrasound-targeted microbubble destruction-mediated CMB-shRNA-IGFBPrP1 delivery, or inhibition of the Hedgehog (Hh) pathway by cyclopamine treatment, was performed in TAA-induced liver fibrosis mice. Hepatic fibrosis was determined by hematoxylin and eosin and Sirius red staining. Hepatic expression of IGFBPrP1, α-smooth muscle actin (α-SMA), transforming growth factor ß 1 (TGFß1), collagen I, MMPs/TIMPs, Sonic Hedgehog (Shh), and glioblastoma family transcription factors (Gli1) were investigated by immunohistochemical staining and Western blotting analysis. RESULTS: We found that hepatic expression of IGFBPrP1, TGFß1, α-SMA, and collagen I were increased longitudinally in mice with TAA-induced hepatic fibrosis, concomitant with MMP2/TIMP2 and MMP9/TIMP1 imbalance and Hh pathway activation. Knockdown of IGFBPrP1 expression, or inhibition of the Hh pathway, reduced the hepatic expression of IGFBPrP1, TGFß1, α-SMA, and collagen I and re-established MMP2/TIMP2 and MMP9/TIMP1 balance. CONCLUSIONS: Our findings suggest that IGFBPrP1 knockdown attenuates liver fibrosis by re-establishing MMP2/TIMP2 and MMP9/TIMP1 balance, concomitant with the inhibition of hepatic stellate cell activation, down-regulation of TGFß1 expression, and degradation of the ECM. Furthermore, the Hh pathway mediates IGFBPrP1 knockdown-induced attenuation of hepatic fibrosis through the regulation of MMPs/TIMPs balance.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Técnicas de Silenciamento de Genes , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Cirrose Hepática Experimental/prevenção & controle , Fígado/enzimologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Actinas/genética , Actinas/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/genética , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Transdução de Sinais , Tioacetamida , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
OBJECTIVES: To measure the expression of matrix metalloproteinase (MMP)-2, tissue inhibitor of matrix metalloproteinase inhibitor (TIMP)-2, and CD147 in mice with chronic liver injury induced by carbon tetrachloride after treatment with the traditional Chinese medicine (TCM) "Compound T11". METHOD: Sixty male ICR mice were divided randomly into 6 groups of 10: control (C), model (M), low-dose treatment (LT; 50 mg/mL of Compound T11), medium-dose treatment (MT, 100 mg/mL), high-dose treatment (HT, 150 mg/mL), and positive drug treatment (YT, 67.5 mg/mL). Each group was modeled for 7 weeks. Groups M, LT, MT, HT, and YT were injected (s.c.) with 20% carbon tetrachloride diluted with olive oil, and group C was given olive oil in the same way twice a week. After modeling, the treatment groups were administered Compound T11 at the concentrations shown above by oral gavage daily for 2 weeks, while group C was given 0.5% carboxymethyl cellulose sodium. After the final treatment, mice were killed and their liver tissues were excised. Immunohistochemical staining was performed to measure the protein expression of MMP-2, TIMP-2, and CD147, and western blotting was used to measure the protein expression of MMP-2, TIMP-2, CD147, and α-smooth muscle actin (SMA). MMP-2, TIMP-2, and CD147 mRNA expression was determined by quantitative fluorescence real-time PCR. RESULTS: Compound T11 increased the protein expression of MMP-2 and CD147 and decreased the protein expression of TIMP-2 and α-SMA. CONCLUSIONS: Treatment of chronic liver injury by TCM Compound T11 may be associated with changes to the expression of MMP-2 and CD147, and the inhibition of TIMP-2 expression.
Assuntos
Basigina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Basigina/genética , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Relação Dose-Resposta a Droga , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos Endogâmicos ICR , Fatores de Tempo , Inibidor Tecidual de Metaloproteinase-2/genéticaRESUMO
Hepatic stellate cells (HSCs) activation is considered as a pivotal event in liver fibrosis. In HSCs activation and fibrosis, epigenetic events are important. Although HSCs activation alters DNA methylation, it is unknown, whether it also affects other epigenetic processes, including LncRNA and its recognition. The aim of this study was to identify the mechanism of DNA methyltransferase 1 (DNMT1) expression and its role in regulating LncRNA H19 during HSCs activation and fibrosis. Expression of DNMT1 and LncRNA H19 were determined in activated HSCs and CCl4-induced rat liver fibrosis tissue. The relationship between the LncRNA H19 and DNMT1 expression was examined in vitro. LncRNA H19 expression was reduced in activated HSCs and rat liver fibrosis tissue, whereas DNMT1 expression and methylation of the LncRNA H19 promoter were increased. Treatment of HSCs of DNMT1-siRNA blocked cell proliferation. Knockdown of DNMT1 elevated H19 expression in activated HSCs, and over-expression of DNMT1 inhibited H19 expression in activated HSCs. Moreover, we investigated the effect of H19 on ERK signal pathway. Treatment HSCs with H19-siRNA increased the expression of p-ERK1/2 in HSCs. Treatment with 5'-aza-2'-deoxycytidine in activated HSCs model reduced fibrosis gene and DNMT1 expression, enhanced H19 expression, and attenuated HSCs activation. These data connect HSCs activation with a DNMT1-LncRNA H19 epigenetic pathway that is important for liver fibrosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Epigênese Genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Estreladas do Fígado/enzimologia , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , RNA Longo não Codificante/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Ativação Enzimática , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Masculino , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de TempoRESUMO
Propranolol is known to reduce portal pressure by decreasing blood flow to the splanchnic circulation and the liver. However, it is unknown if propranolol improves fibrogenesis and sinusoidal remodeling in the cirrhotic liver. The aim of this study was to investigate the therapeutic effects of propranolol on carbon tetrachloride (CCl4)-induced liver fibrosis in a mouse model and the intrinsic mechanisms underlying those effects. In this study, a hepatic cirrhosis mouse model was induced by CCl4 administration for 6â¯weeks. Propranolol was simultaneously administered orally in the experimental group. Liver tissue and blood samples were collected for histological and molecular analyses. LX-2 cells induced by platelet-derived growth factor-BB (PDGF-BB) were used to evaluate the anti-fibrogenic effect of propranolol in vitro. The results showed that treatment of mice with CCl4 induced hepatic fibrosis, as evidenced by inflammatory cell infiltration, collagen deposition and abnormal vascular formation in the liver tissue. All these changes were significantly attenuated by propranolol treatment. Furthermore, we also found that propranolol inhibited PDGF-BB-induced hepatic stellate cell migration, fibrogenesis, and PDGFR/Akt phosphorylation. Taken together, propranolol might prevent CCl4-induced liver injury and fibrosis at least partially through inhibiting the PDGF-BB-induced PDGFR/Akt pathway. The anti-fibrogenic effect of propranolol may support its status as a first-line treatment in patients with chronic liver disease.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Propranolol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina/metabolismo , Tetracloreto de Carbono , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/patologia , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais/efeitos dos fármacosRESUMO
Spleen tyrosine kinase (SYK) plays a critical role in immune cell signaling pathways and has been reported as a biomarker for human hepatocellular carcinoma (HCC). We sought to investigate the mechanism by which SYK promotes liver fibrosis and to evaluate SYK as a therapeutic target for liver fibrosis. We evaluated the cellular localization of SYK and the association between SYK expression and liver fibrogenesis in normal, hepatitis B virus (HBV)-infected, hepatitis C virus (HCV)-infected and non-alcoholic steatohepatitis (NASH) liver tissue (n=36, 127, 22 and 30, respectively). A polymerase chain reaction (PCR) array was used to detect the changes in transcription factor (TF) expression in hepatic stellate cells (HSCs) with SYK knockdown. The effects of SYK antagonism on liver fibrogenesis were studied in LX-2 cells, TWNT-4 cells, primary human HSCs, and three progressive fibrosis/cirrhosis animal models, including a CCL4 mouse model, and diethylnitrosamine (DEN) and bile duct ligation (BDL) rat models. We found that SYK protein in HSCs and hepatocytes correlated positively with liver fibrosis stage in human liver tissue. HBV or HCV infection significantly increased SYK and cytokine expression in hepatocytes. Increasing cytokine production further induced SYK expression and fibrosis-related gene transcription in HSCs. Up-regulated SYK in HSCs promoted HSC activation by increasing the expression of specific TFs related to activation of HSCs. SYK antagonism effectively suppressed liver fibrosis via inhibition of HSC activation, and decreased obstructive jaundice and reduced HCC development in animal models. Conclusion: SYK promotes liver fibrosis via activation of HSCs and is an attractive potential therapeutic target for liver fibrosis and prevention of HCC development. (Hepatology 2018).
Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Indazóis/uso terapêutico , Cirrose Hepática Experimental/enzimologia , Pirazinas/uso terapêutico , Quinase Syk/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Indazóis/farmacologia , Cirrose Hepática Experimental/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Pirazinas/farmacologia , Ratos , Quinase Syk/antagonistas & inibidoresRESUMO
BACKGROUND: Bile duct ligation (BDL) and subsequent cholestasis are correlated with oxidative stress, hepatocellular injury and fibrosis. Quercetin is a flavonoid with antifibrotic, and hepatoprotective properties. However, the molecular mechanism underlying quercetin-mediated hepatoprotection is not fully understood. The current study was to evaluate mechanisms of hepatoprotective effect of quercetin in BDL rat model. METHODS: We divided male Wistar rats into 4 groups (n=8 for each): sham, sham+quercetin (30 mg/kg per day), BDL, and BDL+quercetin (30 mg/kg per day). Four weeks later, the rats were sacrificed, the blood was collected for liver enzyme measurements and liver for the measurement of Rac1, Rac1-GTP and NOX1 mRNA and protein levels by quantitative PCR and Western blotting, respectively. RESULTS: Quercetin significantly alleviated liver injury in BDL rats as evidenced by histology and reduced liver enzymes. Furthermore, the mRNA and protein expression of Rac1, Rac1-GTP and NOX1 were significantly increased in BDL rats compared with those in the sham group (P<0.05); quercetin treatment reversed these variables back toward normal (P<0.05). Another interesting finding was that the antioxidant markers e.g. superoxide dismutase and catalase were elevated in quercetin-treated BDL rats compared to BDL rats (P<0.05). CONCLUSION: Quercetin demonstrated hepatoprotective activity against BDL-induced liver injury through increasing antioxidant capacity of the liver tissue, while preventing the production of Rac1, Rac1-GTP and NOX1 proteins.
Assuntos
Antioxidantes/farmacologia , Colestase/tratamento farmacológico , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Catalase/metabolismo , Colestase/complicações , Colestase/enzimologia , Colestase/patologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Citoproteção , Regulação para Baixo , Hidroxiprolina/metabolismo , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática Experimental/enzimologia , Cirrose Hepática Experimental/etiologia , Cirrose Hepática Experimental/patologia , Masculino , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
OBJECTIVE: We explored the effects of Nuclear Factor-E2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) on splanchnic hemodynamics in portal hypertensive rats. METHODS: Experimental cirrhosis with portal hypertension was induced by intraperitoneal injection of carbon tetrachloride. The expression of proteins was examined by immunoblotting. Hemodynamic studies were performed by radioactive microspheres. The vascular perfusion system was used to measure the contractile response of mesentery arterioles in rats. RESULTS: Nrf2 expression in the nucleus and HO-1 expression in cytoplasm was significantly enhanced in portal hypertensive rats. Portal pressure, as well as regional blood flow, increased significantly in portal hypertension and can be blocked by tin protoporphyrin IX. The expression of endogenous nitric oxide synthase and vascular endothelial growth factors increased significantly compared to normal rats, while HO-1 inhibition decreased the expression of these proteins significantly. The contractile response of mesenteric arteries decreased in portal hypertension, but can be partially recovered through tin protoporphyrin IX treatment. CONCLUSIONS: The expression of Nrf2/HO-1 increased in mesenteric arteries of portal hypertensive rats, which was related to oxidative stress. HO-1was involved in increased portal pressure and anomaly splanchnic hemodynamics in portal hypertensive rats.