Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.393
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732188

RESUMO

The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Movimento Celular , Proliferação de Células
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683248

RESUMO

Nucleocytoplasmic transport (NCT), the facilitated diffusion of cargo molecules between the nucleus and cytoplasm through nuclear pore complexes (NPCs), enables numerous fundamental eukaryotic cellular processes. Ran GTPase uses cellular energy in the direct form of GTP to create a gradient across the nuclear envelope (NE) that drives the majority of NCT. We report here that changes in GTP availability resulting from altered cellular physiology modulate the rate of NCT, as monitored using synthetic and natural cargo, and the dynamics of Ran itself. Cell migration, cell spreading, and/or modulation of the cytoskeleton or its connection to the nucleus alter GTP availability and thus rates of NCT, regulating RNA export and protein synthesis. These findings support a model in which changes in cellular physiology that alter GTP availability can regulate the rate of NCT, impacting fundamental cellular processes that extensively utilize NCT.


Assuntos
Transporte Ativo do Núcleo Celular , Guanosina Trifosfato , Proteína ran de Ligação ao GTP , Guanosina Trifosfato/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/genética , Humanos , Núcleo Celular/metabolismo , Movimento Celular , Poro Nuclear/metabolismo , Poro Nuclear/genética , Animais , Membrana Nuclear/metabolismo , Citoesqueleto/metabolismo , Biossíntese de Proteínas , Citoplasma/metabolismo
3.
Biochem Soc Trans ; 52(2): 517-527, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572868

RESUMO

Cellular signalling is a complex process and involves cascades of enzymes that, in response to a specific signal, give rise to exact cellular responses. Signalling scaffold proteins organise components of these signalling pathways in space and time to co-ordinate signalling outputs. In this review we introduce a new class of mechanically operated signalling scaffolds that are built into the cytoskeletal architecture of the cell. These proteins contain force-dependent binary switch domains that integrate chemical and mechanical signals to introduce quantised positional changes to ligands and persistent alterations in cytoskeletal architecture providing mechanomemory capabilities. We focus on the concept of spatial organisation, and how the cell organises signalling molecules at the plasma membrane in response to specific signals to create order and distinct signalling outputs. The dynamic positioning of molecules using binary switches adds an additional layer of complexity to the idea of scaffolding. The switches can spatiotemporally organise enzymes and substrates dynamically, with the introduction of ∼50 nm quantised steps in distance between them as the switch patterns change. Together these different types of signalling scaffolds and the proteins engaging them, provide a way for an ordering of molecules that extends beyond current views of the cell.


Assuntos
Citoesqueleto , Transdução de Sinais , Humanos , Citoesqueleto/metabolismo , Animais , Mecanotransdução Celular , Membrana Celular/metabolismo
4.
EMBO Rep ; 25(5): 2172-2187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627564

RESUMO

Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.


Assuntos
Movimento Celular , Citoesqueleto , Organelas , Organelas/metabolismo , Humanos , Citoesqueleto/metabolismo , Animais
5.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652325

RESUMO

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Assuntos
Acetiltransferases , Proteínas dos Microtúbulos , Tubulina (Proteína) , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Microtúbulos/metabolismo , Mitose , Movimento Celular , Neoplasias/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Citoesqueleto/metabolismo
6.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607046

RESUMO

Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes via NTs may be controlled by cytoskeletal elements. NTs are frequently observed membrane projections in numerous mammalian cell lines, including various immune cells, but their functional significance in the 'antibody factory' B cells is poorly elucidated. Here, we report that as active channels, NTs of B-lymphoma cells can mediate bidirectional mitochondrial transport, promoted by the cooperation of two different cytoskeletal motor proteins, kinesin along microtubules and myosin VI along actin, and bidirectional transport processes are also supported by the heterogeneous arrangement of the main cytoskeletal filament systems of the NTs. We revealed that despite NTs and axons being different cell extensions, the mitochondrial transport they mediate may exhibit significant similarities. Furthermore, we found that microtubules may improve the stability and lifespan of B-lymphoma-cell NTs, while F-actin strengthens NTs by providing a structural framework for them. Our results may contribute to a better understanding of the regulation of the major cells of humoral immune response to infections.


Assuntos
Estruturas da Membrana Celular , Linfoma , Nanotubos , Animais , Citoesqueleto/metabolismo , Actinas/metabolismo , Nanotubos/química , Mitocôndrias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Linfoma/metabolismo , Mamíferos/metabolismo
7.
Commun Biol ; 7(1): 458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622242

RESUMO

Differentiation of adipose progenitor cells into mature adipocytes entails a dramatic reorganization of the cellular architecture to accommodate lipid storage into cytoplasmic lipid droplets. Lipid droplets occupy most of the adipocyte volume, compressing the nucleus beneath the plasma membrane. How this cellular remodeling affects sub-nuclear structure, including size and number of nucleoli, remains unclear. We describe the morphological remodeling of the nucleus and the nucleolus during in vitro adipogenic differentiation of primary human adipose stem cells. We find that cell cycle arrest elicits a remodeling of nucleolar structure which correlates with a decrease in protein synthesis. Strikingly, triggering cytoskeletal rearrangements mimics the nucleolar remodeling observed during adipogenesis. Our results point to nucleolar remodeling as an active, mechano-regulated mechanism during adipogenic differentiation and demonstrate a key role of the actin cytoskeleton in defining nuclear and nucleolar architecture in differentiating human adipose stem cells.


Assuntos
Adipogenia , Citoesqueleto , Humanos , Células Cultivadas , Citoesqueleto/metabolismo , Adipócitos/metabolismo , Gotículas Lipídicas/metabolismo
8.
Nat Commun ; 15(1): 3139, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605007

RESUMO

Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto/metabolismo
9.
PLoS One ; 19(4): e0300539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574058

RESUMO

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Assuntos
Actinas , Axônios , Axônios/metabolismo , Nocodazol/farmacologia , Actinas/metabolismo , Zíper de Leucina , Regeneração Nervosa/fisiologia , Citoesqueleto/metabolismo , Homeostase , MAP Quinase Quinase Quinases/genética
10.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566066

RESUMO

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Assuntos
Doenças Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia
11.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647525

RESUMO

Cell migration is controlled by the coordinated action of cell adhesion, cytoskeletal dynamics, contractility and cell extrinsic cues. Integrins are the main adhesion receptors to ligands of the extracellular matrix (ECM), linking the actin cytoskeleton to the ECM and enabling cells to sense matrix rigidity and mount a directional cell migration response to stiffness gradients. Most models studied show preferred migration of single cells or cell clusters towards increasing rigidity. This is referred to as durotaxis, and since its initial discovery in 2000, technical advances and elegant computational models have provided molecular level details of stiffness sensing in cell migration. However, modeling has long predicted that, depending on cell intrinsic factors, such as the balance of cell adhesion molecules (clutches) and the motor proteins pulling on them, cells might also prefer adhesion to intermediate rigidity. Recently, experimental evidence has supported this notion and demonstrated the ability of cells to migrate towards lower rigidity, in a process called negative durotaxis. In this Review, we discuss the significant conceptual advances that have been made in our appreciation of cell plasticity and context dependency in stiffness-guided directional cell migration.


Assuntos
Movimento Celular , Matriz Extracelular , Movimento Celular/fisiologia , Humanos , Animais , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Adesão Celular , Modelos Biológicos , Citoesqueleto/metabolismo
12.
Elife ; 132024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661167

RESUMO

Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.


Assuntos
Citoesqueleto , Proteínas de Homeodomínio , Osteoblastos , Proteínas Repressoras , Transdução de Sinais , Quinases Ativadas por p21 , Osteoblastos/metabolismo , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/deficiência , Camundongos , Citoesqueleto/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/deficiência , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Adesão Celular , Movimento Celular
13.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563209

RESUMO

Actin is well known for its cytoskeletal functions, where it helps to control and maintain cell shape and architecture, as well as regulating cell migration and intracellular cargo transport, among others. However, actin is also prevalent in the nucleus, where genome-regulating roles have been described, including it being part of chromatin-remodeling complexes. More recently, with the help of advances in microscopy techniques and specialized imaging probes, direct visualization of nuclear actin filament dynamics has helped elucidate new roles for nuclear actin, such as in cell cycle regulation, DNA replication and repair, chromatin organization and transcriptional condensate formation. In this Cell Science at a Glance article, we summarize the known signaling events driving the dynamic assembly of actin into filaments of various structures within the nuclear compartment for essential genome functions. Additionally, we highlight the physiological role of nuclear F-actin in meiosis and early embryonic development.


Assuntos
Actinas , Núcleo Celular , Actinas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Ciclo Celular
14.
Acta Biomater ; 180: 197-205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599439

RESUMO

During physiological and pathological processes, cells experience significant morphological alterations with the re-arrangement of cytoskeletal filaments, resulting in anisotropic viscoelasticity. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. We investigate how cell shape affects its creep responses in longitudinal and perpendicular directions. It is shown that cells exhibit power-law rheological behavior in both longitudinal and perpendicular directions under step stress, with a more solid-like behavior along the longitudinal direction. We reveal that the cell volume and cytoskeletal filament orientation, which have been neglected in most existing models, play a critical role in regulating cellular anisotropic viscoelasticity. The stiffness of the cell in both directions increases linearly with increasing its aspect ratio, due to the decrease of cell volume. Moreover, the increase in the cell's aspect ratio produces the aggregation of cytoskeletal filaments along the longitudinal direction, resulting in higher stiffness in this direction. It is also shown that the increase in cell's aspect ratio corresponds to a process of cellular ordering, which can be quantitatively characterized by the orientational entropy of cytoskeletal filaments. In addition, we present a simple yet robust method to establish the relationship between cell's aspect ratio and cell volume, thus providing a theoretical framework to capture the anisotropic viscoelastic behavior of cells. This study suggests that the structure-based cell models may be further developed to investigate cellular rheological responses to external mechanical stimuli and may be extended to the tissue scale. STATEMENT OF SIGNIFICANCE: The viscoelastic behaviors of cells hold significant importance in comprehending the roles of mechanical forces in embryo development, invasion, and metastasis of cancer cells. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. Our study highlights the crucial role of previously neglected factors, such as cell volume and cytoskeletal filament orientation, in regulating cellular anisotropic viscoelasticity. We further propose an orientational entropy of cytoskeletal filaments to quantitatively characterize the ordering process of cells with increasing aspect ratios. Moreover, we derived the analytical interrelationships between cell aspect ratio, cell stiffness, cell volume, and cytoskeletal fiber orientation. This study provides a theoretical framework to describe the anisotropic viscoelastic mechanical behavior of cells.


Assuntos
Citoesqueleto , Elasticidade , Modelos Biológicos , Anisotropia , Citoesqueleto/metabolismo , Viscosidade , Reologia , Humanos , Tamanho Celular , Estresse Mecânico
15.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662776

RESUMO

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Assuntos
Actinas , Adesão Celular , Proteínas de Drosophila , Drosophila melanogaster , Matriz Extracelular , Integrinas , Talina , Talina/metabolismo , Talina/genética , Animais , Adesão Celular/genética , Sítios de Ligação , Matriz Extracelular/metabolismo , Actinas/metabolismo , Actinas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Integrinas/metabolismo , Integrinas/genética , Mutação , Ligação Proteica , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto/metabolismo , Citoesqueleto/genética
16.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668767

RESUMO

The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.


Assuntos
Microtúbulos , Corpos Multivesiculares , Septinas , Animais , Cães , Células Madin Darby de Rim Canino , Microtúbulos/química , Microtúbulos/metabolismo , Corpos Multivesiculares/química , Corpos Multivesiculares/metabolismo , Septinas/química , Septinas/metabolismo , Tetraspanina 30/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose
17.
Redox Biol ; 72: 103162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669864

RESUMO

Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.


Assuntos
Células Endoteliais , Fígado , Isomerases de Dissulfetos de Proteínas , Animais , Camundongos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Fígado/metabolismo , Fígado/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Adesão Celular , Citoesqueleto/metabolismo , Células Cultivadas , Masculino , Inibidores Enzimáticos/farmacologia
18.
Mol Biol Cell ; 35(6): ar87, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656797

RESUMO

Recent findings indicate that Solo, a RhoGEF, is involved in cellular mechanical stress responses. However, the mechanism of actin cytoskeletal remodeling via Solo remains unclear. Therefore, this study aimed to identify Solo-interacting proteins using the BioID, a proximal-dependent labeling method, and elucidate the molecular mechanisms of function of Solo. We identified PDZ-RhoGEF (PRG) as a Solo-interacting protein. PRG colocalized with Solo in the basal area of cells, depending on Solo localization, and enhanced actin polymerization at the Solo accumulation sites. Additionally, Solo and PRG interaction was necessary for actin cytoskeletal remodeling. Furthermore, the purified Solo itself had little or negligible GEF activity, even its GEF-inactive mutant directly activated the GEF activity of PRG through interaction. Moreover, overexpression of the Solo and PRG binding domains, respectively, had a dominant-negative effect on actin polymerization and actin stress fiber formation in response to substrate stiffness. Therefore, Solo restricts the localization of PRG and regulates actin cytoskeletal remodeling in synergy with PRG in response to the surrounding mechanical environment.


Assuntos
Citoesqueleto de Actina , Actinas , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Citoesqueleto de Actina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actinas/metabolismo , Domínios PDZ , Ligação Proteica , Citoesqueleto/metabolismo , Animais , Células HEK293
19.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683844

RESUMO

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Assuntos
Citoesqueleto , Proteínas de Drosophila , Drosophila melanogaster , Desenvolvimento Muscular , Proteínas de Ligação a RNA , Sarcômeros , Animais , Sarcômeros/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Desenvolvimento Muscular/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Splicing de RNA/genética , Miofibrilas/metabolismo , Voo Animal/fisiologia , Processamento Alternativo/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculos/metabolismo
20.
PLoS Biol ; 22(3): e3002551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466773

RESUMO

Mammals have 6 highly conserved actin isoforms with nonredundant biological functions. The molecular basis of isoform specificity, however, remains elusive due to a lack of tools. Here, we describe the development of IntAct, an internal tagging strategy to study actin isoforms in fixed and living cells. We identified a residue pair in ß-actin that permits tag integration and used knock-in cell lines to demonstrate that IntAct ß-actin expression and filament incorporation is indistinguishable from wild type. Furthermore, IntAct ß-actin remains associated with common actin-binding proteins (ABPs) and can be targeted in living cells. We demonstrate the usability of IntAct for actin isoform investigations by showing that actin isoform-specific distribution is maintained in human cells. Lastly, we observed a variant-dependent incorporation of tagged actin variants into yeast actin patches, cables, and cytokinetic rings demonstrating cross species applicability. Together, our data indicate that IntAct is a versatile tool to study actin isoform localization, dynamics, and molecular interactions.


Assuntos
Actinas , Proteínas dos Microfilamentos , Animais , Humanos , Actinas/genética , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Citoesqueleto/metabolismo , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA