Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.511
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727277

RESUMO

Assessing immune responses to cytomegalovirus (CMV) after liver transplant in patients on immunosuppressive therapy remains challenging. In this study, employing ELISPOT assays, 52 liver-transplant recipients were evaluated for antiviral T-cell activity in peripheral blood mononuclear cells (PBMCs), measuring interferon-γ (IFN-γ) secretion upon stimulation with CMV-specific peptides (CMV peptide pool, CMV IE-1, and pp65 antigens). Parameters such as stimulation index, mean spot size, and mean spot count were measured. The study found that heightened immunosuppression, especially with prednisolone in triple therapy, significantly dampened CMV-specific immune responses. This was demonstrated by decreased IFN-γ production by CMV-specific T-cells (CMV peptide pool: p = 0.036; OR = 0.065 [95% CI: 0.005-0.840], pp65 antigen: p = 0.026; OR = 0.048 [95% CI: 0.003-0.699]). Increased immunosuppression correlated with reduced IFN-γ secretion per cell, reflected in smaller mean spot sizes for the CMV peptide pool (p = 0.019). Notably, shorter post-transplant intervals correlated with diminished antiviral T-cell IFN-γ release at two years (CMV peptide pool: p = 0.019; IE antigen: p = 0.010) and five years (CMV peptide pool: p = 0.0001; IE antigen: p = 0.002; pp65 antigen: p = 0.047), as did advancing age (pp65 antigen: p = 0.016, OR = 0.932, 95% CI: 0.881-0.987). Patients with undetectable CMV antigens had a notably higher risk of CMV reactivation within six months from blood collection, closely linked with triple immunosuppression and prednisolone use. These findings highlight the intricate interplay between immunosuppression, immune response dynamics, and CMV reactivation risk, emphasizing the necessity for tailored immunosuppressive strategies to mitigate CMV reactivation in liver-transplant recipients. It can be concluded that, particularly in the early months post-transplantation, the use of prednisolone as a third immunosuppressant should be critically reconsidered. Additionally, the use of prophylactic antiviral therapy effective against CMV in this context holds significant importance.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , ELISPOT , Hospedeiro Imunocomprometido , Interferon gama , Transplante de Fígado , Linfócitos T , Humanos , Transplante de Fígado/efeitos adversos , Citomegalovirus/imunologia , Masculino , Feminino , ELISPOT/métodos , Pessoa de Meia-Idade , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Linfócitos T/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Idoso , Adulto , Imunossupressores/uso terapêutico , Terapia de Imunossupressão
2.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728394

RESUMO

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Macaca mulatta , Animais , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Neoplasias/imunologia , Humanos , Vacinas Anticâncer/imunologia , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Masculino , Citomegalovirus/imunologia , Mesotelina , Fosfatase Ácida
3.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690731

RESUMO

Herpesviruses establish latent infections, and most reactivate frequently, resulting in symptoms and virus shedding in healthy individuals. In immunocompromised patients, reactivating virus can cause severe disease. Persistent EBV has been associated with several malignancies in both immunocompromised and nonimmunocompromised persons. Reactivation and shedding occur with most herpesviruses, despite potent virus-specific antibodies and T cell immunity as measured in the blood. The licensure of therapeutic vaccines to reduce zoster indicates that effective therapeutic vaccines for other herpesviruses should be feasible. However, varicella-zoster virus is different from other human herpesviruses in that it is generally only shed during varicella and zoster. Unlike prophylactic vaccines, in which the correlate of immunity is antibody function, T cell immunity is the correlate of immunity for the only effective therapeutic herpesvirus vaccine-zoster vaccine. While most studies of therapeutic vaccines have measured immunity in the blood, cellular immunity at the site of reactivation is likely critical for an effective therapeutic vaccine for certain viruses. This Review summarizes the status of therapeutic vaccines for herpes simplex virus, cytomegalovirus, and Epstein-Barr virus and proposes approaches for future development.


Assuntos
Vacinas contra Herpesvirus , Humanos , Vacinas contra Herpesvirus/imunologia , Vacinas contra Herpesvirus/uso terapêutico , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/virologia , Herpesvirus Humano 4/imunologia , Animais , Herpesviridae/imunologia , Ativação Viral/imunologia , Citomegalovirus/imunologia
4.
Front Immunol ; 15: 1389358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736873

RESUMO

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Genótipo , Células Matadoras Naturais , Receptores KIR , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Masculino , Adulto , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Citomegalovirus/imunologia , Receptores KIR/genética , Pessoa de Meia-Idade , Fatores Sexuais , Fatores Etários , Antígenos CD57 , Teste de Histocompatibilidade , Adulto Jovem , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Antígenos HLA/genética , Antígenos HLA/imunologia , Idoso , Receptores KIR3DL1/genética
5.
J Immunother Cancer ; 12(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688579

RESUMO

BACKGROUND: Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS: We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS: We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS: These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.


Assuntos
Citomegalovirus , Glioblastoma , Humanos , Glioblastoma/imunologia , Glioblastoma/virologia , Glioblastoma/patologia , Camundongos , Citomegalovirus/imunologia , Animais , Infecções por Citomegalovirus/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , RNA-Seq , Feminino , Masculino , Análise da Expressão Gênica de Célula Única
6.
Transpl Int ; 37: 12720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655204

RESUMO

Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Everolimo , Imunossupressores , Ácido Micofenólico , Sirolimo , Linfócitos T , Tacrolimo , Humanos , Infecções por Citomegalovirus/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Citomegalovirus/imunologia , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Prednisolona/uso terapêutico , Transplante de Órgãos , Proliferação de Células/efeitos dos fármacos
7.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672472

RESUMO

Adversity during infancy can affect neurobehavioral development and perturb the maturation of physiological systems. Dysregulated immune and inflammatory responses contribute to many of the later effects on health. Whether normalization can occur following a transition to more nurturing, benevolent conditions is unclear. To assess the potential for recovery, blood samples were obtained from 45 adolescents adopted by supportive families after impoverished infancies in institutional settings (post-institutionalized, PI). Their immune profiles were compared to 39 age-matched controls raised by their biological parents (non-adopted, NA). Leukocytes were immunophenotyped, and this analysis focuses on natural killer (NK) cell populations in circulation. Cytomegalovirus (CMV) seropositivity was evaluated to determine if early infection contributed to the impact of an atypical rearing. Associations with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), two cytokines released by activated NK cells, were examined. Compared to the NA controls, PI adolescents had a lower percent of CD56bright NK cells in circulation, higher TNF-α levels, and were more likely to be infected with CMV. PI adolescents who were latent carriers of CMV expressed NKG2C and CD57 surface markers on more NK cells, including CD56dim lineages. The NK cell repertoire revealed lingering immune effects of early rearing while still maintaining an overall integrity and resilience.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Células Matadoras Naturais , Fator de Necrose Tumoral alfa , Células Matadoras Naturais/imunologia , Humanos , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Adolescente , Feminino , Masculino , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo , Citomegalovirus/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo
8.
Cell Rep ; 43(4): 114089, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615318

RESUMO

Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Receptor 2 Desencadeador da Citotoxicidade Natural , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Citomegalovirus/imunologia , Haplótipos , Ativação Linfocitária/imunologia
9.
Transplant Cell Ther ; 30(5): 538.e1-538.e10, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331195

RESUMO

Cytomegalovirus (CMV) reactivations cause significant morbidity in allogeneic hematopoietic stem cell transplantation (HSCT) recipients. Graft-versus-host disease (GVHD) prophylaxis with post-transplantation cyclophosphamide (PTCy) is associated with an increased risk of CMV infections. Data are limited comparing HSCT with PTCy performed from matched sibling donors (MSDs), matched unrelated donors (MUDs), and haploidentical (Haplo) donors. In the present study, we aimed to characterize CMV reactivation and recurrence in patients with hematologic malignancies undergoing HSCT from MSD, MUD, and Haplo donors using PTCy as GVHD prophylaxis in the pre-letermovir era. We also analyzed risk factors of CMV reactivation, including GVHD as a time-dependent variable, on the incidence and mortality associated with CMV infections. We analyzed CMV reactivation in patients undergoing HSCT from 160 MSDs, 124 MUDs, and 82 Haplo donors from a single institution. Uniform GVHD prophylaxis with PTCy, sirolimus, and mycophenolate mofetil was given irrespective of donor type. Overall, 46% of patients had at least 1 CMV reactivation. The 1-year cumulative incidence of CMV infection was 39% for MSD, 44% for MUD, and 62% for Haplo donors (P < .001), with 96% of reactivations occurring before day +100. Multivariate analysis identified factors associated with the first CMV reactivation, including Haplo donor, positive recipient CMV serology, older patient age, and grade II-IV acute GVHD. The 1-year cumulative incidence of second reactivation from HSCT was 13%. Recipient CMV seropositivity, older patient age, and grade II-IV acute GVHD, but not type of donor, were identified as adverse factors for second CMV reactivation in multivariate analysis. The 1-year cumulative incidence of a third reactivation post HSCT was 4.4%. Ten cases of CMV disease were recorded, with no attributable deaths. Nevertheless, the risk for nonrelapse mortality was greater for patients who experienced CMV reactivation in multivariate time-dependent Cox model analysis. CMV reactivation is frequent in HSCT with PTCy in patients not receiving letermovir prophylaxis. Identified risk factors include the use of a Haplo donor, recipient CMV seropositivity, and grade II-IV acute GVHD. The prevalence of recurrent CMV reactivations is a noteworthy issue, especially after acute GVHD, warranting trials of secondary prophylaxis strategies.


Assuntos
Ciclofosfamida , Infecções por Citomegalovirus , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Ativação Viral , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Ativação Viral/efeitos dos fármacos , Ciclofosfamida/uso terapêutico , Ciclofosfamida/efeitos adversos , Doença Enxerto-Hospedeiro/prevenção & controle , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/epidemiologia , Transplante Homólogo/efeitos adversos , Citomegalovirus/imunologia , Citomegalovirus/efeitos dos fármacos , Idoso , Adulto Jovem , Doadores de Tecidos , Adolescente , Transplante Haploidêntico/efeitos adversos , Fatores de Risco , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Neoplasias Hematológicas/terapia , Doadores não Relacionados , Antígenos HLA/imunologia , Irmãos
10.
Transplant Proc ; 56(3): 521-525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331593

RESUMO

BACKGROUND: Cytomegalovirus (CMV), the most common opportunistic infection of kidney transplantation (KT), is preventable by prophylactic and preemptive antiviral drugs in CMV-immunoglobulin (Ig)G-positive donors. Our preemptive therapy optimized immunosuppressive doses based on mixed lymphocyte response (MLR) results, regardless of preoperative CMV-IgG serostatus pairing. This study used the MLR to compare the anti-donor T-cell responses between CMV antigenemia-positive and -negative cases. METHODS: One hundred patients underwent KT using a cyclosporine (CsA)-based immunosuppressive regimen at Hiroshima University Hospital. CMV antigenemia-positive cells were defined as 4/50,000 CMVpp65-positive cells. T-cell responses to allo-antigens were measured using MLR assays to evaluate patients' anti-donor immune reactivity. After analyzing the proliferation of CD4+ and CD8+ T-cell subsets, the stimulation indices of CD4+ or CD8+ T cells were quantified. The study used no prisoners, and the participants were neither coerced nor paid. The manuscript was created in compliance with the Helsinki Congress and the Declaration of Istanbul. RESULTS: Forty-three patients tested positive for CMV antigenemia within 3 months after KT. No significant differences were found between the CMV antigenemia-positive and -negative groups in the stimulation indices for CD4+ and CD8+ T-cell responses to anti-donor stimulation. However, T-cell responses to third-party stimuli during the postoperative month 1 were significantly less in the CMV antigenemia-positive than -negative group. CONCLUSION: Anti-donor T-cell responses are not necessarily attenuated during CMV infection in KT recipients. In CMV-infected KT recipients, caution should be exercised against inadvertent dose reduction of immunosuppressants.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Infecções por Citomegalovirus/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Imunossupressores/uso terapêutico , Linfócitos T/imunologia , Doadores de Tecidos , Citomegalovirus/imunologia , Teste de Cultura Mista de Linfócitos
11.
Nature ; 626(8000): 827-835, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355791

RESUMO

Individuals differ widely in their immune responses, with age, sex and genetic factors having major roles in this inherent variability1-6. However, the variables that drive such differences in cytokine secretion-a crucial component of the host response to immune challenges-remain poorly defined. Here we investigated 136 variables and identified smoking, cytomegalovirus latent infection and body mass index as major contributors to variability in cytokine response, with effects of comparable magnitudes with age, sex and genetics. We find that smoking influences both innate and adaptive immune responses. Notably, its effect on innate responses is quickly lost after smoking cessation and is specifically associated with plasma levels of CEACAM6, whereas its effect on adaptive responses persists long after individuals quit smoking and is associated with epigenetic memory. This is supported by the association of the past smoking effect on cytokine responses with DNA methylation at specific signal trans-activators and regulators of metabolism. Our findings identify three novel variables associated with cytokine secretion variability and reveal roles for smoking in the short- and long-term regulation of immune responses. These results have potential clinical implications for the risk of developing infections, cancers or autoimmune diseases.


Assuntos
Imunidade Adaptativa , Fumar , Feminino , Humanos , Masculino , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/genética , Doenças Autoimunes/etiologia , Doenças Autoimunes/imunologia , Índice de Massa Corporal , Citocinas/sangue , Citocinas/imunologia , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Infecções/etiologia , Infecções/imunologia , Neoplasias/etiologia , Neoplasias/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética , Fumar/imunologia
13.
J Virol ; 97(10): e0069623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796129

RESUMO

IMPORTANCE: Human cytomegalovirus (HCMV) infection is the leading cause of non-heritable birth defects worldwide. HCMV readily infects the early progenitor cell population of the developing brain, and we have found that infection leads to significantly downregulated expression of key neurodevelopmental transcripts. Currently, there are no approved therapies to prevent or mitigate the effects of congenital HCMV infection. Therefore, we used human-induced pluripotent stem cell-derived organoids and neural progenitor cells to elucidate the glycoproteins and receptors used in the viral entry process and whether antibody neutralization was sufficient to block viral entry and prevent disruption of neurodevelopmental gene expression. We found that blocking viral entry alone was insufficient to maintain the expression of key neurodevelopmental genes, but neutralization combined with neurotrophic factor treatment provided robust protection. Together, these studies offer novel insight into mechanisms of HCMV infection in neural tissues, which may aid future therapeutic development.


Assuntos
Anticorpos Neutralizantes , Infecções por Citomegalovirus , Citomegalovirus , Expressão Gênica , Fatores de Crescimento Neural , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/uso terapêutico , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Organoides/citologia , Organoides/metabolismo , Organoides/virologia , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos
14.
PLoS Pathog ; 19(1): e1011107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36662906

RESUMO

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Humanos , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/uso terapêutico , Mutação , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
15.
Proc Natl Acad Sci U S A ; 119(26): e2116738119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749366

RESUMO

Tumor infiltration by T cells profoundly affects cancer progression and responses to immunotherapy. However, the tumor immunosuppressive microenvironment can impair the induction, trafficking, and local activity of antitumor T cells. Here, we investigated whether intratumoral injection of virus-derived peptide epitopes could activate preexisting antiviral T cell responses locally and promote antitumor responses or antigen spreading. We focused on a mouse model of cytomegalovirus (CMV), a highly prevalent human infection that induces vigorous and durable T cell responses. Mice persistently infected with murine CMV (MCMV) were challenged with lung (TC-1), colon (MC-38), or melanoma (B16-F10) tumor cells. Intratumoral injection of MCMV-derived T cell epitopes triggered in situ and systemic expansion of their cognate, MCMV-specific CD4+ or CD8+ T cells. The MCMV CD8+ T cell epitopes injected alone provoked arrest of tumor growth and some durable remissions. Intratumoral injection of MCMV CD4+ T cell epitopes with polyinosinic acid:polycytidylic acid (pI:C) preferentially elicited tumor antigen-specific CD8+ T cells, promoted tumor clearance, and conferred long-term protection against tumor rechallenge. Notably, secondary proliferation of MCMV-specific CD8+ T cells correlated with better tumor control. Importantly, intratumoral injection of MCMV-derived CD8+ T cell-peptide epitopes alone or CD4+ T cell-peptide epitopes with pI:C induced potent adaptive and innate immune activation of the tumor microenvironment. Thus, CMV-derived peptide epitopes, delivered intratumorally, act as cytotoxic and immunotherapeutic agents to promote immediate tumor control and long-term antitumor immunity that could be used as a stand-alone therapy. The tumor antigen-agnostic nature of this approach makes it applicable across a broad range of solid tumors regardless of their origin.


Assuntos
Linfócitos T CD8-Positivos , Infecções por Citomegalovirus , Citomegalovirus , Epitopos de Linfócito T , Neoplasias , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos de Linfócito T/administração & dosagem , Epitopos de Linfócito T/imunologia , Imunoterapia , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Poli I-C/administração & dosagem , Poli I-C/imunologia , Microambiente Tumoral
16.
Nat Commun ; 13(1): 2603, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546552

RESUMO

Human cytomegalovirus reactivation is a major opportunistic infection after allogeneic haematopoietic stem cell transplantation and has a complex relationship with post-transplant immune reconstitution. Here, we use mass cytometry to define patterns of innate and adaptive immune cell reconstitution at key phases of human cytomegalovirus reactivation in the first 100 days post haematopoietic stem cell transplantation. Human cytomegalovirus reactivation is associated with the development of activated, memory T-cell profiles, with faster effector-memory CD4+ T-cell recovery in patients with low-level versus high-level human cytomegalovirus DNAemia. Mucosal-associated invariant T cell levels at the initial detection of human cytomegalovirus DNAemia are significantly lower in patients who subsequently develop high-level versus low-level human cytomegalovirus reactivation. Our data describe distinct immune signatures that emerged with human cytomegalovirus reactivation after haematopoietic stem cell transplantation, and highlight Mucosal-associated invariant T cell levels at the first detection of reactivation as a marker that may be useful to anticipate the magnitude of human cytomegalovirus DNAemia.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos
19.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105802

RESUMO

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune , Proteínas Nucleares/imunologia , Proteólise , Proteínas do Envelope Viral/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Humanos , Proteínas Nucleares/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/imunologia , Proteínas do Envelope Viral/genética
20.
Front Immunol ; 13: 680559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154089

RESUMO

Human cytomegalovirus (HCMV) is an ubiquitous herpesvirus that can cause serious morbidity and mortality in immunocompromised or immune-immature individuals. A vaccine that induces immunity to CMV in these target populations is therefore highly needed. Previous attempts to generate efficacious CMV vaccines primarily focused on the induction of humoral immunity by eliciting neutralizing antibodies. Current insights encourage that a protective immune response to HCMV might benefit from the induction of virus-specific T cells. Whether addition of antiviral T cell responses enhances the protection by antibody-eliciting vaccines is however unclear. Here, we assessed this query in mouse CMV (MCMV) infection models by developing synthetic vaccines with humoral immunity potential, and deliberately adding antiviral CD8+ T cells. To induce antibodies against MCMV, we developed a DNA vaccine encoding either full-length, membrane bound glycoprotein B (gB) or a secreted variant lacking the transmembrane and intracellular domain (secreted (s)gB). Intradermal immunization with an increasing dose schedule of sgB and booster immunization provided robust viral-specific IgG responses and viral control. Combined vaccination of the sgB DNA vaccine with synthetic long peptides (SLP)-vaccines encoding MHC class I-restricted CMV epitopes, which elicit exclusively CD8+ T cell responses, significantly enhanced antiviral immunity. Thus, the combination of antibody and CD8+ T cell-eliciting vaccines provides a collaborative improvement of humoral and cellular immunity enabling enhanced protection against CMV.


Assuntos
Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos/imunologia , Imunidade Celular , Imunidade Humoral , Imunização Secundária/métodos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Vacinação , Vacinas de DNA/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA