Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Molecules ; 29(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39407507

RESUMO

BACKGROUND: Considering the increasing worldwide prevalence of inflammatory bowel disease (IBD), the early diagnosis of this disease is extremely important. However, non-invasive diagnostic methods remain limited, while invasive techniques are the most commonly used in daily practice. Therefore, there is a serious need to find new non-invasive biomarkers of IBD. METHODS: The serum profiles of occludin, claudin-2, and zonulin were assessed in IBD patients using the ELISA method. The levels of the analyzed biomarkers were measured before and after a year of anti-inflammatory treatment, which was a tumor necrosis factor α (TNF-α) inhibitor (adalimumab) in patients with ulcerative colitis (UC) and conventional therapy in patients with Crohn's disease (CD). RESULTS: In IBD patients, the serum level of occludin (p < 0.001) decreased compared to healthy individuals, while the level of claudin-2 (p < 0.001) increased. Additionally, zonulin (p < 0.01) concentration increased in CD patients compared to the control group. The highest diagnostic ability was presented by occludin measurements with the area under the curve (AUC) of 0.959 (95% CI 0.907-1) in UC and 0.948 (95% CI 0.879-1) in CD. Claudin-2 also demonstrated very good ability in diagnosing UC and CD with AUC values of 0.864 (95% CI 0.776-0.952) and 0.896 (95% CI 0.792-0.999), respectively. The ability of zonulin to diagnose CD was estimated as good with an AUC of 0.74 (95% CI 0.598-0.881). Moreover, a significant correlation was identified between C-reactive protein (CRP), claudin-2 (r = -0.37; p < 0.05), and zonulin (r = -0.44; p < 0.05) in UC patients. Treatment with adalimumab improved the level of occludin, claudin-2, and zonulin in UC patients, while anti-inflammatory conventional therapy decreased the concentration of zonulin in CD. CONCLUSIONS: Occludin and claudin-2 measurements present significant utility in diagnosing both UC and CD, while zonulin assessments may be useful in CD diagnosis. Additionally, claudin-2 and zonulin measurements may be helpful in evaluating the intensity of the inflammatory process. Anti-TNF-α treatment improved the value of occludin, claudin-2, and zonulin, indicating its beneficial effect on the integrity of tight junctions in UC.


Assuntos
Biomarcadores , Toxina da Cólera , Claudina-2 , Haptoglobinas , Ocludina , Precursores de Proteínas , Junções Íntimas , Humanos , Ocludina/metabolismo , Haptoglobinas/metabolismo , Biomarcadores/sangue , Toxina da Cólera/sangue , Masculino , Feminino , Precursores de Proteínas/sangue , Precursores de Proteínas/metabolismo , Adulto , Junções Íntimas/metabolismo , Pessoa de Meia-Idade , Claudina-2/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/sangue , Progressão da Doença , Doença de Crohn/tratamento farmacológico , Doença de Crohn/diagnóstico , Doença de Crohn/sangue , Doença de Crohn/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Claudinas
2.
P R Health Sci J ; 43(1): 39-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512760

RESUMO

OBJECTIVE: Hypertension is one of the cardiovascular diseases that causes the most mortality, and 95% of the causes are unknown. The aim of the study was to examine the possible correlation of nesfatin-1 levels, adropin levels, claudin-2 immunoreactivity (claudin-2 expression in the renal proximal tubule), and renalase immunoreactivity (renalase expression in the renal proximal tubule) with arterial blood pressure, kidney function, and kidney damage. METHODS: Adult male Sprague Dawley rats were divided into control and hypertension groups (8 per group). Angiotensin II vehicle was given to the control group and angiotensin II (0.7 mg/kg/day) to the hypertension group, both via an osmotic mini pump for 7 days. The animals blood pressures were measured by tail cuff plethysmography on days 1, 3, 5, and 7. On day 7, 24-hour urine, blood, and tissues were collected from the rats. RESULTS: In the hypertension group compared with the control group, there was an increase in systolic blood pressure levels after day 1. While claudin-2 immunoreactivity was reduced in the kidneys, renalase immunoreactivity was increased. There was a decrease in creatinine clearance and an increase in fractional potassium excretion (P < .05). CONCLUSION: Our results showed that claudin-2 and renalase are associated with renal glomerular and tubular dysfunction and may play discrete roles in the pathogenesis of hypertension. We believe that these potential roles warrant further investigation.


Assuntos
Proteínas Sanguíneas , Claudina-2 , Hipertensão , Glomérulos Renais , Túbulos Renais , Monoaminoxidase , Peptídeos , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Pressão Sanguínea , Claudina-2/metabolismo , Hipertensão/fisiopatologia , Monoaminoxidase/metabolismo , Ratos Sprague-Dawley , Proteínas Sanguíneas/metabolismo , Peptídeos/metabolismo , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Modelos Animais de Doenças
3.
J Oral Biosci ; 66(1): 126-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336260

RESUMO

OBJECTIVE: Disruption of the gingival epithelial barrier is often mediated by aging or the pathogen Porphyromonas gingivalis. This study examined the combined effects of aging and P. gingivalis exposure on gingival epithelial barrier molecules. METHODS: In vitro experiments involved treating young- and senescence-induced primary human gingival epithelial progenitor cells (HGEPp) with P. gingivalis lipopolysaccharide (LPS). Transepithelial electrical resistance (TER) and paracellular permeability were measured. In vivo, male C57BL/6J mice aged 10 (young) and 80 (old) weeks were divided into four groups: young, old, young with P. gingivalis (Pg-Young) inoculation, and old with P. gingivalis (Pg-Old) inoculation. P. gingivalis was inoculated orally thrice a week for 5 weeks. The mice were sacrificed 30 days after the last inoculation, and samples were collected for further procedures. The junctional molecules (Claudin-1, Claudin-2, E-cadherin, and Connexin) were analyzed for mRNA expression using qRT-PCR and protein production using western blotting and immunohistochemistry. The alveolar bone loss and inflammatory cytokine levels in gingival tissues were also assessed. RESULTS: LPS-treated senescent cells exhibited a pronounced reduction in TER, increased permeability to albumin protein, significant upregulation of Claudin-1 and Claudin-2, and significant downregulation of E-cadherin and Connexin. Furthermore, the Pg-Old group showed identical results with aging in addition to an increase in alveolar bone loss, significantly higher than that in the other groups. CONCLUSION: In conclusion, the host susceptibility to periodontal pathogens increases with age through changes in the gingival epithelial barrier molecules.


Assuntos
Perda do Osso Alveolar , Porphyromonas gingivalis , Masculino , Humanos , Animais , Camundongos , Porphyromonas gingivalis/metabolismo , Claudina-1/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Claudina-2/metabolismo , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Envelhecimento , Conexinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(10): e2217877121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412124

RESUMO

Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.


Assuntos
Claudina-2 , Sepse , Animais , Humanos , Camundongos , Claudina-2/genética , Claudina-2/metabolismo , Disbiose/genética , Disbiose/metabolismo , Função da Barreira Intestinal , Mucosa Intestinal/metabolismo , Permeabilidade , Sepse/metabolismo , Junções Íntimas/metabolismo , Regulação para Cima
5.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338808

RESUMO

Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.


Assuntos
Nódulos Linfáticos Agregados , Quercetina , Animais , Suínos , Quercetina/farmacologia , Quercetina/metabolismo , Nódulos Linfáticos Agregados/metabolismo , Claudina-4/metabolismo , Claudina-2/metabolismo , Claudina-1/metabolismo , Intestino Delgado/metabolismo , Claudinas/metabolismo , Junções Íntimas/metabolismo , Manitol/farmacologia
6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38219027

RESUMO

Six female littermate piglets were used in an experiment to evaluate the mRNA expression in tissues from piglets given one or two 1 mL injections of iron dextran (200 mg Fe/mL). All piglets in the litter were administered the first 1 mL injection < 24 h after birth. On day 7, piglets were paired by weight (mean body weight = 1.72 ±â€…0.13 kg) and one piglet from each pair was randomly selected as control (CON) and the other received a second injection (+Fe). At weaning on day 22, each piglet was anesthetized, and samples of liver and duodenum were taken from the anesthetized piglets and preserved until mRNA extraction. differential gene expression data were analyzed with a fold change cutoff (FC) of |1.2| P < 0.05. Pathway analysis was conducted with Z-score cutoff of P < 0.05. In the duodenum 435 genes were significantly changed with a FC ≥ |1.2| P < 0.05. In the duodenum, Claudin 1 and Claudin 2 were inversely affected by + Fe. Claudin 1 (CLDN1) plays a key role in cell-to-cell adhesion in the epithelial cell sheets and was upregulated (FC = 4.48, P = 0.0423). Claudin 2 (CLDN2) is expressed in cation leaky epithelia, especially during disease or inflammation and was downregulated (FC = -1.41, P = 0.0097). In the liver, 362 genes were expressed with a FC ≥ |1.2| P < 0.05. The gene most affected by a second dose of 200 mg Fe was hepcidin antimicrobial peptide (HAMP) with a FC of 40.8. HAMP is a liver-produced hormone that is the main circulating regulator of Fe absorption and distribution across tissues. It also controls the major flows of Fe into plasma by promoting endocytosis and degradation of ferroportin (SLC4A1). This leads to the retention of Fe in Fe-exporting cells and decreased flow of Fe into plasma. Gene expression related to metabolic pathway changes in the duodenum and liver provides evidence for the improved feed conversion and growth rates in piglets given two iron injections preweaning with contemporary pigs in a companion study. In the duodenum, there is a downregulation of gene clusters associated with gluconeogenesis (P < 0.05). Concurrently, there was a decrease in the mRNA expression of genes for enzymes required for urea production in the liver (P < 0.05). These observations suggest that there may be less need for gluconeogenesis, and possibly less urea production from deaminated amino acids. The genomic and pathway analyses provided empirical evidence linking gene expression with phenotypic observations of piglet health and growth improvements.


Iron deficiency anemia (IDA) in neonatal piglets is a problem that occurs unless there is intervention with exogenous iron. The most common method to prevent IDA is with an iron injection within 48 h of birth. However, the iron from the first injection will only support normal iron status in the piglets for ~4 kg of growth. As a result, with faster-growing piglets and larger litters, many piglets weaned today are iron deficient which results in slower growth and poor immunity. Pigs never fully recover nor grow at the same rate as those that have sufficient iron status. The aim of this study was to evaluate the effects of one or two injections of iron dextran on the differences in gene expression and metabolic pathway changes in the small intestine and liver of nursing piglets. At weaning, samples of liver and duodenum underwent genome-wide RNA sequencing. The data obtained were statistically analyzed to determine which genes and metabolic pathways were affected. There were 362 and 435 genes significantly changed in the liver and duodenum, respectively, due to a second dose of iron dextran on day 7 after birth.


Assuntos
Dextranos , Ferro , Animais , Feminino , Suínos , Ferro/metabolismo , Desmame , Dextranos/metabolismo , Claudina-1/metabolismo , Claudina-2/metabolismo , Lactação , Complexo Ferro-Dextran , Fígado/metabolismo , Duodeno/metabolismo , RNA Mensageiro/metabolismo , Ureia/metabolismo , Expressão Gênica
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 411-421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458776

RESUMO

The decrease in tight junction proteins and their adapter proteins in the hypertensive brain is remarkable. Here, we aimed to investigate tight junction proteins and peroxisome proliferator-activated receptor (PPARγ) activation as well as inflammation factors and cell death proteins in the brainstem of hypertension models, namely spontaneously hypertensive rats (SHR) and borderline hypertensive rats (BHR). At first, SHR and BHR groups were treated with PPARγ agonist, pioglitazone. Then, occludin, claudin-1, claudin-2, claudin-12, ZO-1, and NF-κB p65 gene expression levels; pIKKß, NF-κB p65, TNF, IL-1ß, caspase-3, caspase-9 levels, and PARP-1 cleavage were evaluated. Significantly lower pIKKß, NF-κB p65, TNF, and IL-1ß levels were measured in pioglitazone-treated SHR. Results from this study confirm higher occludin (1.35-fold), claudin-2 (7.45-fold), claudin-12 (1.12-fold), and NF-κB p65 subunit (4.76-fold) expressions in the BHR group when compared to the SHR group. Pioglitazone was found effective in terms of regulating gene expression in SHR. Pioglitazone significantly increased occludin (8.17-fold), claudin-2 (2.41-fold), and claudin-12 (1.85-fold) mRNA levels, which were accompanied by decreased cleaved caspase-3, caspase-9 levels, PARP-1 activation, and proinflammatory factor levels in SHR (p ˂ 0.05). Our work has led us to conclude that alterations in tight junction proteins, particularly occludin, and cell death parameters in the brainstem following PPARγ activation may contribute to neuroprotection in essential hypertension.


Assuntos
Hipertensão , PPAR gama , Ratos , Animais , Pioglitazona/farmacologia , PPAR gama/metabolismo , NF-kappa B/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Agonistas PPAR-gama , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-2/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Morte Celular , Tronco Encefálico/metabolismo
8.
J Sci Food Agric ; 104(4): 2518-2525, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938188

RESUMO

BACKGROUND: Xylobiose, a non-digestible disaccharide, largely contributes to the beneficial physiological effects of xylooligosaccharides. However, there is insufficient evidence to assess the direct effect of xylobiose on intestinal barrier function. Here, we investigated the intestinal barrier function in human intestinal Caco-2 cells treated with xylobiose. RESULTS: In total, 283 genes were upregulated and 256 genes were downregulated in xylobiose-treated Caco-2 cells relative to the controls. We focused on genes related to intestinal barrier function, such as tight junction (TJ) and heat shock protein (HSP). Xylobiose decreased the expression of the TJ gene Claudin 2 (CLDN2) and increased the expression of the cytoprotective HSP genes HSPB1 and HSPA1A, which encode HSP27 and HSP70, respectively. Immunoblot analysis confirmed that xylobiose suppressed CLDN2 expression and enhanced HSP27 and HSP70 expression. A quantitative reverse transcription-PCR and promoter assays indicated that xylobiose post-transcriptionally regulated CLDN2 and HSPB1 levels. Additionally, selective inhibition of phosphatidyl-3-inositol kinase (PI3K) inhibited xylobiose-mediated CLDN2 expression, whereas HSP27 expression induced by xylobiose was sensitive to the inhibition of PI3K, mitogen-activated protein kinase kinase and Src. CONCLUSION: The results of the present study reveal that xylobiose suppresses CLDN2 and increases HSP27 expression in intestinal Caco-2 cells via post-transcriptional regulation, potentially strengthening intestinal barrier integrity; however, these effects seem to occur via different signaling pathways. Our findings may help to assess the physiological role of xylobiose. © 2023 Society of Chemical Industry.


Assuntos
Claudina-2 , Proteínas de Choque Térmico HSP27 , Humanos , Células CACO-2 , Proteínas de Choque Térmico HSP27/metabolismo , Claudina-2/metabolismo , Mucosa Intestinal/metabolismo , Função da Barreira Intestinal , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico HSP70/genética , Dissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo
9.
Arch Biochem Biophys ; 751: 109846, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056686

RESUMO

Plasma-activated medium (PAM) has various biological activities including anticancer and antimicrobial. However, the effect on chemoresistance in cancer cells has not been clarified in detail. Solid cancer cells form a microenvironment in the body and acquire resistance against anticancer drugs. So far, we reported that claudin-2 (CLDN2), a component of tight junctions, suppresses the anticancer drug-induced cytotoxicity of spheroids that mimic in vivo tumors. Here, we found that the protein level of CLDN2 is downregulated by the sublethal concentration of PAM in human lung adenocarcinoma-derived A549 and PC-3 cells. A cycloheximide pulse-chase assay showed that PAM accelerates the degradation of CLDN2 protein. The PAM-induced reduction of CLDN2 protein was inhibited by a lysosome inhibitor, indicating PAM may enhance the lysosomal degradation of CLDN2. The paracellular permeability to doxorubicin (DXR), an anthracycline antitumor drug, was enhanced by PAM. In the spheroids, the accumulation and toxicity of DXR were enhanced by PAM. In addition, oxidative stress and the expression of nuclear factor erythroid 2-related factor 2, one of the key factors for the acquisition of chemoresistance, were attenuated by PAM. The improvement effect of PAM on chemoresistance was suppressed by the exogenous CLDN2 overexpression. These results indicate that PAM has the ability to downregulate CLDN2 expression and may become an adjuvant drug against lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Claudina-2/metabolismo , Regulação para Baixo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Microambiente Tumoral
10.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003485

RESUMO

The urothelium is a vital permeability barrier that prevents the uncontrolled flow of urinary components into and out of the bladder interstitium. Our study addressed the question of possible sex-specific variations in the urothelium of healthy mice and their impact on chronic bladder inflammation. We found that healthy female bladders have a less robust barrier function than male bladders, as indicated by significant differences in transepithelial electrical resistance (TEER) values. These differences could be attributed to detected higher claudin 2 mRNA expression and a less pronounced glycocalyx in females than in males. In addition, TEER measurements showed delayed barrier recovery in chronically inflamed female bladders. We found subtle differences in the expressions of genes involved in the regulation of the actin cytoskeleton between the sexes, as well as pronounced urothelial hyperplasia in females compensating for attenuated barrier function. The identified genetic variations in glycosylation pathways may also contribute to this divergence. Our findings add to the growing body of literature on the intricate sex-specific nuances of urothelial permeability function and their implications for chronic bladder inflammation. Understanding these differences could lead to tailored diagnostic and therapeutic approaches in the treatment of bladder disorders in the future.


Assuntos
Cistite , Bexiga Urinária , Feminino , Masculino , Camundongos , Animais , Bexiga Urinária/metabolismo , Cistite/metabolismo , Hematúria , Claudina-2/metabolismo , Urotélio/metabolismo
11.
Sci Rep ; 13(1): 17429, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833387

RESUMO

Next to the skin, the peritoneum is the largest human organ, essentially involved in abdominal health and disease states, but information on peritoneal paracellular tight junctions and transcellular channels and transporters relative to peritoneal transmembrane transport is scant. We studied their peritoneal localization and quantity by immunohistochemistry and confocal microscopy in health, in chronic kidney disease (CKD) and on peritoneal dialysis (PD), with the latter allowing for functional characterizations, in a total of 93 individuals (0-75 years). Claudin-1 to -5, and -15, zonula occludens-1, occludin and tricellulin, SGLT1, PiT1/SLC20A1 and ENaC were consistently detected in mesothelial and arteriolar endothelial cells, with age dependent differences for mesothelial claudin-1 and arteriolar claudin-2/3. In CKD mesothelial claudin-1 and arteriolar claudin-2 and -3 were more abundant. Peritonea from PD patients exhibited increased mesothelial and arteriolar claudin-1 and mesothelial claudin-2 abundance and reduced mesothelial and arteriolar claudin-3 and arteriolar ENaC. Transperitoneal creatinine and glucose transport correlated with pore forming arteriolar claudin-2 and mesothelial claudin-4/-15, and creatinine transport with mesothelial sodium/phosphate cotransporter PiT1/SLC20A1. In multivariable analysis, claudin-2 independently predicted the peritoneal transport rates. In conclusion, tight junction, transcellular transporter and channel proteins are consistently expressed in peritoneal mesothelial and endothelial cells with minor variations across age groups, specific modifications by CKD and PD and distinct associations with transperitoneal creatinine and glucose transport rates. The latter deserve experimental studies to demonstrate mechanistic links.Clinical Trial registration: The study was performed according to the Declaration of Helsinki and is registered at www.clinicaltrials.gov (NCT01893710).


Assuntos
Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Peritônio/metabolismo , Junções Íntimas/metabolismo , Claudina-1/metabolismo , Células Endoteliais/metabolismo , Claudina-2/metabolismo , Creatinina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal/metabolismo , Glucose/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
12.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815870

RESUMO

Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.


Assuntos
Neoplasias Associadas a Colite , Colite , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Claudina-2/genética , Claudina-2/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Neoplasias Associadas a Colite/complicações , Neoplasias Associadas a Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Survivina/metabolismo
14.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566083

RESUMO

Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.


Assuntos
Claudina-2 , Junções Íntimas , Animais , Cães , Células Madin Darby de Rim Canino , Junções Íntimas/metabolismo , Claudina-2/genética , Claudina-2/metabolismo , Linhagem Celular , Claudinas/genética , Claudinas/metabolismo
15.
Function (Oxf) ; 4(5): zqad033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575484

RESUMO

A higher concentration of calcium in breast milk than blood favors paracellular calcium absorption enabling growth during postnatal development. We aimed to determine whether suckling animals have greater intestinal calcium permeability to maximize absorption and to identify the underlying molecular mechanism. We examined intestinal claudin expression at different ages in mice and in human intestinal epithelial (Caco-2) cells in response to hormones or human milk. We also measured intestinal calcium permeability in wildtype, Cldn2 and Cldn12 KO mice and Caco-2 cells in response to hormones or human milk. Bone mineralization in mice was assessed by µCT. Calcium permeability across the jejunum and ileum of mice were 2-fold greater at 2 wk than 2 mo postnatal age. At 2 wk, Cldn2 and Cldn12 expression were greater, but only Cldn2 KO mice had decreased calcium permeability compared to wildtype. This translated to decreased bone volume, cross-sectional thickness, and tissue mineral density of femurs. Weaning from breast milk led to a 50% decrease in Cldn2 expression in the jejunum and ileum. Epidermal growth factor (EGF) in breast milk specifically increased only CLDN2 expression and calcium permeability in Caco-2 cells. These data support intestinal permeability to calcium, conferred by claudin-2, being greater in suckling mice and being driven by EGF in breast milk. Loss of the CLDN2 pathway leads to suboptimal bone mineralization at 2 wk of life. Overall, EGF-mediated control of intestinal claudin-2 expression contributes to maximal intestinal calcium absorption in suckling animals.


Assuntos
Claudina-2 , Fator de Crescimento Epidérmico , Humanos , Feminino , Animais , Camundongos , Claudina-2/metabolismo , Células CACO-2 , Estudos Transversais , Cálcio da Dieta/metabolismo , Permeabilidade
16.
Commun Biol ; 6(1): 740, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460613

RESUMO

Impaired autophagy promotes Inflammatory Bowel Disease (IBD). Claudin-2 is upregulated in IBD however its role in the pathobiology remains uncertain due to its complex regulation, including by autophagy. Irrespective, claudin-2 expression protects mice from DSS colitis. This study was undertaken to examine if an interplay between autophagy and claudin-2 protects from colitis and associated epithelial injury. Crypt culture and intestinal epithelial cells (IECs) are subjected to stress, including starvation or DSS, the chemical that induces colitis in-vivo. Autophagy flux, cell survival, co-immunoprecipitation, proximity ligation assay, and gene mutational studies are performed. These studies reveal that under colitis/stress conditions, claudin-2 undergoes polyubiquitination and P62/SQSTM1-assisted degradation through autophagy. Inhibiting autophagy-mediated claudin-2 degradation promotes cell death and thus suggest that claudin-2 degradation promotes autophagy flux to promote cell survival. Overall, these data inform for the previously undescribed role for claudin-2 in facilitating IECs survival under stress conditions, which can be harnessed for therapeutic advantages.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Claudina-2/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Mucosa Intestinal/metabolismo , Colite/metabolismo , Autofagia/fisiologia , Doenças Inflamatórias Intestinais/metabolismo
17.
Biochem Soc Trans ; 51(4): 1437-1445, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37387353

RESUMO

Claudin-2 is a tight junction protein expressed in leaky epithelia where it forms paracellular pores permeable to cations and water. The paracellular pore formed by claudin-2 is important in energy-efficient cation and water transport in the proximal tubules of the kidneys. Mounting evidence now suggests that claudin-2 may modulate cellular processes often altered in disease, including cellular proliferation. Also, dysregulation of claudin-2 expression has been linked to various diseases, including kidney stone disease and renal cell carcinoma. However, the mechanisms linking altered claudin-2 expression and function to disease are poorly understood and require further investigation. The aim of this review is to discuss the current understanding of the role of claudin-2 in kidney function and dysfunction. We provide a general overview of the claudins and their organization in the tight junction, the expression, and function of claudin-2 in the kidney, and the evolving evidence for its role in kidney disease.


Assuntos
Claudina-2 , Túbulos Renais Proximais , Claudina-2/metabolismo , Túbulos Renais Proximais/metabolismo , Transporte Biológico/fisiologia , Rim/metabolismo , Junções Íntimas/metabolismo , Água/metabolismo
18.
Food Funct ; 14(10): 4777-4791, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37128780

RESUMO

Inflammatory bowel disease (IBD) is continuously increasing globally and caused by intestinal barrier dysfunction. Although protocatechuic acid (PCA) has a protective effect on colitis, the molecular mechanisms underlying its contribution to intestinal barrier function remain unknown. Transepithelial electrical resistance (TEER) and FITC-dextran permeability measurements reveled that PCA suppresses lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α-induced increase in intestinal permeability; zonula occludens (ZO)-1 and claudin-2 redistribution was also suppressed in the epithelial cell membranes of differentiated Caco-2 cells. PCA was found to directly bind Rho-associated coiled-coil containing protein kinase (ROCK), subsequently suppressing myosin light chain (MLC) phosphorylation. Notably, PCA binds ROCK to a similar degree as Y27632, a selective ROCK inhibitor. Orally administering PCA (5 or 25 mg per kg per day) to C57BL/6 mice alleviated the 3% dextran sulfate sodium (DSS)-induced colitis symptoms including reduced colon length, disrupted intestinal barrier structure, and increased proinflammatory cytokines expressions, such as interleukin (IL)-1ß, TNF-α, and IL-6. Furthermore, orally administering PCA suppressed DSS-induced ZO-1 and claudin-2/4 redistribution in mice colon membrane fractions. Therefore, PCA may serve as a promising nutraceutical to improve gut health and alleviate IBD by maintaining intestinal barrier function in vitro and in vivo.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia , Proteínas de Junções Íntimas/metabolismo , Claudina-2/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Íntimas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/efeitos adversos
19.
Chem Biodivers ; 20(6): e202300572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37218365

RESUMO

This study aims to explore the protective effects of Picroside III, an active ingredient of Picrorhiza scrophulariiflora, on the intestinal epithelial barrier in tumor necrosis factor-α (TNF-α) induced Caco-2 cells and dextran sulfate sodium (DSS) induced colitis in mice. Results show that Picroside III significantly alleviated clinical signs of colitis including body weight loss, disease activity index increase, colon shortening, and colon tissue damage. It also increased claudin-3, ZO-1 and occludin expressions and decreased claudin-2 expression in the colon tissues of mice with colitis. In vitro, Picroside III also significantly promoted wound healing, decreased the permeability of cell monolayer, upregulated the expressions of claudin-3, ZO-1 and occludin and downregulated the expression of claudin-2 in TNF-α treated Caco-2 cells. Mechanism studies show that Picroside III significantly promoted AMP-activated protein kinase (AMPK) phosphorylation in vitro and in vivo, and blockade with AMPK could significantly attenuate the upregulation of Picroside III in ZO-1 and occludin expressions and the downregulation of claudin-2 expression in TNF-α treated Caco-2 cells. In conclusion, this study demonstrates that Picroside III attenuated DSS-induced colitis by promoting colonic mucosal wound healing and epithelial barrier function recovery via the activation of AMPK.


Assuntos
Colite , Picrorhiza , Humanos , Camundongos , Animais , Picrorhiza/metabolismo , Células CACO-2 , Claudina-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Claudina-3/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Mucosa Intestinal , Modelos Animais de Doenças
20.
Anat Histol Embryol ; 52(5): 723-731, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37147871

RESUMO

Claudin-2 is a tight junction protein found in various tissues including the epidermis of the skin. Intracellular signalling via claudin-2 may have an effect on cell proliferation and migration. While the role of claudin-2 in the epidermis has not been established, here we show an increase in claudin-2 expression in hyperproliferative archival skin samples. To further examine the role of claudin-2 in cell migration we examined its expression in cultured keratinocytes and found it was increased in wound margins in an in vitro scratch test assay. We then used a claudin-2 knockdown assay using small interfering ribonucleic acid (siRNA) with a 77% transfection efficiency and decrease in claudin-2 protein via Western blot analysis to examine cell migration, which was inhibited following claudin-2 knockdown over a 5-day period. Cells transfected with claudin-2 siRNA also showed a decreased size compared to controls and a more diffuse staining pattern. Lastly we examined claudin-2 expression in migrating keratinocytes by Western blot analysis and found a significant decrease in protein staining in scratch-test assay cultures after 4 h, followed by a significant increase in claudin-2 protein after 24 h. Taken together these results indicate a role for claudin-2 signalling in proliferation and cell migration in the epidermis of the skin.


Assuntos
Claudina-2 , Queratinócitos , Animais , Proliferação de Células , Claudina-2/metabolismo , Epiderme , Queratinócitos/metabolismo , RNA Interferente Pequeno/genética , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA