Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 21(4): 501-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27193596

RESUMO

Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate L-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine-tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.


Assuntos
Cisteína Dioxigenase/química , Cisteína/química , Animais , Domínio Catalítico , Cisteína/metabolismo , Cisteína Dioxigenase/isolamento & purificação , Cisteína Dioxigenase/metabolismo , Modelos Moleculares , Teoria Quântica , Ratos , Software
2.
Appl Environ Microbiol ; 82(3): 910-21, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26590284

RESUMO

Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs.


Assuntos
Coenzimas/metabolismo , Cupriavidus necator/enzimologia , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Ácido 3-Mercaptopropiônico/metabolismo , Cromatografia de Afinidade , Coenzimas/química , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Cisteamina/farmacologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína Dioxigenase/química , Cisteína Dioxigenase/isolamento & purificação , Cinética , Mercaptoetanol/farmacologia , Propionatos/metabolismo , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato
3.
J Biol Chem ; 289(44): 30800-30809, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25228698

RESUMO

The versatile thiol mercaptosuccinate has a wide range of applications, e.g. in quantum dot research or in bioimaging. Its metabolism is investigated in Variovorax paradoxus strain B4, which can utilize this compound as the sole source of carbon and sulfur. Proteomic studies of strain B4 resulted in the identification of a putative mercaptosuccinate dioxygenase, a cysteine dioxygenase homologue, possibly representing the key enzyme in the degradation of mercaptosuccinate. Therefore, the putative mercaptosuccinate dioxygenase was heterologously expressed, purified, and characterized in this study. The results clearly demonstrated that the enzyme utilizes mercaptosuccinate with concomitant consumption of oxygen. Thus, the enzyme is designated as mercaptosuccinate dioxygenase. Succinate and sulfite were verified as the final reaction products. The enzyme showed an apparent Km of 0.4 mM, and a specific activity (Vmax) of 20.0 µmol min(-1) mg(-1) corresponding to a kcat of 7.7 s(-1). Furthermore, the enzyme was highly specific for mercaptosuccinate, no activity was observed with cysteine, dithiothreitol, 2-mercaptoethanol, and 3-mercaptopropionate. These structurally related thiols did not have an inhibitory effect either. Fe(II) could clearly be identified as metal cofactor of the mercaptosuccinate dioxygenase with a content of 0.6 mol of Fe(II)/mol of enzyme. The recently proposed hypothesis for the degradation pathway of mercaptosuccinate based on proteome analyses could be strengthened in the present study. (i) Mercaptosuccinate is first converted to sulfinosuccinate by this mercaptosuccinate dioxygenase; (ii) sulfinosuccinate is spontaneously desulfinated to succinate and sulfite; and (iii) whereas succinate enters the central metabolism, sulfite is detoxified by the previously identified putative molybdopterin oxidoreductase.


Assuntos
Proteínas de Bactérias/química , Comamonadaceae/enzimologia , Cisteína Dioxigenase/química , Tiomalatos/química , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/isolamento & purificação , Cisteína Dioxigenase/antagonistas & inibidores , Cisteína Dioxigenase/isolamento & purificação , Inibidores Enzimáticos/química , Cinética , Dados de Sequência Molecular , Especificidade por Substrato
4.
Biochim Biophys Acta ; 1814(12): 2003-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21839860

RESUMO

Cysteine dioxygenase (CDO) from rat and other mammals exhibits a covalent post-translational modification between the residues C93 and Y157 that is in close proximity to the active site, and whose presence enhances the enzyme's activity. Protein with and without C93-Y157 crosslink migrates as distinct bands in SDS-PAGE, allowing quantification of the relative ratios between the two forms by densitometry of the respective bands. Expression of recombinant rat wild type CDO in Escherichia coli typically produces 40-50% with the C93-Y157 crosslink. A strategy was developed to increase the ratio of the non-crosslinked form in an enzyme preparation of reasonable quantity and purity, allowing direct assessment of the activity of non-crosslinked CDO and mechanism of formation of the crosslink. The presence of ferrous iron and oxygen is a prerequisite for C93-Y157 crosslink formation. Absence of oxygen during protein expression increased the fraction of non-crosslinked CDO, while presence of the metal chelator EDTA had little effect. Metal affinity chromatography was used to enrich non-crosslinked content. Both the enzymatic rate of cysteine oxidation and the amount of cross-linking between C93 and Y157 increased significantly upon exposure of CDO to air/oxygen and substrate cysteine in the presence of iron in a hitherto unreported two-phase process. The instantaneous activity was proportional to the amount of crosslinked enzyme present, demonstrating that the non-crosslinked form has negligible enzymatic activity. The biphasic kinetics suggest the existence of an as yet uncharacterised intermediate in crosslink formation and enzyme activation.


Assuntos
Cisteína Dioxigenase/química , Cisteína Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Aerobiose/fisiologia , Animais , Fracionamento Químico , Reagentes de Ligações Cruzadas/farmacologia , Cisteína Dioxigenase/isolamento & purificação , Ativação Enzimática , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Oxirredução , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
5.
Mycoses ; 54(5): e456-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21039937

RESUMO

Cysteine dioxygenase (CDO, EC 1.13.11.20) catalyses the oxygenation of cysteine to cysteine sulphinic acid leading to the production of sulphite, sulphate and taurine as the final metabolites of cysteine catabolism. Keratinolytic fungi secrete sulphite and sulphate to reduce disulphide bridges in host tissue keratin proteins as the first step of keratinolysis. In the present study, we describe the identification of cDNA, as well as expression and characterisation of recombinant CDO protein from Trichophyton mentagrophytes. The cDNA was amplified using primers designed on the basis of high conservancy CDO regions identified in other fungi. PCR product was cloned and sequenced. Recombinant CDO was expressed in Escherichia coli, and affinity purified and identified by matrix-assisted laser desorption/ionization - time-of-flight mass spectrometry (MALDI-TOF MS). Enzyme activity was assayed by monitoring the production of cysteine sulphinate using mass spectrometry. The Cdo cDNA encodes for a protein consisting of 219 amino acids. Recombinant CDO protein C-terminally fused with a His tag was purified by affinity chromatography. The CDO purified under native condition was proved to be enzymatically active. Protein identity was confirmed by MALDI-TOF MS. Comparison of cDNA sequence with those identified in other fungi revealed significant homology. Identification of T. mentagrophytes CDO provides indispensable tools for future studies of dermatophyte pathogenicity and development of new approaches for prevention and therapy.


Assuntos
Cisteína Dioxigenase/isolamento & purificação , Trichophyton/enzimologia , Sequência de Aminoácidos , Cromatografia de Afinidade , Clonagem Molecular , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína Dioxigenase/genética , DNA Complementar/genética , DNA Fúngico/química , DNA Fúngico/genética , Escherichia coli/genética , Expressão Gênica , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trichophyton/genética
6.
J Biol Inorg Chem ; 14(6): 913-21, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19373496

RESUMO

Recent crystal structures of cysteine dioxygenase (CDO) suggest the presence of two posttranslational modifications adjacent to the catalytic iron center: a thioether cross-link between Cys93 and Tyr157 and extra electron density at Cys164 which was variously explained as cystine or cysteine sulfinic acid. Purification of recombinant rat CDO yields "mature" and "immature" forms with distinct electrophoretic mobilities. We have positively identified and characterized the two modifications in the products of three sequential proteolytic digestions using liquid chromatography coupled with tandem mass spectrometry. The cross-link is unique to the mature form and was identified in an ion of m/z 3,225.403, consistent with a Tyr-Cys cross-link of peptides Gly80-Phe94 with His155-Phe167. The cross-link is liable to cleavage by in-source decay and the resulting separate peptides were sequenced by collision-induced dissociation tandem mass spectrometry. Mass-spectrometric analysis of these same and overlapping peptides in the presence or absence of reductants and alkylating agents identified the second modification to be a cystine formed between Cys164 and exogenous cysteine as proposed earlier. Both modifications have been shown to form in the presence of high levels of cysteine and iron. This and the presence of small amounts of an apparently off-pathway cystine at position Cys93 suggest that although these conditions promote CDO maturation, they may actually arise via nonenzymatic, nonphysiological processes.


Assuntos
Cisteína Dioxigenase/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Cristalografia por Raios X , Cisteína Dioxigenase/isolamento & purificação , Cisteína Dioxigenase/metabolismo , Dissulfetos/química , Elétrons , Humanos , Espectrometria de Massas , Peptídeos , Ratos
7.
J Biol Chem ; 283(18): 12188-201, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18308719

RESUMO

Cysteine dioxygenase (CDO) catalyzes the conversion of cysteine to cysteinesulfinic acid and is important in the regulation of intracellular cysteine levels in mammals and in the provision of oxidized cysteine metabolites such as sulfate and taurine. Several crystal structure studies of mammalian CDO have shown that there is a cross-linked cofactor present in the active site of the enzyme. The cofactor consists of a thioether bond between the gamma-sulfur of residue cysteine 93 and the aromatic side chain of residue tyrosine 157. The exact requirements for cofactor synthesis and the contribution of the cofactor to the catalytic activity of the enzyme have yet to be fully described. In this study, therefore, we explored the factors necessary for cofactor biogenesis in vitro and in vivo and examined what effect cofactor formation had on activity in vitro. Like other cross-linked cofactor-containing enzymes, formation of the Cys-Tyr cofactor in CDO required a transition metal cofactor (Fe(2+)) and O(2). Unlike other enzymes, however, biogenesis was also strictly dependent upon the presence of substrate. Cofactor formation was also appreciably slower than the rates reported for other enzymes and, indeed, took hundreds of catalytic turnover cycles to occur. In the absence of the Cys-Tyr cofactor, CDO possessed appreciable catalytic activity, suggesting that the cofactor was not essential for catalysis. Nevertheless, at physiologically relevant cysteine concentrations, cofactor formation increased CDO catalytic efficiency by approximately 10-fold. Overall, the regulation of Cys-Tyr cofactor formation in CDO by ambient cysteine levels represents an unusual form of substrate-mediated feed-forward activation of enzyme activity with important physiological consequences.


Assuntos
Aminoácidos/metabolismo , Coenzimas/biossíntese , Cisteína Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Catálise , Linhagem Celular , Cisteína Dioxigenase/química , Cisteína Dioxigenase/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Meia-Vida , Humanos , Fígado/enzimologia , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Mutantes/isolamento & purificação , Fragmentos de Peptídeos/química , Mutação Puntual/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo , Fatores de Tempo
8.
J Biol Chem ; 282(5): 3391-402, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17135237

RESUMO

Cysteine dioxygenase is a non-heme mononuclear iron metalloenzyme that catalyzes the oxidation of cysteine to cysteine sulfinic acid with addition of molecular dioxygen. This irreversible oxidative catabolism of cysteine initiates several important metabolic pathways related to diverse sulfurate compounds. Cysteine dioxygenase is therefore very important for maintaining the proper hepatic concentration of intracellular free cysteine. Mechanisms for mouse and rat cysteine dioxygenases have recently been reported based on their crystal structures in the absence of substrates, although there is still a lack of direct evidence. Here we report the first crystal structure of human cysteine dioxygenase in complex with its substrate L-cysteine to 2.7A, together with enzymatic activity and metal content assays of several single point mutants. Our results provide an insight into a new mechanism of cysteine thiol dioxygenation catalyzed by cysteine dioxygenase, which is tightly associated with a thioether-bonded tyrosine-cysteine cofactor involving Tyr-157 and Cys-93. This cross-linked protein-derived cofactor plays several key roles different from those in galactose oxidase. This report provides a new potential target for therapy of diseases related to human cysteine dioxygenase, including neurodegenerative and autoimmune diseases.


Assuntos
Coenzimas/metabolismo , Cisteína Dioxigenase/química , Cisteína Dioxigenase/metabolismo , Cisteína , Tirosina , Sequência de Aminoácidos , Animais , Clonagem Molecular , Coenzimas/química , Sequência Consenso , Sequência Conservada , Cristalografia por Raios X , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/isolamento & purificação , Humanos , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência
9.
J Bacteriol ; 188(15): 5561-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16855246

RESUMO

In metazoa and fungi, the catabolic dissimilation of cysteine begins with its sulfoxidation to cysteine sulfinic acid by the enzyme cysteine dioxygenase (CDO). In these organisms, CDO plays an important role in the homeostatic regulation of steady-state cysteine levels and provides important oxidized metabolites of cysteine such as sulfate and taurine. To date, there has been no experimental evidence for the presence of CDO in prokaryotes. Using PSI-BLAST searches and crystallographic information about the active-site geometry of mammalian CDOs, we identified a total of four proteins from Bacillus subtilis, Bacillus cereus, and Streptomyces coelicolor A3(2) that shared low overall identity to CDO (13 to 21%) but nevertheless conserved important active-site residues. These four proteins were heterologously expressed and purified to homogeneity by a single-step immobilized metal affinity chromatography procedure. The ability of these proteins to oxidize cysteine to cysteine sulfinic acid was then compared against recombinant rat CDO. The kinetic data strongly indicate that these proteins are indeed bona fide CDOs. Phylogenetic analyses of putative bacterial CDO homologs also indicate that CDO is distributed among species within the phyla of Actinobacteria, Firmicutes, and Proteobacteria. Collectively, these data suggest that a large subset of eubacteria is capable of cysteine sulfoxidation. Suggestions are made for how this novel pathway of cysteine metabolism may play a role in the life cycle of the eubacteria that have it.


Assuntos
Bactérias/enzimologia , Cisteína Dioxigenase/metabolismo , Sítios de Ligação , Cromatografia de Afinidade , Cisteína/metabolismo , Cisteína Dioxigenase/química , Cisteína Dioxigenase/classificação , Cisteína Dioxigenase/isolamento & purificação , Cinética , Modelos Moleculares , Especificidade da Espécie
10.
Protein Expr Purif ; 47(1): 74-81, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16325423

RESUMO

Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.


Assuntos
Clonagem Molecular , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/isolamento & purificação , Cisteína/metabolismo , Metaloproteínas/genética , Metaloproteínas/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Animais , Cisteína Dioxigenase/biossíntese , Cisteína Dioxigenase/metabolismo , Cinética , Fígado/enzimologia , Metaloproteínas/biossíntese , Metaloproteínas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA