Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
Mol Phylogenet Evol ; 200: 108165, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39117294

RESUMO

Green algae usually assigned to the genus Oophila are known to colonize egg capsules of amphibian egg masses across the Nearctic and Palearctic regions. We study the phylogenetic relationships of these algae using a phylotranscriptomic data set of 76 protein-coding single-copy nuclear genes. Our data set includes novel RNAseq data for six amphibian-associated and five free-living green algae, and draft genomes of two of the latter. Within the Oophila clade (nested within Moewusinia), we find samples from two European frogs (Rana dalmatina and R. temporaria) closely related to those of the North American frog R. aurora (Oophila subclade III). An isolate from the North American R. sylvatica (subclade IV) appears to be sister to the Japanese isolate from the salamander Hynobius nigrescens (subclade J1), and subclade I algae from Ambystoma maculatum are sister to all other lineages in the Oophila clade. Two free-living algae (Chlamydomonas nasuta and Cd. pseudogloeogama) are nested within the Oophila clade, and a strain of the type species of Chlorococcum (Cc. infusionum) is related to this assemblage. Our phylotranscriptomic tree suggests that recognition of different species within the Oophila clade ("clade B" of earlier studies) is warranted, and calls for a comprehensive taxonomic revision of Moewusinia.


Assuntos
Filogenia , Animais , Óvulo , Transcriptoma , Clorófitas/genética , Clorófitas/classificação , Ranidae/genética , Ranidae/classificação , Anfíbios/genética , Anfíbios/classificação
2.
Sci Rep ; 14(1): 18980, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152251

RESUMO

Desmodesmus spp. are one of the most dominant components of phytoplankton, which are present in most water bodies. However, identification of the species based only on morphological data is challenging. The aim of the present study was to provide a comprehensive understanding of the actual distribution of the Desmodesmus species in Saga City, Saga Prefecture, Japan. In the present study, 38 water bodies were surveyed between June 2017 and March 2023. A total of 86 culture strains were established from the samples collected from the 21 sites, and identified by molecular phylogenetic analysis, comparison of ITS2 rRNA secondary structures, and observation of surface microstructure. In total, four new species, including D. notatus Demura sp. nov., D. lamellatus Demura sp. nov., D. fragilis Demura sp. nov., and D. reticulatus Demura sp. nov. were proposed and 17 Desmodesmus species were identified as described species. The present study revealed > 20 Desmodesmus species, exhibiting high genetic diversity in a small area.


Assuntos
Clorofíceas , Filogenia , Japão , Clorofíceas/genética , Clorofíceas/classificação , Fitoplâncton/classificação , Fitoplâncton/genética , Variação Genética , Biodiversidade , Clorófitas/classificação , Clorófitas/genética
3.
An Acad Bras Cienc ; 96(3): e20220870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958359

RESUMO

The littoral zone is an essential compartment for lake biota because of its high productivity and diversity. Moreover, phytoplankton is expected to have non-equilibrium dynamics on it. The study's aimed to explore phytoplankton in the littoral zone of a shallow lake over a short-term scale. Daily sampling was conducted for 25 consecutive summer days in 2016, at two marginal points of a continuously warm, polymictic, and oligo-mesotrophic subtropical lake (Lake Mangueira, Brazil). Cyanobacteria and Chlorophyta contributed 86% of total biomass. We observed high variability in phytoplankton structure, with species turnover over diel cycles. Redundancy analysis indicated spatial differentiation for phytoplankton structure in relation to abiotic conditions. Nutrient dynamics and humic substances were significant drivers for phytoplankton variability. Phytoplankton was positively correlated with SRP and negatively with humic substances. Our results showed a non- equilibrium state for the littoral phytoplankton of Lake Mangueira, given the high variability of abiotic conditions, even at short distances. Due to its high temporal and spatial variability, the littoralzone seems to contribute to the recruitment and maintenance of phytoplankton biodiversity in shallow lakes. Further studies should consider the functional attributes of species and the complex biological interactions of phytoplankton and macrophytes along the littoral zone.


Assuntos
Biomassa , Lagos , Fitoplâncton , Estações do Ano , Fitoplâncton/classificação , Brasil , Biodiversidade , Cianobactérias/classificação , Monitoramento Ambiental/métodos , Clorófitas/classificação
4.
J Phycol ; 60(4): 1021-1027, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989846

RESUMO

The marine prasinophyte green algae Pycnococcus provasolii and Pseudoscourfieldia marina represent the only extant genera and known species of the Pycnococcaceae. However, their taxonomic status needs to be reassessed, owing to the very close relationship inferred from previous sequence comparisons of individual genes. Although Py. provasolii and Ps. marina are morphologically different, their plastid rbcL and nuclear small subunit rRNA genes were observed to be nearly or entirely identical in sequence, thus leading to the hypothesis that they represent distinct growth forms or alternate life-cycle stages of the same organism. To evaluate this hypothesis, we used organelle genomes as molecular markers. The plastome and mitogenome of Ps. marina UIO 007 were sequenced and compared with those available for two isolates of Py. provasolii (CCMP 1203 and CCAP 190/2). The Ps. marina organelle genomes proved to be almost identical in size and had the same gene content and gene order as their Py. provasolii counterparts. Single nucleotide substitutions and insertions/deletions were localized using genome-scale sequence alignments. Over 99.70% sequence identities were observed in all pairwise comparisons of plastomes and mitogenomes. Alignments of both organelle genomes revealed that Ps. marina UIO 007 is closer to Py. provasolii CCAP 190/2 than are the two Py. provasolii strains to one another. Therefore, our results are not consistent with the placement of Ps. marina and Py. provasolii strains into distinct genera. We propose a taxonomic revision of the Pycnococcaceae and the erection of a new class of Chlorophyta, the Pseudoscourfieldiophyceae.


Assuntos
Clorófitas , Genoma Mitocondrial , Filogenia , Clorófitas/genética , Clorófitas/classificação , Genomas de Plastídeos
5.
PLoS One ; 19(7): e0304144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074348

RESUMO

The colonial green microalga Botryococcus braunii is well known for producing liquid hydrocarbons that can be utilized as biofuel feedstocks. B. braunii is taxonomically classified as a single species made up of three chemical races, A, B, and L, that are mainly distinguished by the hydrocarbons produced. We previously reported a B race draft nuclear genome, and here we report the draft nuclear genomes for the A and L races. A comparative genomic study of the three B. braunii races and 14 other algal species within Chlorophyta revealed significant differences in the genomes of each race of B. braunii. Phylogenomically, there was a clear divergence of the three races with the A race diverging earlier than both the B and L races, and the B and L races diverging from a later common ancestor not shared by the A race. DNA repeat content analysis suggested the B race had more repeat content than the A or L races. Orthogroup analysis revealed the B. braunii races displayed more gene orthogroup diversity than three closely related Chlamydomonas species, with nearly 24-36% of all genes in each B. braunii race being specific to each race. This analysis suggests the three races are distinct species based on sufficient differences in their respective genomes. We propose reclassification of the three chemical races to the following species names: Botryococcus alkenealis (A race), Botryococcus braunii (B race), and Botryococcus lycopadienor (L race).


Assuntos
Clorófitas , Genômica , Filogenia , Genômica/métodos , Clorófitas/genética , Clorófitas/classificação , Genoma de Planta , Hidrocarbonetos/metabolismo
6.
An Acad Bras Cienc ; 95(suppl 2): e20220917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055560

RESUMO

In the present study, a taxonomic review was conducted on representatives of the genus Tetmemorus (Desmidiaceae, Zygnematophyceae) documented within Brazilian territory. This review involved compiling data from the literature and analyzing samples collected throughout the Bahia State, updating our knowledge about this genus in Brazil. For each identified taxon, we provided information such as description, distribution across biomes and states, watersheds, ecological aspects (including habitat and community types), a list of examined (and excluded) materials, and taxonomic comments. Additionally, a taxonomic key for all species reported in Brazil was provided. Through this comprehensive review, we identified a total of eight Tetmemorus taxa occurring in Brazilian territory, comprising five species (T. brebissonii, T. furcatus, T. granulatus, T. laevis, T. planctonicus) and three non-typical varieties (T. brebissonii var. minor, T. laevis var. borgei, T. laevis var. minutus).


Assuntos
Clorófitas , Ecossistema , Dispersão Vegetal , Brasil , Clorófitas/classificação , Clorófitas/genética
7.
J Cell Physiol ; 238(6): 1324-1335, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087727

RESUMO

MADS transcription factors are involved in the regulation of fruit development and carotenoid metabolism in plants. However, whether and how carotenoid accumulation is regulated by algal MADS are largely unknown. In this study, we first used functional complementation to confirm the functional activity of phytoene synthase from the lutein-rich Dunaliella sp. FACHB-847 (DbPSY), the key rate-limiting enzyme in the carotenoid biosynthesis. Promoters of DbPSY and DbLcyB (lycopene ß-cyclase) possessed multiple cis-acting elements such as light-, UV-B-, dehydration-, anaerobic-, and salt-responsive elements, W-box, and C-A-rich-G-box (MADS-box). Meanwhile, we isolated one nucleus-localized MADS transcription factor (DbMADS), belonging to type I MADS gene. Three carotenogenic genes, DbPSY, DbLcyB, and DbBCH (ß-carotene hydroxylase) genes were upregulated at later stages, which was well correlated with the carotenoid accumulation. In contrast, DbMADS gene was highly expressed at lag phase with low carotenoid accumulation. Yeast one-hybrid assay and dual-luciferase reporter assay demonstrated that DbMADS could directly bind to the promoters of two carotenogenic genes, DbPSY and DbLcyB, and repress their transcriptions. This study suggested that DbMADS may act as a negative regulator of carotenoid biosynthesis by repressing DbPSY and DbLcyB at the lag phase, which provide new insights into the regulatory mechanisms of carotenoid metabolism in Dunaliella.


Assuntos
Carotenoides , Clorófitas , Carotenoides/metabolismo , Clorófitas/classificação , Clorófitas/genética , Regulação da Expressão Gênica de Plantas , Luteína , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
8.
Nature ; 615(7952): 468-471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890226

RESUMO

The animal phyla and their associated body plans originate from a singular burst of evolution occurring during the Cambrian period, over 500 million years ago1. The phylum Bryozoa, the colonial 'moss animals', have been the exception: convincing skeletons of this biomineralizing clade have been absent from Cambrian strata, in part because potential bryozoan fossils are difficult to distinguish from the modular skeletons of other animal and algal groups2,3. At present, the strongest candidate4 is the phosphatic microfossil Protomelission5. Here we describe exceptionally preserved non-mineralized anatomy in Protomelission-like macrofossils from the Xiaoshiba Lagerstätte6. Taken alongside the detailed skeletal construction and the potential taphonomic origin of 'zooid apertures', we consider that Protomelission is better interpreted as the earliest dasycladalean green alga-emphasizing the ecological role of benthic photosynthesizers in early Cambrian communities. Under this interpretation, Protomelission cannot inform the origins of the bryozoan body plan; despite a growing number of promising candidates7-9, there remain no unequivocal bryozoans of Cambrian age.


Assuntos
Briozoários , Clorófitas , Fósseis , Filogenia , Animais , Briozoários/anatomia & histologia , Briozoários/classificação , Fosfatos/metabolismo , Clorófitas/anatomia & histologia , Clorófitas/classificação , Fotossíntese , China
9.
Nat Commun ; 13(1): 146, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013306

RESUMO

The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems.


Assuntos
Clorofila/química , Clorófitas/ultraestrutura , Complexos de Coordenação/química , Fósseis , Fotossíntese/fisiologia , Evolução Biológica , Clorofila/história , Clorófitas/anatomia & histologia , Clorófitas/classificação , Clorófitas/fisiologia , República Democrática do Congo , Ecossistema , Células Eucarióticas , Sedimentos Geológicos/análise , História Antiga , Microscopia Eletrônica de Transmissão , Níquel/química , Filogenia , Células Vegetais/fisiologia , Células Vegetais/ultraestrutura , Tetrapirróis/química , Espectroscopia por Absorção de Raios X
10.
Mol Biol Rep ; 49(1): 179-188, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34686990

RESUMO

BACKGROUND: Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS: Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS: The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.


Assuntos
Clorófitas/classificação , Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética , DNA Ribossômico/genética , Regiões Antárticas , Clorófitas/genética , DNA de Algas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Lagos , Filogenia , Análise de Sequência de DNA
11.
Mar Drugs ; 19(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203079

RESUMO

Photooxidative stress-inducible water-soluble astaxanthin-binding proteins, designated as AstaP, were identified in two Scenedesmaceae strains, Coelastrella astaxanthina Ki-4 and Scenedesmus obtusus Oki-4N; both strains were isolated under high light conditions. These AstaPs are classified as a novel family of carotenoprotein and are useful for providing valuable astaxanthin in water-soluble form; however, the distribution of AstaP orthologs in other microalgae remains unknown. Here, we examined the distribution of AstaP orthologs in the family Scenedesmaceae with two model microalgae, Chlamydomonas reinhardtii and Chlorella variabilis. The expression of AstaP orthologs under photooxidative stress conditions was detected in cell extracts of Scenedesmaceae strains, but not in model algal strains. Aqueous orange proteins produced by Scenedesmaceae strains were shown to bind astaxanthin. The protein from Scenedesmus costatus SAG 46.88 was purified. It was named ScosAstaP and found to bind astaxanthin. The deduced amino acid sequence from a gene encoding ScosAstaP showed 62% identity to Ki-4 AstaP. The expression of the genes encoding AstaP orthologs was shown to be inducible under photooxidative stress conditions; however, the production amounts of AstaP orthologs were estimated to be approximately 5 to 10 times lower than that of Ki-4 and Oki-4N.


Assuntos
Proteínas de Transporte/metabolismo , Clorófitas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Clorófitas/química , Clorófitas/classificação , Luz , Scenedesmus/química , Scenedesmus/classificação , Scenedesmus/metabolismo , Solubilidade , Água , Xantofilas/química , Xantofilas/isolamento & purificação , Xantofilas/metabolismo
12.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135337

RESUMO

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Assuntos
Clorófitas/metabolismo , Oceanos e Mares , Fotorreceptores de Plantas/metabolismo , Fitoplâncton/metabolismo , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Clorófitas/classificação , Clorófitas/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolução Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplâncton/classificação , Fitoplâncton/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica/efeitos da radiação
13.
Sci Rep ; 11(1): 8701, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888793

RESUMO

We studied the biodiversity of Asterochloris photobionts found in Bolivian lichens to better understand their global spatial distribution and adaptation strategies in the context of a worldwide phylogeny of the genus. Based on nuclear ITS rDNA, the chloroplast rbcL gene and the actin type I gene we reconstructed a phylogenetic tree that recovered nine new Asterochloris lineages, while 32 Bolivian photobiont samples were assigned to 12 previously recognized Asterochloris lineages. We also show that some previously discovered Asterochloris photobiont species and lineages may occur in a broader spectrum of climatic conditions, and mycobiont species and photobionts may show different preferences along an altitude gradient. To reveal general patterns of of mycobiont specificity towards the photobiont in Asterochloris, we tested the influence of climate, altitude, geographical distance and effects of symbiotic partner (mycobiont) at the species level of three genera of lichen forming fungi: Stereocaulon, Cladonia and Lepraria. Further, we compared the specificity of mycobionts towards Asterochloris photobionts in cosmopolitan, Neotropical, and Pantropical lichen forming fungi. Interestingly, cosmopolitan species showed the lowest specificity to their photobionts, but also the lowest haplotype diversity. Neotropical and Paleotropical mycobionts, however, were more specific.


Assuntos
Clorófitas/fisiologia , Ecossistema , Líquens/fisiologia , Biodiversidade , Bolívia , Clorófitas/classificação , Líquens/classificação , Filogenia , Simbiose
14.
Microb Ecol ; 81(2): 323-334, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32860076

RESUMO

Assessment of the diversity of algal assemblages in Antarctica has until now largely relied on traditional microbiological culture approaches. Here we used DNA metabarcoding through high-throughput sequencing (HTS) to assess the uncultured algal diversity at two sites on Deception Island, Antarctica. The first was a relatively undisturbed site within an Antarctic Specially Protected Area (ASPA 140), and the second was a site heavily impacted by human visitation, the Whalers Bay historic site. We detected 65 distinct algal taxa, 50 from within ASPA 140 and 61 from Whalers Bay. Of these taxa, 46 were common to both sites, and 19 only occurred at one site. Algal richness was about six times greater than reported in previous studies using culture methods. A high proportion of DNA reads obtained was assigned to the highly invasive species Caulerpa webbiana at Whalers Bay, and the potentially pathogenic genus Desmodesmus was found at both sites. Our data demonstrate that important differences exist between these two protected and human-impacted sites on Deception Island in terms of algal diversity, richness, and abundance. The South Shetland Islands have experienced considerable effects of climate change in recent decades, while warming through geothermal activity on Deception Island itself makes this island one of the most vulnerable to colonization by non-native species. The detection of DNA of non-native taxa highlights concerns about how human impacts, which take place primarily through tourism and national research operations, may influence future biological colonization processes in Antarctica.


Assuntos
Biodiversidade , Clorófitas/crescimento & desenvolvimento , Ilhas , Regiões Antárticas , Clorófitas/classificação , Clorófitas/genética , Ecossistema , Geografia , Humanos , Espécies Introduzidas , Microbiologia do Solo
15.
Microb Ecol ; 81(2): 437-453, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32989484

RESUMO

Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.


Assuntos
Aclimatação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Microalgas/fisiologia , Proteoma/metabolismo , Proteínas de Algas/metabolismo , Parede Celular/metabolismo , Clorófitas/classificação , Clorófitas/metabolismo , Clorófitas/fisiologia , Dessecação , Líquens/classificação , Líquens/metabolismo , Líquens/fisiologia , Microalgas/classificação , Microalgas/metabolismo , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Água/metabolismo
16.
Mycologia ; 113(1): 43-55, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33146594

RESUMO

Mycobionts of many lichen genera appear to demonstrate strong selectivity in the choice of algal partner. The biological properties of a photobiont and its availability in an environment significantly determine the habitat requirements of lichens. Flexibility in photobiont choice extends the ecological amplitude of lichens; therefore, it may constitute an important adaptive strategy for colonization of extreme habitats. The photobiont inventory of the three epigeic lichens most resistant to soil pollution, i.e., Cladonia cariosa, C. rei, and the hyperaccumulator Diploschistes muscorum, was examined to verify whether and to what extent algal composition depends on the type of habitat and substrate enrichment with heavy metals. Photobionts Asterochloris and Trebouxia were identified in the studied lichen species; however, the presence of Trebouxia was directly related to anthropogenic sites with technogenic substrates, and the proportion of lichen specimens with these algae clearly depended on the level of heavy-metal soil pollution and the habitat type. The total number of algal haplotypes increased with increasing soil pollution, and the richness was associated more with soil pollution than with a given lichen species. Additionally, a large number of lichen individuals bearing multiple algal genotypes at polluted sites were recorded. Although Cladonia lichens were previously thought to be restricted to Asterochloris, they are able to start the relichenization process with Trebouxia under specific habitat conditions and to establish a stable association with these algae when colonization of disturbed sites takes place. Comparative analysis of the internal transcribed spacer (ITS) rDNA sequences revealed as many as 13 haplotypes of Trebouxia, and phylogenetic analysis grouped them into two different clades. Such a high level of genetic diversity indicates that Trebouxia is well adapted to metal pollution and could be an alternative photosynthetic partner for certain lichens, especially in polluted sites.


Assuntos
Clorófitas , Líquens , Metais Pesados/metabolismo , Ascomicetos/fisiologia , Clorófitas/classificação , Clorófitas/genética , Clorófitas/metabolismo , DNA de Algas , DNA Espaçador Ribossômico , Poluição Ambiental , Genótipo , Líquens/fisiologia , Filogenia , Poluentes do Solo/metabolismo , Simbiose
17.
World J Microbiol Biotechnol ; 36(10): 149, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914262

RESUMO

A terrestrial green microalga was isolated at Ås, in Akershus County, Norway. The strain corresponded to a coccoid chlorophyte. Morphological characteristics by light and electron microscopy, in conjunction with DNA amplification and sequencing of the 18 s rDNA gene and ITS sequences, were used to identify the microalgae. The characteristics agree with those of the genus Coelastrella defined by Chodat, and formed a sister group with the recently described C. thermophila var. globulina. Coelastrella is a relatively small numbered genus that has not been observed in continental Norway before; there are no previous cultures available in collections of Norwegian strains. Gas chromatography analyses of the FAME-derivatives showed a high percentage of polyunsaturated fatty acids (44-45%) especially linolenic acid (C18:3n3; 30-34%). After the stationary phase, the cultures were able to accumulate several carotenoids as neoxanthin, pheophytin a, astaxanthin, canthaxanthin, lutein, and violaxanthin. Due to the scarcity of visual characters suitable for diagnostic purposes and the lack of DNA sequence information, there is a high possibility that species of this genus have been neglected in local environmental studies, even though it showed interesting properties for algal biotechnology.


Assuntos
Clorófitas/classificação , Microalgas/classificação , Microalgas/isolamento & purificação , Filogenia , Biotecnologia , Carotenoides/análise , Clorófitas/citologia , Clorófitas/genética , DNA Ribossômico , Ácidos Graxos/análise , Microalgas/citologia , Microalgas/genética , Noruega , Feofitinas/análise , Pigmentos Biológicos/análise , RNA Ribossômico 18S/genética , Especificidade da Espécie , Xantofilas , Ácido alfa-Linolênico/análise
18.
Environ Microbiol ; 22(11): 4620-4632, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803809

RESUMO

The soils of the McMurdo Dry Valleys (MDV) of Antarctica are established models for understanding fundamental processes in soil ecosystem functioning (e.g. ecological tipping points, community structuring and nutrient cycling) because the extreme physical environment drastically reduces biodiversity and ecological complexity. Understanding the functioning of MDV soils requires in-depth knowledge of the diversity of MDV soil species. Protists, which contribute significantly to soil ecosystem functioning worldwide, remain poorly characterized in the MDV. To better assess the diversity of MDV protists, we performed shotgun metagenomics on 18 sites representing a variety of landscape features and edaphic variables. Our results show MDV soil protists are diverse at both the genus (155 of 281 eukaryote genera) and family (120) levels, but comprise only 6% of eukaryotic reads. Protists are structured by moisture, total N and distance from the local coast and possess limited richness in arid (< 5% moisture) and at high elevation sites, known drivers of communities in the MDV. High relative diversity and broad distribution of protists in our study promotes these organisms as key members of MDV soil microbiomes and the MDV as a useful system for understanding the contribution of soil protists to the structure of soil microbiomes.


Assuntos
Eucariotos/classificação , Eucariotos/isolamento & purificação , Microbiota/genética , Regiões Antárticas , Biodiversidade , Cercozoários/classificação , Cercozoários/genética , Cercozoários/isolamento & purificação , Clorófitas/classificação , Clorófitas/genética , Cilióforos/classificação , Cilióforos/genética , Cilióforos/isolamento & purificação , Ecossistema , Eucariotos/genética , Metagenômica , Solo/química , Solo/parasitologia , Microbiologia do Solo , Estramenópilas/classificação , Estramenópilas/genética , Estramenópilas/isolamento & purificação
19.
BMC Genomics ; 21(1): 391, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503414

RESUMO

BACKGROUND: Nitrogen is an indispensable nutrient for plant growth. It is used and transported in the form of amino acids in living organisms. Transporting amino acids to various parts of plants requires relevant transport proteins, such as amino acid permeases (AAPs), which were our focus in this study. RESULTS: We found that 5 AAP genes were present in Chlorophyte species and more AAP genes were predicted in Bryophyta and Lycophytes. Two main groups were defined and group I comprised 5 clades. Our phylogenetic analysis indicated that the origin of clades 2, 3, and 4 is Gymnospermae and that these clades are closely related. The members of clade 1 included Chlorophyta to Gymnospermae. Group II, as a new branch consisting of non-seed plants, is first proposed in our research. Our results also indicated that the AAP family was already present in Chlorophyta and then expanded accompanying the development of vasculature. Concurrently, the AAP family experienced multiple duplication events that promoted the generation of new functions and differentiation of sub-functions. CONCLUSIONS: Our findings suggest that the AAP gene originated in Chlorophyta, and some non-seed AAP genes clustered in one group. A second group, which contained plants of all evolutionary stages, indicated the evolution of AAPs. These new findings can be used to guide future research.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Clorófitas/enzimologia , Magnoliopsida/enzimologia , Análise de Sequência de DNA/métodos , Clorófitas/classificação , Clorófitas/genética , Evolução Molecular , Duplicação Gênica , Magnoliopsida/classificação , Magnoliopsida/genética , Família Multigênica , Nitrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética
20.
FEMS Microbiol Lett ; 367(11)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407482

RESUMO

Diversity studies of endophytic assemblages are emerging challenges, which unveil novel phenotypes producing interesting chemical entities and a better understanding of their ecological significance. In the present investigation, we selected an extremely complex and unique environment supporting unexplored endophytes, 'Macroalgae of Kerala coast, India'. Unlike terrestrial flora and mangroves, reports displaying endophytic assemblages of marine flora remain limited, especially from India. The main goal of this study was to expose hidden endophytic fungi from macroalgae and examination of their bioactive potential. An ecological investigation of four red, four green and three brown algae resulted in 133 fungal taxa with 29 distinct morphospecies. Aspergillus and Penicillium were found to be the dominant genera. Penicillium chrysogenum was the sole fungi that contributed 11% of the entire endophytic community. Antimicrobial activity against various aquaculture/human pathogens revealed that around 59% of endophytes inhibited at least one of the pathogens screened. The maximum number of isolates (37%) inhibited Escherichia coli tailed by Aspergillus fumigatus (27%). Antimicrobial profile of fungal endophytes endorses them as a potential source of bioactive molecules that can be explored to find a solution for drug resistance in microbial pathogens.


Assuntos
Clorófitas/microbiologia , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Phaeophyceae/microbiologia , Alga Marinha/microbiologia , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Clorófitas/classificação , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Índia , Phaeophyceae/classificação , Filogenia , Água do Mar/microbiologia , Alga Marinha/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA