Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887062

RESUMO

Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade-the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5' nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1ß1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1ß2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.


Assuntos
Cobras Corais , Venenos Elapídicos , Toxinas Biológicas , Animais , Brasil , Cobras Corais/fisiologia , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Elapidae , Canais Iônicos , Fosfolipases A2 , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Toxinas Biológicas/fisiologia
2.
Toxicol Lett ; 356: 54-63, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774704

RESUMO

In this study, we investigated the action of varespladib (VPL) alone or in combination with a coral snake antivenom (CAV) on the local and systemic effects induced by Micrurus corallinus venom in rats. Adult male Wistar rats were exposed to venom (1.5 mg/kg - i.m.) and immediately treated with CAV (antivenom:venom ratio 1:1.5 'v/w' - i.p.), VPL (0.5 mg/kg - i.p.), or both of these treatments. The animals were monitored for 120 min and then anesthetized to collect blood samples used for haematological and serum biochemical analysis; after euthanasia, skeletal muscle, renal and hepatic tissue samples were collected for histopathological analysis. M. corallinus venom caused local oedema without subcutaneous haemorrhage or apparent necrosis formation, although there was accentuated muscle morphological damage; none of the treatments prevented oedema formation but the combination of CAV and VPL reduced venom-induced myonecrosis. Venom caused neuromuscular paralysis and respiratory impairment in approximately 60 min following envenomation; CAV alone did not prevent the neurotoxic action, whereas VPL alone prevented neurotoxic symptoms developing as did the combination of CAV and VPL. Venom induced significant increase of serum CK and AST release, mostly due to local and systemic myotoxicity, which was partially prevented by the combination of CAV and VPL. The release of hepatotoxic serum biomarkers (LDH and ALP) induced by M. corallinus venom was not prevented by CAV and VPL when individually administered; their combination effectively prevented ALP release. The venom-induced nephrotoxicity (increase in serum creatinine concentration) was prevented by all the treatments. VPL alone or in combination with CAV significantly prevented the venom-induced lymphocytosis. In conclusion, VPL shows to be effective at preventing the neurotoxic, nephrotoxic, and inflammatory activities of M. corallinus venom. In addition, VPL acts synergistically with antivenom to prevent a number of systemic effects caused by M. corallinus venom.


Assuntos
Acetatos/farmacologia , Cobras Corais/fisiologia , Venenos Elapídicos/toxicidade , Indóis/farmacologia , Cetoácidos/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Animais , Biomarcadores/sangue , Transtornos da Coagulação Sanguínea/induzido quimicamente , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , L-Lactato Desidrogenase/sangue , Fármacos Neuroprotetores/farmacologia , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Ratos , Ratos Wistar
3.
J Anim Sci ; 97(2): 972-980, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541079

RESUMO

Envenoming and deaths resulting from snakebites are a particularly important public health problem in rural tropical areas of Africa, Asia, Latin America, and New Guinea. In 2015, The Lancet highlighted snake-bite envenoming as a neglected tropical disease and urged the world to increase antivenom production. In Brazil, around 20,000 snakebites occur per year affecting mostly agricultural workers and children, of which 1% is caused by coral snakes (Micrurus sp.). Although human envenoming by coral snakes is relatively rare due to their semifossorial habits and nonaggressive behavior, they are always considered severe due to the neurotoxic, myotoxic, hemorrhagic, and cardiovascular actions of their venom, which is highly toxic when compared to the venom of other Brazilian venomous snakes as Bothrops sp. (pit vipers), Crotalus sp. (rattlesnakes), and Lachesis sp. (bushmasters). The production of antivenom serum is an important public health issue worldwide and the maintenance of venomous snakes in captivity essential to obtain high-quality venom. Though more than 30 species of Brazilian coral snakes exist, the specific antivenom serum produced with the venom of two species, Micrurus corallinus and M. frontalis, is able to neutralize the accidents caused by the genus in general. M. corallinus is considered a difficult species to maintain in captivity and concerned about this difficulty the Laboratory of Herpetology (LH) at Instituto Butantan, over the last 10 yr, has given special attention to its maintenance in captivity. In more than 20 yr of maintenance, LH has made some changes to improve Micrurus captive husbandry and welfare. The objective of this study was to verify the factors influencing the survival rates of coral snakes in captivity through data generated from 289 M. corallinus from the LH snake facility in the last 10 yr. We observed that survival rates increased significantly with the improvement of nutritional adequacy that included freezing food items before offering them to coral snakes, as well as the development of a new pasty diet to force-feed anorexic animals. Another important factor responsible for increasing life expectancy was the shift of the cage's substrate from Sphagnum to bark in 2010, aiding in the eradication of Blister Disease, which used to be responsible for the death of several coral snakes in previous years.


Assuntos
Criação de Animais Domésticos , Bem-Estar do Animal , Antivenenos/metabolismo , Cobras Corais/fisiologia , Venenos de Serpentes/imunologia , Animais , Brasil , Humanos , Expectativa de Vida , Mordeduras de Serpentes , Taxa de Sobrevida
4.
PLoS One ; 13(11): e0205164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427853

RESUMO

South American coralsnakes are characterized by inconspicuous and poorly known species, which are potentially very sensitive to climate change. Here, we assess the impact of future climate change on the distributions of the Micrurus lemniscatus species complex after addressing the Wallacean shortfalls and refining the knowledge about their current geographic distributions. We also evaluate the efficiency of the current reserve network to protect the species in the present and future. We applied ecological niche model tools through a carefully examined set of occurrence records to generate potential present distributions and to project these distributions into future scenarios of climate change. Specific thresholds based on occurrence records along with expert opinions were used to delineate the geographic distribution of each species. A hierarchical ANOVA was applied to evaluate the uncertainties in species distributions across niche modeling methods and climate models and nested into the time factor (present and future). Multiple regression models were used to infer the relative importance of the climatic variables to determine the species' suitability. A gap analysis was performed to address the representativeness of species distributions into protected areas. Predicted geographic distributions were compatible with the known distributions and the expert opinions, except for M. l. carvalhoi. New areas for field research were identified. Variation in precipitation was the most important factor defining the habitat suitability for all species, except for M. diutius. All taxa (except M. l. lemniscatus) will shrink their distributions in the future; less than 50% of the present suitable areas are protected in reserve networks, and less than 40% of these areas will be held in reserves in the future. We found strong evidence that coralsnakes may be highly sensitive to the ongoing changes and must be protected.


Assuntos
Mudança Climática , Cobras Corais/fisiologia , Ecologia , Animais , Ecossistema
5.
Toxicon ; 150: 212-219, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29890232

RESUMO

Micrurus venoms are known to induce mainly neurotoxicity in victims. However, other manifestations, including hemorrhage, edema, myotoxicity, complement activation, and hemostatic activity have been reported. In order to develop a more complete pharmacological profile of these venoms, inflammatory responses and hemostasis were evaluated in C57BL/6 mice treated with a sub-lethal dose of M. t. tener (Mtt) venom (8 µg/mouse), inoculated intraperitoneally. The venom induced moderate bleeding into the abdominal cavity and lungs, as well as infiltration of leukocytes into the liver. After 30 min, the release of pro-inflammatory mediators (TNF-α, IL-6, and NO) were observed, being most evident at 4 h. There was a decrease in hemoglobin and hematocrit levels at 72 h, a prolongation in coagulation times (PT and aPTT), a decrease in the fibrinogen concentration and an increase in fibrinolytic activity. In this animal model, it was proposed that Mtt venom induces inflammation with the release of mediators such as TNF-α, in response to the toxins. These mediators may activate hemostatic mechanisms, producing systemic fibrinolysis and hemorrhage. These findings suggest alternative treatments in Micrurus envenomations in which neurotoxic manifestations do not predominate.


Assuntos
Cobras Corais/fisiologia , Venenos Elapídicos/toxicidade , Inflamação/induzido quimicamente , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Animais , Hemorragia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Nat Commun ; 7: 11484, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146100

RESUMO

Batesian mimicry, in which harmless species (mimics) deter predators by deceitfully imitating the warning signals of noxious species (models), generates striking cases of phenotypic convergence that are classic examples of evolution by natural selection. However, mimicry of venomous coral snakes has remained controversial because of unresolved conflict between the predictions of mimicry theory and empirical patterns in the distribution and abundance of snakes. Here we integrate distributional, phenotypic and phylogenetic data across all New World snake species to demonstrate that shifts to mimetic coloration in nonvenomous snakes are highly correlated with coral snakes in both space and time, providing overwhelming support for Batesian mimicry. We also find that bidirectional transitions between mimetic and cryptic coloration are unexpectedly frequent over both long- and short-time scales, challenging traditional views of mimicry as a stable evolutionary 'end point' and suggesting that insect and snake mimicry may have different evolutionary dynamics.


Assuntos
Cobras Corais/fisiologia , Comportamento Predatório/fisiologia , Pigmentação da Pele/fisiologia , Serpentes/fisiologia , Adaptação Fisiológica , Animais , Evolução Biológica , Mimetismo Biológico , Cobras Corais/classificação , Cobras Corais/genética , Fenótipo , Filogenia , Serpentes/classificação , Serpentes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA