Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 40(6): 969-978, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30221789

RESUMO

The composition of the ship's ballast water is complex and contains a large number of microalgae cells, bacteria, microplastics, and other microparticles. To increase the accuracy and efficiency of detection of the microalgae cells in ballast water, a new microfluidic chip for continuous separation of microalgae cells based on alternating current dielectrophoresis was proposed. In this microfluidic chip, one piece of 3-dimensional electrode is embedded on one side and eight discrete electrodes are arranged on the other side of the microchannel. An insulated triangular structure between electrodes is designed for increasing the inhomogeneity of the electric field distribution and enhancing the dielectrophoresis (DEP) force. A sheath flow is designed to focus the microparticles near the electrode, so as to increase the suffered DEP force and improve separation efficiency. To demonstrate the performance of the microfluidic separation chip, we developed two species of microalgae cells (Platymonas and Closterium) and a kind of microplastics to be used as test samples. Analyses of the related parameters and separation experiments by our designed microfluidic chip were then conducted. The results show that the presented method can separate the microalgae cells from the mixture efficiently, and this is the first time to separate two or more species of microalgae cells in a microfluidic chip by using negative and positive DEP force simultaneously, and moreover it has some advantages including simple operation, high efficiency, low cost, and small size and has great potential in on-site pretreatment of ballast water.


Assuntos
Eletroforese , Dispositivos Lab-On-A-Chip , Microalgas , Navios , Microbiologia da Água , Clorófitas/citologia , Closterium/citologia , Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento , Microalgas/citologia , Microalgas/isolamento & purificação , Poliestirenos
2.
J Plant Res ; 131(5): 735-746, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948484

RESUMO

Reproductive isolation is essential for the process of speciation. In order to understand speciation, it is necessary to compare one mating group with other phylogenetically related but reproductively isolated groups. The Closterium peracerosum-strigosum-littorale (C. psl.) complex is a unicellular isogamous zygnematophycean alga, which is believed to share a close phylogenetic relationship with the land plants. In this study, we identified a new mating group, named group G, of C. psl. complex and compared its physiological and biochemical characteristics with the mating group I-E, which was closely related to the mating group G. Zygospores are typically formed as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt-) cells in the same mating group during sexual reproduction. Crossing experiments revealed mating groups G and I-E were reproductively isolated from each other, but the release of lone protoplasts from mt- cells of mating group G was induced in the presence of mt+ cells of mating group I-E. In fact, the sex pheromone, protoplast-release-inducing protein of mating group I-E induced the release of protoplasts from mt- cells of mating group G. When mt+ and mt- cells of both mating groups I-E and G were co-cultured (multiple-choice matings), the zygospore formation of mating group G, but not that of mating group I-E, was inhibited. Based on these results, we propose a possible mechanism of reproductive isolation between the two mating groups and suggest the presence of sexual interference between mating group G and mating group I-E.


Assuntos
Closterium/fisiologia , Isolamento Reprodutivo , Células Cultivadas , Closterium/citologia , Closterium/genética , Especiação Genética , Filogenia , Protoplastos , Reprodução
3.
PLoS One ; 7(7): e40734, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815801

RESUMO

Charophytes is a green algal group closely related to land plants. We investigated the effects of antibiotics that interfere with peptidoglycan biosynthesis on chloroplast division in the desmid Closterium peracerosum-strigosum-littorale complex. To detect cells just after division, we used colchicine, which inhibits Closterium cell elongation after division. Although normal Closterium cells had two chloroplasts before and after cell division, cells treated with ampicillin, D-cycloserine, or fosfomycin had only one chloroplast after cell division, suggesting that the cells divided without chloroplast division. The antibiotics bacitracin and vancomycin showed no obvious effect. Electron microscopic observation showed that irregular-shaped chloroplasts existed in ampicillin-treated Closterium cells. Because antibiotic treatments resulted in the appearance of long cells with irregular chloroplasts and cell death, we counted cell types in the culture. The results suggested that cells with one chloroplast appeared first and then a huge chloroplast was generated that inhibited cell division, causing elongation followed by cell death.


Assuntos
Antibacterianos/farmacologia , Divisão Celular/efeitos dos fármacos , Cloroplastos/metabolismo , Closterium/citologia , Closterium/efeitos dos fármacos , Peptidoglicano/biossíntese , Ampicilina/farmacologia , Cloroplastos/efeitos dos fármacos , Closterium/crescimento & desenvolvimento , Closterium/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA