RESUMO
Erlotinib is a first-generation epithelial growth factor receptor inhibitor used in the treatment of non-small cellular lung cancers. Our previously published method on a Thermo TSQ Quantum Ultra triple quadrupole mass spectrometer for the quantitation of erlotinib, OSI-420, and OSI-413 and some other kinase inhibitors was transferred to a more sensitive Sciex QTRAP5500 system. Both methods showed comparable performance in the previous range (5-5000 and 1-1000 ng/mL for erlotinib and OSI-420) with comparable accuracies and precisions (98.9-106.2 vs 98.7.0-104.0, and 3.7-13.4 vs 4.6-13.2), and a high level of agreement between the methods (R2 = 0.9984 and 0.9951) for the quality control samples. The new system however was also capable of quantifying lower concentrations of both erlotinib and OSI-420 (0.5 and 0.1 ng/mL) with sufficient accuracy and precision. Along with the increased sensitivity we included the semi-quantitative determination of additional erlotinib metabolites M2, M3, M5, M6, M7, M8, M9, M10, M11, M12, M16 (hydroxy-erlotinib), M17, M18, M19, M20, M21 in a 0.1-1000 ng/mL range to the method. With a simple crash, dilute, and shoot sample preparation with acetonitrile and a 4.5 min analytical run time the method outperformed most other published methods in speed and simplicity and was suitable for TDM. Further, enhancement of the understanding of the pharmacokinetics of erlotinib and its metabolites was demonstrated.
Assuntos
Cromatografia Líquida/métodos , Cloridrato de Erlotinib , Quinazolinas , Espectrometria de Massas em Tandem/métodos , Cloridrato de Erlotinib/análogos & derivados , Cloridrato de Erlotinib/análise , Cloridrato de Erlotinib/química , Isomerismo , Modelos Lineares , Quinazolinas/análise , Quinazolinas/química , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
An LC-MS/MS method was developed and validated to quantify the tyrosine kinase inhibitor erlotinib in human scalp hair, as alternative matrix to monitor long-term erlotinib exposure. Hair samples from 10 lung cancer patients were measured and correlated with plasma concentrations. Hair segments of 1 ± 0.1 cm each were pulverized and for at least 18 h incubated in methanol at ambient temperature. A liquid-liquid extraction purified the extracts and they were analyzed with LC-MS/MS, using erlotinib-d6 as internal standard. The procedure method was validated for selectivity, sensitivity, precision, lower limit of detection, linearity and accuracy. The within and between run precisions including the lower limit of quantification did not exceed 12.5%, while the accuracy ranged from 103 to 106%. A weak correlation between hair and plasma concentration was found (R2 = 0.48). Furthermore, a large inter-individual variability was noted in the disposition of both plasma and hair samples. The highest hair concentrations were observed in black hair compared with other (grey and brown) hair colors. Generally, a linear reduction in hair concentration was found from proximal to distal hair segments. Additional in vitro experiments suggest an accelerated degradation of erlotinib in hair by artificial UV light and also wash-out by shampoo mixtures pretreatment compared with control samples. In conclusion, a reliable and robust LC-MS/MS method was developed to quantify erlotinib in hair. However, clinical and in vitro evaluations showed that the method is not suitable for monitoring long-term erlotinib exposure. The pitfalls of this application outweigh the current benefits.
Assuntos
Monitoramento de Medicamentos/métodos , Cloridrato de Erlotinib/análise , Cabelo/química , Inibidores de Proteínas Quinases/análise , Variação Biológica da População/efeitos dos fármacos , Variação Biológica da População/efeitos da radiação , Cromatografia Líquida de Alta Pressão , Cosméticos/farmacologia , Estabilidade de Medicamentos , Cabelo/efeitos dos fármacos , Cabelo/efeitos da radiação , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Couro Cabeludo , Espectrometria de Massas em Tandem , Fatores de Tempo , Raios UltravioletaRESUMO
Competitive reactions, on the surface of plasmonic nanostructures, allow exploiting SERS signals for quantitative Therapeutic Drug Monitoring. As an example, the concentration of Erlotinib, an anti-EGFR small molecule, used for the treatment of non-small cell lung and pancreatic cancer, is determined. The numerous side effects and the variability of patient responses make Erlotinib a good candidate for monitoring. The new SERS based sensor can estimate Erlotinib down to nanomolar concentration and is based on the chemical reaction of the drug and of a competitor SERS reporter on the surface of gold nanostructures. Colloid solutions of naked gold nanoparticles obtained by laser ablation in solution were used for obtaining nanostructures with very efficient hot spots for SERS and with a clean surface for chemistry. Detection of the drug in the nanomolar concentration range is shown to be possible also in spiked plasma samples.
Assuntos
Antineoplásicos/análise , Cloridrato de Erlotinib/análise , Ouro/química , Nanopartículas Metálicas/química , Coloides/química , Monitoramento de Medicamentos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de SuperfícieRESUMO
Erlotinib and genistein co-loaded liposomes were prepared by the thin-film hydration method. The effect of probe sonication as a size reduction method on drug incorporation and the properties of aerosols generated using air-jet and vibrating-mesh nebulisers was studied. The use of the Next Generation Impactor (NGI) to characterise inhaler formulations is limited by the need accurately to quantify drug deposited across 8 stages and is labour intensive to use. The Fast Screening Impactor (FSI) comprising two impaction stages was compared with the NGI to evaluate its applicability as a simple screening and labour-saving tool to characterise nebulised systems. For the developed liposomal formulations, an air-jet nebuliser generated a two-fold higher fine particle fraction (FPF) than a vibrating-mesh nebuliser. The findings demonstrated that the cooled FSI (5°C) operated at 15â¯L/min was effective in differentiating the aerosol properties of the nebulised liposome formulations investigated. Overall, the optimised co-loaded liposomes were more effectively delivered by an air-jet nebuliser, than from a vibrating-mesh nebuliser over a 10â¯min period as determined using the abbreviated impactor.
Assuntos
Aerossóis/análise , Lipossomos/análise , Tecnologia Farmacêutica/métodos , Cloridrato de Erlotinib/análise , Genisteína/análise , Nebulizadores e Vaporizadores , Tamanho da Partícula , Tecnologia Farmacêutica/instrumentaçãoRESUMO
Erlotinib is a highly potent tyrosine kinase inhibitor used in the treatment of the most common type of lung cancer. Due to its recent introduction, very scarce information is available on its occurrence, environmental fate and toxicological effects on aquatic organisms. During chlorination processes normally carried out in wastewater treatment plants and in the pretreatment of hospital effluents, chlorinated transformation products can be formed with an enhanced toxicity relative to the parent compound. Thus, the reactivity of the cytostatic drug erlotinib in free chlorine-containing water was investigated for the first time in the present work. A non-targeted screening approach based on the use of differential profiling tools was applied in order to reveal its potential transformation products. Structural elucidation of the detected transformation products was performed by ultra-performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. The proposed approach allowed detecting a total of nineteen transformation products, being eighteen of them described for the first time in this work, which demonstrates its potential in environmental analysis. Among them, six compounds presented chlorine atoms in their structures, which may be of major concern. Other transformation products involved hydroxylation and oxidation reactions. Time-course profiles of erlotinib and its transformation products were followed in real wastewater samples under conditions that simulate wastewater disinfection. Although the structures of these transformation products could not be positively confirmed due to lack of standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies.