Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 158: 88-100, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31378365

RESUMO

Methyl halide group of pesticides are being used widely in past decades as fumigant but due to their hazardous effect, these pesticides are not sold directly. They are volatile and gaseous in nature and may easily come in the contact of trophosphere and stratosphere. In troposphere, they are harmful to the living beings; nevertheless, in stratosphere they react with ozone and degrade the ozone layers. In this study, we have investigated the in-silico pathways of methyl halide and its toxic effect on living systems like pest, humans and environment. Till date, limited studies provide the understanding of degradation of methyl halide and its effect on the environment. This leads to availability of scanty information for overall bio-magnifications of methyl halides at molecular and cellular level. The model developed in the present study explains how a volatile toxic compound not only affects living systems on earth but also on environmental layers. Hub nodes were also evaluated by investigating the developed model topologically. Methyl transferase system is identified as promising enzyme in response to degradation of methyl halides.


Assuntos
Bactérias/metabolismo , Cloreto de Metila/metabolismo , Biodegradação Ambiental , Biologia de Sistemas
2.
Curr Issues Mol Biol ; 33: 149-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166190

RESUMO

Chloromethane is a halogenated volatile organic compound, produced in large quantities by terrestrial vegetation. After its release to the troposphere and transport to the stratosphere, its photolysis contributes to the degradation of stratospheric ozone. A better knowledge of chloromethane sources (production) and sinks (degradation) is a prerequisite to estimate its atmospheric budget in the context of global warming. The degradation of chloromethane by methylotrophic communities in terrestrial environments is a major underestimated chloromethane sink. Methylotrophs isolated from soils, marine environments and more recently from the phyllosphere have been grown under laboratory conditions using chloromethane as the sole carbon source. In addition to anaerobes that degrade chloromethane, the majority of cultivated strains were isolated in aerobiosis for their ability to use chloromethane as sole carbon and energy source. Among those, the Proteobacterium Methylobacterium (recently reclassified as Methylorubrum) harbours the only characterisized 'chloromethane utilization' (cmu) pathway, so far. This pathway is not representative of chloromethane-utilizing populations in the environment as cmu genes are rare in metagenomes. Recently, combined 'omics' biological approaches with chloromethane carbon and hydrogen stable isotope fractionation measurements in microcosms, indicated that microorganisms in soils and the phyllosphere (plant aerial parts) represent major sinks of chloromethane in contrast to more recently recognized microbe-inhabited environments, such as clouds. Cultivated chloromethane-degraders lacking the cmu genes display a singular isotope fractionation signature of chloromethane. Moreover, 13CH3Cl labelling of active methylotrophic communities by stable isotope probing in soils identify taxa that differ from the taxa known for chloromethane degradation. These observations suggest that new biomarkers for detecting active microbial chloromethane-utilizers in the environment are needed to assess the contribution of microorganisms to the global chloromethane cycle.


Assuntos
Metabolismo Energético/fisiologia , Metanol/metabolismo , Cloreto de Metila/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Methylobacterium/classificação , Methylobacterium/metabolismo , Methylophilaceae/classificação , Methylophilaceae/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Microbiologia do Solo
3.
ISME J ; 12(11): 2681-2693, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991765

RESUMO

Halogenated volatile organic compounds (VOCs) emitted by terrestrial ecosystems, such as chloromethane (CH3Cl), have pronounced effects on troposphere and stratosphere chemistry and climate. The magnitude of the global CH3Cl sink is uncertain since it involves a largely uncharacterized microbial sink. CH3Cl represents a growth substrate for some specialized methylotrophs, while methanol (CH3OH), formed in much larger amounts in terrestrial environments, may be more widely used by such microorganisms. Direct measurements of CH3Cl degradation rates in two field campaigns and in microcosms allowed the identification of top soil horizons (i.e., organic plus mineral A horizon) as the major biotic sink in a deciduous forest. Metabolically active members of Alphaproteobacteria and Actinobacteria were identified by taxonomic and functional gene biomarkers following stable isotope labeling (SIP) of microcosms with CH3Cl and CH3OH, added alone or together as the [13C]-isotopologue. Well-studied reference CH3Cl degraders, such as Methylobacterium extorquens CM4, were not involved in the sink activity of the studied soil. Nonetheless, only sequences of the cmuA chloromethane dehalogenase gene highly similar to those of known strains were detected, suggesting the relevance of horizontal gene transfer for CH3Cl degradation in forest soil. Further, CH3Cl consumption rate increased in the presence of CH3OH. Members of Alphaproteobacteria and Actinobacteria were also 13C-labeled upon [13C]-CH3OH amendment. These findings suggest that key bacterial CH3Cl degraders in forest soil benefit from CH3OH as an alternative substrate. For soil CH3Cl-utilizing methylotrophs, utilization of several one-carbon compounds may represent a competitive advantage over heterotrophs that cannot utilize one-carbon compounds.


Assuntos
Actinobacteria/metabolismo , Alphaproteobacteria/metabolismo , Metanol/metabolismo , Cloreto de Metila/metabolismo , Microbiologia do Solo , Actinobacteria/genética , Alphaproteobacteria/genética , Florestas , Solo/química
4.
Trends Plant Sci ; 23(2): 95-99, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29287770

RESUMO

Ecological, signaling, metabolic, and chemical processes in plant-microorganism systems and in plant-derived material may link the use of chlorinated pesticides in the environment with plant chloromethane emission. This neglected factor should be taken into account to assess global planetary budgets of chloromethane and impacts on atmospheric ozone depletion.


Assuntos
Meio Ambiente , Hidrocarbonetos Clorados/metabolismo , Cloreto de Metila/metabolismo , Praguicidas/metabolismo , Plantas/metabolismo , Biodegradação Ambiental , Hidrocarbonetos Clorados/química , Praguicidas/química , Plantas/efeitos dos fármacos
5.
Sci Rep ; 7(1): 17589, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242530

RESUMO

Chloromethane (CH3Cl) is a toxic gas mainly produced naturally, in particular by plants, and its emissions contribute to ozone destruction in the stratosphere. Conversely, CH3Cl can be degraded and used as the sole carbon and energy source by specialised methylotrophic bacteria, isolated from a variety of environments including the phyllosphere, i.e. the aerial parts of vegetation. The potential role of phyllospheric CH3Cl-degrading bacteria as a filter for plant emissions of CH3Cl was investigated using variants of Arabidopsis thaliana with low, wild-type and high expression of HOL1 methyltransferase previously shown to be responsible for most of CH3Cl emissions by A. thaliana. Presence and expression of the bacterial chloromethane dehalogenase cmuA gene in the A. thaliana phyllosphere correlated with HOL1 genotype, as shown by qPCR and RT-qPCR. Production of CH3Cl by A. thaliana paralleled HOL1 expression, as assessed by a fluorescence-based bioreporter. The relation between plant production of CH3Cl and relative abundance of CH3Cl-degrading bacteria in the phyllosphere suggests that CH3Cl-degrading bacteria co-determine the extent of plant emissions of CH3Cl to the atmosphere.


Assuntos
Arabidopsis/metabolismo , Cloreto de Metila/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Biodiversidade , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética
6.
J R Soc Interface ; 14(137)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29263129

RESUMO

Concentrations of trace gases trapped in ice are considered to develop uniquely from direct snow/atmosphere interactions at the time of contact. This assumption relies upon limited or no biological, chemical or physical transformations occurring during transition from snow to firn to ice; a process that can take decades to complete. Here, we present the first evidence of environmental alteration due to in situ microbial metabolism of trace gases (methyl halides and dimethyl sulfide) in polar snow. We collected evidence for ongoing microbial metabolism from an Arctic and an Antarctic location during different years. Methyl iodide production in the snowpack decreased significantly after exposure to enhanced UV radiation. Our results also show large variations in the production and consumption of other methyl halides, including methyl bromide and methyl chloride, used in climate interpretations. These results suggest that this long-neglected microbial activity could constitute a potential source of error in climate history interpretations, by introducing a so far unappreciated source of bias in the quantification of atmospheric-derived trace gases trapped within the polar ice caps.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Iodados/análise , Camada de Gelo/química , Regiões Antárticas , Regiões Árticas , Atmosfera/química , Bactérias/isolamento & purificação , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/metabolismo , Hidrocarbonetos Iodados/metabolismo , Camada de Gelo/microbiologia , Cloreto de Metila/análise , Cloreto de Metila/metabolismo , Neve/química , Neve/microbiologia , Sulfetos/análise , Sulfetos/metabolismo
7.
Environ Microbiol ; 19(11): 4784-4796, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967177

RESUMO

The microbial mixed culture RM grows with dichloromethane (DCM) as the sole energy source generating acetate, methane, chloride and biomass as products. Chloromethane (CM) was not an intermediate during DCM utilization consistent with the observation that CM could not replace DCM as a growth substrate. Interestingly, cultures that received DCM and CM together degraded both compounds concomitantly. Transient hydrogen (H2 ) formation reaching a maximum concentration of 205 ± 13 ppmv was observed in cultures growing with DCM, and the addition of exogenous H2 at concentrations exceeding 3000 ppmv impeded DCM degradation. In contrast, CM degradation in culture RM had a strict requirement for H2 . Following five consecutive transfers on CM and H2 , Acetobacterium 16S rRNA gene sequences dominated the culture and the DCM-degrader Candidatus Dichloromethanomonas elyunquensis was eliminated, consistent with the observation that the culture lost the ability to degrade DCM. These findings demonstrate that culture RM harbours different populations responsible for anaerobic DCM and CM metabolism, and further imply that the DCM and CM degradation pathways are mechanistically distinct. H2 generated during DCM degradation is consumed by the hydrogenotrophic CM degrader, or may fuel other hydrogenotrophic processes, including organohalide respiration, methanogenesis and H2 /CO2 reductive acetogenesis.


Assuntos
Acetobacterium/metabolismo , Cloreto de Metila/metabolismo , Cloreto de Metileno/metabolismo , Peptococcaceae/metabolismo , Simbiose/fisiologia , Ácido Acético/metabolismo , Acetobacterium/genética , Acetobacterium/crescimento & desenvolvimento , Anaerobiose/fisiologia , Hidrogênio/metabolismo , Metano/metabolismo , Peptococcaceae/genética , Peptococcaceae/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
8.
Microbiologyopen ; 2(6): 893-900, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24019296

RESUMO

Chloromethane (CH3 Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of -29‰ and -27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in (13) C of untransformed CH3 Cl was also observed, and similar isotope enrichment factors (ε) of -41‰ and -38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane.


Assuntos
Isótopos de Carbono/análise , Deutério/análise , Hyphomicrobium/metabolismo , Cloreto de Metila/metabolismo , Methylobacterium extorquens/metabolismo , Biotransformação , Cinética
9.
Appl Environ Microbiol ; 79(21): 6561-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23956392

RESUMO

Methyl halides are volatile one-carbon compounds responsible for substantial depletion of stratospheric ozone. Among them, chloromethane (CH3Cl) is the most abundant halogenated hydrocarbon in the atmosphere. Global budgets of methyl halides in the environment are still poorly understood due to uncertainties in their natural sources, mainly from vegetation, and their sinks, which include chloromethane-degrading bacteria. A bacterial bioreporter for the detection of methyl halides was developed on the basis of detailed knowledge of the physiology and genetics of Methylobacterium extorquens CM4, an aerobic alphaproteobacterium which utilizes chloromethane as the sole source of carbon and energy. A plasmid construct with the promoter region of the chloromethane dehalogenase gene cmuA fused to a promotorless yellow fluorescent protein gene cassette resulted in specific methyl halide-dependent fluorescence when introduced into M. extorquens CM4. The bacterial whole-cell bioreporter allowed detection of methyl halides at femtomolar levels and quantification at concentrations above 10 pM (approximately 240 ppt). As shown for the model chloromethane-producing plant Arabidopsis thaliana in particular, the bioreporter may provide an attractive alternative to analytical chemical methods to screen for natural sources of methyl halide emissions.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Cloreto de Metila/análise , Methylobacterium extorquens/enzimologia , Metiltransferases/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Primers do DNA/genética , Fluorometria , Proteínas Luminescentes/genética , Cloreto de Metila/metabolismo , Metiltransferases/genética , Microscopia Confocal , Microscopia de Fluorescência , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
PLoS One ; 8(4): e56598, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593113

RESUMO

Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate-bound one-carbon units, and central metabolism. The mosaic organization of plasmid pCMU01 and the clustering of genes coding for dehalogenase enzymes and for biosynthesis of associated cofactors suggests a history of gene acquisition related to chloromethane utilization.


Assuntos
Cloreto de Metila/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Plasmídeos/genética , Tetra-Hidrofolatos/metabolismo , Vitamina B 12/metabolismo , Biologia Computacional , Genes Bacterianos , Redes e Vias Metabólicas , Família Multigênica , Proteômica , Estresse Fisiológico
11.
J Bacteriol ; 193(18): 5035-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21868803

RESUMO

Hyphomicrobium sp. strain MC1 is an aerobic methylotroph originally isolated from industrial sewage. This prosthecate bacterium was the first strain reported to grow with chloromethane as the sole carbon and energy source. Its genome, consisting of a single 4.76-Mb chromosome, is the first for a chloromethane-degrading bacterium to be formally reported.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Hyphomicrobium/genética , Análise de Sequência de DNA , Aerobiose , Carbono/metabolismo , Hyphomicrobium/isolamento & purificação , Hyphomicrobium/metabolismo , Hyphomicrobium/fisiologia , Resíduos Industriais , Cloreto de Metila/metabolismo , Dados de Sequência Molecular , Esgotos/microbiologia
12.
FEMS Microbiol Ecol ; 77(2): 438-48, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21545604

RESUMO

Chloromethane gas is produced naturally in the phyllosphere, the compartment defined as the aboveground parts of vegetation, which hosts a rich bacterial flora. Chloromethane may serve as a growth substrate for specialized aerobic methylotrophic bacteria, which have been isolated from soil and water environments, and use cmu genes for chloromethane utilization. Evidence for the presence of chloromethane-degrading bacteria on the leaf surfaces of Arabidopsis thaliana was obtained by specific quantitative PCR of the cmuA gene encoding the two-domain methyltransferase corrinoid protein of chloromethane dehalogenase. Bacterial strains were isolated on a solid mineral medium with chloromethane as the sole carbon source from liquid mineral medium enrichment cultures inoculated with leaves of A. thaliana. Restriction analysis-based genotyping of cmuA PCR products was used to evaluate the diversity of chloromethane-degrading bacteria during enrichment and after strain isolation. The isolates obtained, affiliated to the genus Hyphomicrobium based on their 16S rRNA gene sequence and the presence of characteristic hyphae, dehalogenate chloromethane, and grow in a liquid culture with chloromethane as the sole carbon and energy source. The cmu genes of these isolates were analysed using new PCR primers, and their sequences were compared with those of previously reported aerobic chloromethane-degrading strains. The three isolates featured a colinear cmuBCA gene arrangement similar to that of all previously characterized strains, except Methylobacterium extorquens CM4 of known genome sequence.


Assuntos
Arabidopsis/microbiologia , Hyphomicrobium/isolamento & purificação , Cloreto de Metila/metabolismo , Metiltransferases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Genes Bacterianos , Genótipo , Hyphomicrobium/classificação , Hyphomicrobium/genética , Hyphomicrobium/metabolismo , Metiltransferases/metabolismo , Filogenia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Environ Sci Technol ; 44(19): 7498-503, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20831217

RESUMO

While compound specific isotope analysis (CSIA) has been used extensively to investigate remediation of chlorinated ethenes, to date considerably less information is available on its applicability to chlorinated ethanes. In this study, biodegradation of 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA) was carried out by a Dehalobacter-containing mixed culture. Carbon isotope fractionation factors (ε) measured during whole cell degradation demonstrated that values for 1,1,1-TCA and 1,1-DCA (-1.8‰ and -10.5‰, respectively) were significantly smaller than values reported for abiotic reductive dechlorination of these same compounds. Similar results were found in experiments degrading these two priority pollutants by cell free extracts (CFE) where values of -0.8‰ and -7.9‰, respectively, were observed. For 1,1,1-TCA in particular, the large kinetic isotope effect expected for cleavage of a C-Cl bond was almost completely masked during biodegradation by both whole cells and CFE. Comparison to previous studies demonstrates that these patterns of isotopic fractionation are not attributable to transport effects across the cell membrane, as had been seen for other compounds such as PCE. In contrast these results reflect significant differences in the kinetics of the enzymes catalyzing chlorinated ethane degradation.


Assuntos
Biodegradação Ambiental , Cloreto de Metila/metabolismo , Peptococcaceae/metabolismo , Isótopos , Cinética , Reprodutibilidade dos Testes
14.
J Biol Chem ; 284(29): 19301-9, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19419967

RESUMO

Almost all of the chlorine-containing gas emitted from natural sources is methyl chloride (CH(3)Cl), which contributes to the destruction of the stratospheric ozone layer. Tropical and subtropical plants emit substantial amounts of CH(3)Cl. A gene involved in CH(3)Cl emission from Arabidopsis was previously identified and designated HARMLESS TO OZONE LAYER (hereafter AtHOL1) based on the mutant phenotype. Our previous studies demonstrated that AtHOL1 and its homologs, AtHOL2 and AtHOL3, have S-adenosyl-l-methionine-dependent methyltransferase activities. However, the physiological functions of AtHOLs have yet to be elucidated. In the present study, our comparative kinetic analyses with possible physiological substrates indicated that all of the AtHOLs have low activities toward chloride. AtHOL1 was highly reactive to thiocyanate (NCS(-)), a pseudohalide, synthesizing methylthiocyanate (CH(3)SCN) with a very high k(cat)/K(m) value. We demonstrated in vivo that substantial amounts of NCS(-) were synthesized upon tissue damage in Arabidopsis and that NCS(-) was largely derived from myrosinase-mediated hydrolysis of glucosinolates. Analyses with the T-DNA insertion Arabidopsis mutants (hol1, hol2, and hol3) revealed that only hol1 showed increased sensitivity to NCS(-) in medium and a concomitant lack of CH(3)SCN synthesis upon tissue damage. Bacterial growth assays indicated that the conversion of NCS(-) into CH(3)SCN dramatically increased antibacterial activities against Arabidopsis pathogens that normally invade the wound site. Furthermore, hol1 seedlings showed an increased susceptibility toward an Arabidopsis pathogen, Pseudomonas syringae pv. maculicola. Here we propose that AtHOL1 is involved in glucosinolate metabolism and defense against phytopathogens. Moreover, CH(3)Cl synthesized by AtHOL1 could be considered a byproduct of NCS(-) metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Metiltransferases/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Imunidade Inata/genética , Cinética , Cloreto de Metila/metabolismo , Metilação , Metiltransferases/genética , Mutação , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudomonas syringae/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Tiocianatos/metabolismo , Tiocianatos/farmacologia
16.
Chemosphere ; 69(4): 549-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17462706

RESUMO

A survey of methyl chloride (CH3Cl)-emitting plants was performed at a subtropical island in Japan (Iriomote Island). Among the 187 species of tropical/subtropical plants investigated, 33 species from a variety of families were identified as CH3Cl-emitting plants. The strongest emitters were Osmunda banksiifolia, Cibotium balometz, Angiopteris palmiformis, Vitex rotundifolia, Vitex trifolia, and Excoecaria agalloch, each with CH3Cl emission rates exceeding 1microg (gdrywt)(-1)h(-1). The first three species are ferns, and the last three are halophilous plants. Based on our results, the character of CH3Cl emission is likely to be shared at the genus level but not always at the family level. The atmospheric CH3Cl distribution measured on Iriomote Island showed significant enhancement in forested sites (up to 2750 ppt) and a higher concentration on the downwind shore than on the upwind shore. As previously reported, our findings provide strong evidence for the high emission of CH3Cl from tropical/subtropical forests.


Assuntos
Poluentes Atmosféricos/análise , Cloreto de Metila/análise , Plantas/metabolismo , Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental , Japão , Cloreto de Metila/metabolismo , Plantas/classificação , Árvores , Clima Tropical
17.
Appl Environ Microbiol ; 72(9): 5998-6003, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957221

RESUMO

The dehalorespiring Desulfitobacterium hafniense strain Y51 efficiently dechlorinates tetrachloroethene (PCE) to cis-1,2-dichloroethene (cis-DCE) via trichloroethene by PceA reductive dehalogenase encoded by the pceA gene. In a previous study, we found that the significant growth inhibition of strain Y51 occurred in the presence of commercial cis-DCE. In this study, it turned out that the growth inhibition was caused by chloroform (CF) contamination of cis-DCE. Interestingly, CF did not affect the growth of PCE-nondechlorinating SD (small deletion) and LD (large deletion) variants, where the former fails to transcribe the pceABC genes caused by a deletion of the promoter and the latter lost the entire pceABCT gene cluster. Therefore, PCE-nondechlorinating variants, mostly LD variant, became predominant, and dechlorination activity was significantly reduced in the presence of CF. Moreover, such a growth inhibitory effect was also observed in the presence of carbon tetrachloride at 1 microM, but not carbon dichloride even at 1 mM.


Assuntos
Desulfitobacterium/efeitos dos fármacos , Desulfitobacterium/crescimento & desenvolvimento , Cloreto de Metila/farmacologia , Sequência de Bases , Biodegradação Ambiental , Clorofórmio/farmacologia , DNA Bacteriano/genética , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Dicloroetilenos/metabolismo , Dicloroetilenos/farmacologia , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia , Deleção de Genes , Genes Bacterianos , Variação Genética , Cloreto de Metila/metabolismo , Família Multigênica , Oxirredutases/genética , Oxirredutases/metabolismo , Transcrição Gênica
18.
19.
Int J Syst Evol Microbiol ; 55(Pt 5): 1827-1832, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16166673

RESUMO

The bacterial strains IMB-1(T) and CC495(T), which are capable of growth on methyl chloride (CH(3)Cl, chloromethane) and methyl bromide (CH(3)Br, bromomethane), were isolated from agricultural soil in California fumigated with CH(3)Br, and woodland soil in Northern Ireland, respectively. Two pesticide-/herbicide-degrading bacteria, strains ER2 and C147, were isolated from agricultural soil in Canada. Strain ER2 degrades N-methyl carbamate insecticides, and strain C147 degrades triazine herbicides widely used in agriculture. On the basis of their morphological, physiological and genotypic characteristics, these four strains are considered to represent two novel species of the genus Aminobacter, for which the names Aminobacter ciceronei sp. nov. (type strain IMB-1(T)=ATCC 202197(T)=CIP 108660(T)=CCUG 50580(T); strains ER2 and C147) and Aminobacter lissarensis sp. nov. (type strain CC495(T)=NCIMB 13798(T)=CIP 108661(T)=CCUG 50579(T)) are proposed.


Assuntos
Agricultura , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Microbiologia do Solo , Árvores , Alphaproteobacteria/genética , Alphaproteobacteria/fisiologia , Técnicas de Tipagem Bacteriana , Biodegradação Ambiental , California , Canadá , Carbamatos/metabolismo , Meios de Cultura , DNA Bacteriano/análise , Fagus , Genes de RNAr , Herbicidas/metabolismo , Hidrocarbonetos Bromados/metabolismo , Cloreto de Metila/metabolismo , Dados de Sequência Molecular , Irlanda do Norte , Praguicidas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Triazinas/metabolismo
20.
FEMS Microbiol Lett ; 251(1): 45-51, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16102909

RESUMO

Aminobacter lissarensis CC495 is an aerobic facultative methylotroph capable of growth on glucose, glycerol, pyruvate and methylamine as well as the methyl halides methyl chloride and methyl bromide. Previously, cells grown on methyl chloride have been shown to express two polypeptides with apparent molecular masses of 67 and 29 kDa. The 67 kDa protein was purified and identified as a halomethane:bisulfide/halide ion methyltransferase. This study describes a single gene cluster in A. lissarensis CC495 containing the methyl halide utilisation genes cmuB, cmuA, cmuC, orf 188, paaE and hutI. The genes correspond to the same order and have a high similarity to a gene cluster found in Aminobacter ciceronei IMB-1 and Hyphomicrobium chloromethanicum strain CM2 indicating that genes encoding methyl halide degradation are highly conserved in these strains.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Genes Bacterianos , Hidrocarbonetos Bromados/metabolismo , Cloreto de Metila/metabolismo , Alphaproteobacteria/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biodegradação Ambiental , Clonagem Molecular , Sequência Conservada , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Hyphomicrobium/genética , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA