Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 130988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518942

RESUMO

Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of →1)-Fruf-(2→, Fruf-(1→ and Glcp-(1→ residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 â†’ [2)-ß-D-Fruf-(1 â†’ 2)-ß-D-Fruf-(1]26 â†’ 2)-ß-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.


Assuntos
Codonopsis , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Codonopsis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Antioxidantes/farmacologia
2.
J Ethnopharmacol ; 327: 118016, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38462027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.


Assuntos
Codonopsis , Camundongos , Animais , Codonopsis/química , Galactose , Encéfalo , Envelhecimento , Autofagia
3.
Phytomedicine ; 128: 155338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520835

RESUMO

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Assuntos
Proteína Quinase CDC2 , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Humanos , Codonopsis/química , Linhagem Celular Tumoral , Proteína Quinase CDC2/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , beta Catenina/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Camundongos Nus , Camundongos Endogâmicos BALB C , Masculino , Movimento Celular/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ensaios Antitumorais Modelo de Xenoenxerto , Medicamentos de Ervas Chinesas/farmacologia
4.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193197

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inulina/farmacologia , Frutanos/efeitos adversos , Frutanos/química , Codonopsis/química , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Lipopolissacarídeos , Polissacarídeos , Serina-Treonina Quinases TOR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
5.
J Food Sci ; 89(2): 966-981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161279

RESUMO

By using ultrasonic synergy vacuum far-infrared drying (US-VFID), the effects of different conditions on the drying kinetics, functional properties, and microstructure of Codonopsis pilosula slices were studied. The sparrow search algorithm (SSA) was used to optimize the back-propagation (BP) neural network to predict the moisture ratio during drying. With the increase of ultrasonic frequency, power and radiation temperature, the drying time of C. pilosula was shortened. The drying time of US-VFID was 25% shorter than VFID, when radiation temperature was 50°C, ultrasonic power was 48 W, and frequency was 28 kHz. The SSA-BP neural network, the average absolute error prediction was 0.0067. Compared with hot air drying (HAD), the total phenolic content and antioxidant activity of C. pilosula by US-VFID were increased by 29.47% and 8.67%, respectively, and a reduction in color contrast of 16.19%. The dilation and generation of microcapillary of C. pilosula were more obvious. The study revealed US-VFID could be used for the selection and process control of agro-processing methods for C. pilosula products.


Assuntos
Codonopsis , Ultrassom , Vácuo , Codonopsis/química , Temperatura , Antioxidantes/química
6.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5779-5789, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114173

RESUMO

This study aims to mine the transcription factors that affect the genuineness of Codonopsis pilosula in Shanxi based on the transcriptome data of C. pilosula samples collected from Shanxi and Gansu, and then analyze the gene expression patterns, which will provide a theoretical basis for the molecular assisted breeding of C. pilosula. Gene ontology(GO) functional annotation, conserved motif prediction, and gene expression pattern analysis were performed for the differential transcription factors predicted based on the transcriptome data of C. pilosula from different habitats. A total of 61 differentially expressed genes(DEGs) were screened out from the transcriptome data. Most of the DEGs belonged to AP2/ERF-ERF family, with the conserved motif of [2X]-[LG]-[3X]-T-[3X]-[AARAYDRAA]-[3X]-[RG]-[2X]-A-[2X]-[NFP]. Forty-three of the DEGs showed significantly higher gene expression in C. pilosula samples from Shanxi than in the samples from Gansu, including 11 genes in the AP2/ERF-ERF family, 5 genes in the NAC fa-mily, 1 gene in the bHLH family, and 2 genes in the RWP-RK family, while 18 transcription factors showed higher expression levels in the samples from Gansu. GO annotation predicted that most of the DEGs were enriched in GO terms related to transcriptional binding activity(103), metabolic process(26), and stress response(23). The expression of transcription factor genes, CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 was higher in the samples from Shanxi and in the roots of C. pilosula. CpNAC92, CpbHLH128, and CpRAP2-7 responded to the low temperature, temperature difference, and iron stresses, while CpNAC100 only responded to low temperature and iron stresses. The screening and expression analysis of the specific transcription factors CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 in C. pilosula in Shanxi laid a theoretical foundation for further research on the mechanism of genuineness formation of C. pilosula.


Assuntos
Codonopsis , Codonopsis/genética , Codonopsis/química , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Transcriptoma , Ferro
7.
Sci Rep ; 13(1): 20726, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007505

RESUMO

Owing to the increasing market demand of Codonopsis Radix, the cropper blindly cultivates to expand planting area for economic benefits, which seriously affects the quality of Codonopsis Radix. Therefore, this study synthesized 207 batches of Codonopsis Radix and 115 ecological factors, and analyzed the suitable planting areas of Codonopsis pilosula under current and future climate change based on Geographic Information System (GIS) and MaxEnt model. Secondly, we evaluated the quality of Codonopsis Radix based on the all-in-one functional factor including chromatographic fingerprint, the index components, the effective compounds groups, the nutritional components, and the nutritional elements, and the quality regionalization of Codonopsis Radix was analyzed. Finally, the ecological factors affecting the accumulation of effective components of Codonopsis Radix were analyzed. This study found for the first time that the highly suitable area of Codonopsis pilosula was mainly distributed in the Weihe River system and the Bailongjiang River system in Gansu Province. There were differences in the quality of Codonopsis Radix from different ecologically suitable areas based on the all-in-one functional factors, and the comprehensive high-quality area of Codonopsis Radix was mainly distributed in Longnan and Longxi district of Gansu Province. The precipitation, temperature and altitude play a key role in the accumulation of chemical components in the 10 ecological factors affecting the distribution of Codonopsis pilosula. Under future climatic conditions, the highly suitable area of Codonopsis pilosula is decreased.


Assuntos
Codonopsis , Codonopsis/química , Sistemas de Informação Geográfica , Raízes de Plantas/química , Altitude
8.
Food Funct ; 14(17): 7897-7911, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37491882

RESUMO

One of the top ten tonic herbs, Dangshen is frequently found in Chinese functional foods. With the inclusion of Dangshen in the list of food and medicine substances in 2020, the Dangshen Huangjiu (DHJ) emerged. In the Bencao, it is written that Huangjiu can "open up the curved veins and thicken the stomach and intestines". Furthermore, increasing investigations have verified the protective effect of Dangshen on the gastric mucosa. Therefore, we propose the hypothesis that the stomach mucosa might be protected by the DHJ. To demonstrate that the effect of solids in Dangshen Huangjiu (DHJG) on damaged human gastric mucosal epithelial cells (GES-1) was reversed, the study used ethanol to induce injury to GES-1 and then used protein immunoblotting (western blotting) to determine the expression levels of p-Akt, p-NF-κB-p65, and NF-κB-p65 proteins in the cells. 0.04 mol L-1 MNNG (5 mL kg-1 body weight) mixed with eating disorders(2 d satiety, l d starvation, 3 d cycle) was used to further establish a chronic non-atrophic gastritis (CNAG) model in Wistar rats, at the same time, the experimental rats were given DHJ and DHJG gavage. Cellular assays confirmed that DHJG (25-100 µg mL-1) dose-dependently increased the viability of ethanol-injured GES-1 and lowered p-Akt and p-NF-κB-p65/NF-κB-p65 protein expression. Animal experiments revealed that 10 mL kg-1 and 20 mL kg-1 DHJ had no significant effect on the basic activity and gastric tissues and related biochemical indices of healthy rats; DHJ (10 mL kg-1, 20 mL kg-1) and DHJG (2.8 g kg-1, 11.4 g kg-1) resulted in some improvement in weight loss and significant improvement in gastric mucosal pathology in CNAG rats with damage. Particularly, DHJ and DHJG significantly decreased the expression of p-Akt, p-NF-κB-p65/NF-κB-p65 and Bcl-2/Bax proteins and Akt, IKKß, IκBα and NF-κB mRNA in the gastric tissues of CNAG rats. These results showed that DHJG ameliorates ethanol-induced GES-1 cell injury; both DHJ and DHJG alleviate CNAG, and the mechanisms by which they do so may be related to DHJ and DHJG increasing the antioxidant capacity (elevating SOD, decreasing MDA), attenuating inflammatory responses (decreasing IL-1ß, IL-6, and TNF-α), reversing apoptosis (reducing the Bcl-2/Bax ratio) and down-regulating gastric tissue p-Akt and p-NF-κB-p65/NF-κB-p65 protein expression as well as Akt, IKKß, IκBα and NF-κB mRNA expression. This study indicates that the interventional effects of DHJ and DHJG in CNAG may act through the Akt/NF-κB signaling pathway.


Assuntos
Codonopsis , Medicamentos de Ervas Chinesas , Gastrite , Gastrite/tratamento farmacológico , Humanos , Codonopsis/química , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Ratos , Ratos Wistar , Linhagem Celular , Etanol , Sobrevivência Celular/efeitos dos fármacos , Apoptose
9.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37365694

RESUMO

The roots of the medicinal plant Codonopsis pilosula (Franch.) Nannf (C. pilosula) possess most medicinal supplements. In current research on C. pilosula root endophytes were isolated, identified, and evaluated for their antimicrobial activity against human pathogens such as Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa and the fungi Candida albicans and Aspergillus niger. Endophytes C.P-8 and C.P-20 exhibited very significant antimicrobial activity, the secondary metabolite of C.P-8 registered at retention time 24.075 by HPLC analysis. Significant minimum inhibitory concentration (MIC) of C.P-8 was exhibited at 250 µg/ml against S. aureus and 500 µg/ml against B. subtilis. Qualitative, quantitative analyses, and partial purification of enzymes and purity was analysed by molecular weight determined by SDS‒PAGE of enzymes produced by C.P-20, amylase-64 kDa, protease-64 kDa, chitinase-30 kDa, and cellulase-54 kDa. Optimum pH and temperature of the partially purified enzymes, was carried out. The partially purified enzymes from C.P-20 displayed maximum activity at pH 6-7 and temperatures of 40°C-45°C. Moreover, the above endophytes will be useful tools for producing active enzymes and active bioantimicrobial agents against human pathogens.


Assuntos
Anti-Infecciosos , Codonopsis , Humanos , Codonopsis/química , Codonopsis/metabolismo , Endófitos , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Testes de Sensibilidade Microbiana
10.
BMC Microbiol ; 23(1): 132, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189022

RESUMO

BACKGROUND: Rhizosphere soil physicochemical, endophytic fungi have an important role in plant growth. A large number of endophytic fungi play an indispensable role in promoting plant growth and development, and they can provide protection for host plants by producing a variety of secondary metabolites to resist and inhibit plant pathogens. Due to the terrain of Gansu province is north-south and longitudinal, different climatic conditions, altitude, terrain and growth environment will affect the growth of Codonopsis pilosula, and the changes in these environmental factors directly affect the quality and yield of C. pilosula in different production areas. However, In C. pilosula, the connection between soil nutrients, spatiotemporal variation and the community structure of endophytic fungi isolated from C. pilosula roots has not been well studied. RESULTS: Seven hundred six strains of endophytic fungi were obtained using tissue isolation and the hyphaend-purification method from C. pilosula roots that picked at all seasons and six districts (Huichuan, HC; Longxi, LX; Zhangxian, ZX; Minxian, MX; Weiyuan, WY; and Lintao, LT) in Gansu Province, China. Fusarium sp. (205 strains, 29.04%), Aspergillus sp. (196 strains, 27.76%), Alternaria sp. (73 strains, 10.34%), Penicillium sp. (58 strains, 8.22%) and Plectosphaerella sp. (56 strains, 7.93%) were the dominant genus. The species composition differed from temporal and spatial distribution (Autumn and Winter were higher than Spring and Summer, MX and LT had the highest similarity, HC and LT had the lowest). physical and chemical of soil like Electroconductibility (EC), Total nitrogen (TN), Catalase (CAT), Urease (URE) and Sucrase (SUC) had significant effects on agronomic traits of C. pilosula (P < 0.05). AK (Spring and Summer), TN (Autumn) and altitude (Winter) are the main driving factors for the change of endophytic fungal community. Moreover, geographic location (such as altitude, latitude and longitude) also has effects on the diversity of endophytic fungi. CONCLUSIONS: These results suggested that soil nutrients and enzyme, seasonal variation and geographical locations have an impact on shaping the community structure of culturable endophytic fungi in the roots of C. pilosula and its root traits. This suggests that climatic conditions may play a driving role in the growth and development of C. pilosula.


Assuntos
Ascomicetos , Codonopsis , Micobioma , Estações do Ano , Codonopsis/química , Fungos , Solo , Raízes de Plantas/microbiologia , Endófitos
11.
Plant Physiol Biochem ; 198: 107659, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37031545

RESUMO

In order to study the relationship between medicinal plant Codonopsis pilosula phenotype, secondary metabolites, antioxidant capacity and its rhizosphere soil nutrients, root-related microorganisms under seasonal and geographical changes, high-throughput sequencing technology was used to explore the bacterial community structure and variation in rhizosphere soil and root endosphere from six regions of Dingxi City, Gansu Province during four seasons. Secondary metabolites composition and antioxidant capacities of C. pilosula root collected successively from four seasons were determined. The chemical properties, nutrient content and enzyme activities of rhizosphere of C. pilosula were significantly different under different temporal and spatial conditions. All soil samples were alkaline (pH 7.64-8.42), with water content ranging from 9.53% to 19.95%, and electrical conductivity varied widely, showing obvious time-scale effects. Different time scales were the main reasons for the diversity and structure of rhizosphere bacterial community of C. pilosula. The diversity and richness of rhizosphere bacterial community in autumn and winter were higher than those in spring and summer, and bacterial community structure in spring and summer was more similar to that in autumn and winter. The root length and diameter of C. pilosula showed significant time gradient difference under different spatiotemporal conditions. Nutrition and niche competition lead to significant synergistic or antagonistic interactions between rhizosphere bacteria and endophytic bacteria, which invisibly affect soil properties, abundance of functional bacteria and even yield and quality of C. pilosula. Soil properties, rhizosphere bacteria and endophytic bacteria directly promoted root phenotype, stress resistance and polysaccharide accumulation of C. pilosula.


Assuntos
Codonopsis , Plantas Medicinais , Codonopsis/química , Antioxidantes , Raízes de Plantas/microbiologia , Plantas Medicinais/química , Rizosfera , Solo/química , Bactérias , Microbiologia do Solo
12.
J Pharm Biomed Anal ; 229: 115368, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001273

RESUMO

Codonopsis pilosula (CP) possesses properties related to nourishing the spleen and stomach, and tonifying Qi of the stomach and mind in traditional Chinese medicine (TCM). Codonopsis pilosula polysaccharides (CPPS), which are the primary active components of CP, are thought to be in charge of their extensive use. Rutin, quercetin, luteoloside, and luteolin, are common and pharmacologically significant flavonoids with many pharmacological activities, but their oral bioavailability is limited by poor solubility and stability. In this study, high-performance gel permeation chromatography (HPGPC) estimated the molecular weight of CPPS to be 9.7 × 105 Da. Sugar analysis revealed that CPPS is composed of D-mannose, D-glucose, and D-xylose with a molar ratio of 5.8:1.9:1.0. Moreover, the antioxidant test showed that CPPS had good antioxidant activity. It is worth noting that CPPS integrated the four flavonoids to form a spongy compound that significantly increased the solubilities and stabilities of flavonoids. The bonding constants of the CPPS and flavonoid-derived inclusion complexes ranged from 60 L mol-1 to 2,030,816 L mol-1, which demonstrated the capacity of CPPS to interact with flavonoids intermolecularly to form a drug complex system, resulting in potentially enhanced biopharmaceutical properties of flavonoids. This finding could provide a reference point for further applications of polysaccharides from herbal medicines.


Assuntos
Antioxidantes , Codonopsis , Antioxidantes/farmacologia , Codonopsis/química , Solubilidade , Flavonoides , Polissacarídeos/química
13.
Sci Rep ; 13(1): 4504, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934161

RESUMO

In this study, a powerful and rapid aqueous two-phase system (ATPS) method was used to extract polysaccharides from Codonopsis pilosula. The ATPS process was investigated with response surface methodology (RSM). At an ammonium sulfate concentration of 17%, ethanol concentration of 30%, and extraction temperature of 40 °C at pH 6, the total extraction yield of polysaccharides reached (31.57 ± 1.28)%. After separation and purification, a homogenized polysaccharide CPP 2-4 with molecular weight of 3.9 × 104 kDa was obtained from the bottom phase. The physicochemical properties and structural features confirmed that CPP 2-4 was an α-1,6-glucan. Activity studies showed that the IC50 of CPP 2-4 for DPPH radical scavenging was 0.105 mg/mL. The FRAP and ABTS assays showed that CPP 2-4 had strong antioxidant activity in a dose-dependent manner. Furthermore, CPP 2-4 inhibited NO release in RAW264.7 cells induced by lipopolysaccharide, which indicated a certain anti-inflammatory effect. This study improved the extraction rate of polysaccharides from C. pilosula and identified a glucan for the first time, that can contribute to a better understanding of the composition and structure of polysaccharides from C. pilosula and provide data support for the medicine and food homology of C. pilosula.


Assuntos
Codonopsis , Glucanos , Glucanos/farmacologia , Codonopsis/química , Polissacarídeos/química , Antioxidantes/química , Lipopolissacarídeos/farmacologia , Água/química
14.
Int J Biol Macromol ; 230: 123178, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623621

RESUMO

The development of biocompatible carriers based on hydroethanolic physical gels for effectively encapsulating and delivering hydrophobic drug molecules is of particular interest. In this paper, we reported a novel hydroethanolic physical gel based on Codonopsis pilosula polysaccharide (CPP) prepared from the roots of C. pilosula. The gelation behaviors of the graded CPP fractions in a water-ethanol solvent system were evaluated, and the physicochemical and mechanical properties of the CPP-based gel (CPP-G) were characterized. The results indicated that CPP-G had consisted of a random physically crosslinked network formed by hydrophobic association of CPP chains and exhibited good mechanical strength, higher shear-thinning sensitivity and rapid, highly efficient self-recovering characteristics, ensuring superior performance in constructing injectable and self-recovering drug-loaded gels. Hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin (DOX) were used as representative drugs to investigate the encapsulation and in vitro release behaviors of CPP-G, which exhibited long-term sustained release properties. Additionally, the evaluation of drug activity in drug-loaded gels further revealed the synergistic effect of CPP-G with the selected drugs on tumor inhibition against 4T1 and MCF-7 breast cancer cell lines. This work evaluated the feasibility of using the natural polysaccharide CPP to construct hydroethanolic physical gels and the applicability of the injectable drug-loaded gels for hydrophobic drug delivery.


Assuntos
Antineoplásicos , Codonopsis , Humanos , Codonopsis/química , Sistemas de Liberação de Medicamentos , Géis , Antineoplásicos/farmacologia , Polissacarídeos/química
15.
J Pharm Biomed Anal ; 223: 115140, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36356406

RESUMO

Polyacetylenes, lobetyol, lobetyolin and lobetyolinin, are responsible for antitumor, antioxidant, anti-inflammatory, immunomodulatory activities of Codonopsis Radix. However, their metabolic pathways are still unknown. The study was purposed to investigate the metabolism of three polyacetylenes in vitro and in vivo by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Moreover, a rapid, sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantitative and semi-quantitative determination of lobetyol and its 12 metabolites to investigate the metabolic stability and metabolic phenotypes. A total of 47, 30 and 34 metabolites of lobetyol, lobetyolin and lobetyolinin were found in all samples. These metabolites are produced through extensive pathways, mainly involving oxidation, glucuronidation and glutathione conjugation. Lobetyol showed good metabolic stability in liver microsomes. The results of both recombinant human CYP enzymes and chemical inhibition experiments confirmed that CYP2C19, 1A1, 2C9, and 1A2 are the major isozymes mediating lobetyol metabolism.


Assuntos
Codonopsis , Humanos , Codonopsis/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polímero Poliacetilênico , Redes e Vias Metabólicas
16.
J Sep Sci ; 46(2): e2200723, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401831

RESUMO

Codonopsis radix was commonly used as food materials or herbal medicines in many countries. However, the comprehensive analysis of chemical constituents, and in vivo xenobiotics of Codonopsis radix remain unclear. In the present study, an integrated strategy with feature-based molecular networking using ultra-high-performance liquid chromatography coupled with mass spectrometry was established to systematically screen the chemical constituents and the in vivo xenobiotics of Codonopsis radix. A step-by-step manner based on a composition database, visual structure classification, discriminant ions, and metabolite software prediction was proposed to overcome the complexities due to the similar structure of chemical constituents and metabolites of Codonopsis radix. As a result, 103 compounds were tentatively characterized, 20 of which were identified by reference standards. Besides, a total of 50 xenobiotics were detected in vivo, including 26 prototypes and 24 metabolites, while the metabolic features of the pyrrolidine alkaloids were elucidated for the first time. The metabolism reactions of pyrrolidine alkaloids and sesquiterpene lactones included oxidation, methylation, hydration, hydrogenation, demethylation, glucuronidation, and sulfation. This study provided a generally applicable approach to the comprehensive investigation of the chemical and metabolic profile of traditional Chinese medicine and offered reasonable guidelines for further screening of quality control indicators and pharmacodynamics mechanism of Codonopsis radix.


Assuntos
Alcaloides , Codonopsis , Medicamentos de Ervas Chinesas , Ratos , Animais , Medicamentos de Ervas Chinesas/análise , Codonopsis/química , Codonopsis/metabolismo , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Xenobióticos/metabolismo , Espectrometria de Massas/métodos , Alcaloides/química , Pirrolidinas
17.
Chin J Nat Med ; 20(12): 948-960, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36549808

RESUMO

Codonopsis pilosula (CP), a well-known food medicine homology plant, is commonly used in many countries. In our preliminary study, a series of pyrrolidine alkaloids with high MS responses were detected as characteristic absorbed constituents in rat plasma after oral administration of CP extract. However, their structures were unclear due to the presence of various isomers and the lack of reference standards. In the present study, an MS-guided targeted isolation of pyrrolidine alkaloids of CP extract was performed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF MS). For data analysis under fast data directed acquisition mode (Fast-DDA), an effective approach named characteristic fragmentation-assisted mass spectral networking was successfully applied to discover new pyrrolidine alkaloids with high MS response in CP extract. As a result, seven new pyrrolizidine alkaloids [codonopyrrolidiums C-I (3-9)], together with two known ones (1 and 2), were isolated and identified by NMR spectral analysis. Among them, codonopyrrolidium B (1), codonopyrrolidium D (4) and codonopyrrolidium E (5) were evaluated for lipid-lowering activity, and they could improve high fructose-induced lipid accumulation in HepG2 cells. In addition, the characteristic MS/MS fragmentation patterns of these pyrrolizidine alkaloids were investigated, and 17 pyrrolidine alkaloids were identified. This approach could accelerate novel natural products discovery and characterize a class of natural products with MS/MS fragmentation patterns from similar chemical scaffolds. The research also provides a chemical basis for revealingin vivo effective substances in CP.


Assuntos
Alcaloides , Codonopsis , Plantas Medicinais , Alcaloides de Pirrolizidina , Animais , Ratos , Codonopsis/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pirrolidinas/farmacologia , Pirrolidinas/análise , Lipídeos
18.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6164-6174, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471941

RESUMO

This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1ß, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1ß, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.


Assuntos
Artrite Experimental , Artrite Reumatoide , Codonopsis , Extratos Vegetais , Animais , Bovinos , Masculino , Ratos , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Peso Corporal , Codonopsis/química , Interleucina-6/sangue , NF-kappa B/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
19.
Int J Biol Macromol ; 221: 1466-1475, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36070821

RESUMO

The purpose of this study was to investigate the effects of chitosan graphene oxide Codonopsis pilosula polysaccharide (CS-GO-CPP) complex on the immune function of macrophage cells (RAW264.7). In this experiment, chitosan (CS) was combined with graphene oxide (GO) by electrostatic action to prepare CS-GO nanocomposites, and it was used as a carrier to load Codonopsis pilosula polysaccharide (CPP) onto CS-GO to prepare CS-GO-CPP. Using infrared spectroscopy detection, zeta potential detection, and thermogravimetric analysis, we conduct a preliminary analysis of the structure of CS-GO-CPP. Macrophages were employed to evaluate CS-GO-CPP immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. The results showed that compared with CPP, CS-GO-CPP did not change the basic structure of polysaccharide, and its thermal stability was improved. 0.78- 12.5 µg·mL-1 of CS-GO-CPP could significantly promote the phagocytic activity of RAW264.7 cells (P < 0.05) and significantly increase NO content, IL-4 and IFN-γ secretion, the expression of CD40, CD86, and F4/80 (P < 0.05). CS-GO-CPP might activate the NF-κB signaling pathway and induce the nuclear translocation of NF-κB p65. In conclusion, CS-GO-CPP has a capacity to activate RAW264.7 cells for an improvement of immunomodulation activities, which might be through NF-κB signaling pathway.


Assuntos
Quitosana , Codonopsis , Grafite , Codonopsis/química , Quitosana/química , NF-kappa B , Grafite/química , Polissacarídeos/farmacologia
20.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014584

RESUMO

A homogeneous polysaccharide coded as CPP-1 was extracted and purified from the root of Codonopsis pilosula (Franch.) Nannf. by water extraction, ethanol precipitation, and column chromatography. Its structure was analyzed by HPGPC-ELSD, HPLC, GC-MS, FT-IR, and NMR techniques. The results indicated that CPP-1 was composed of mannose (Man), glucose (Glc), galactose (Gal), and arabinose (Ara) at a molar ratio of 5.86 : 51.69 : 34.34 : 8.08. The methylation analysis revealed that the main glycosidic linkage types of CPP-1 were (1→)-linked-Glc residue, (1→3)-linked-Glc residues, (1→4)-linked-Gal residue, (1→2,3,4)-linked-Glc residue, (1→)-linked-Man residue, (1→3,4)-linked-Glc residue, and (1→)-linked-Ara residue. In vivo efficacy trial illustrated that CPP-1 supplements could alleviate HFD-induced mice obesity significantly, as well as improve obesity-induced disorders of glucose metabolism, alleviate insulin resistance, and improve the effects of lipid metabolism. The findings indicate that this polysaccharide has the potential for the treatment of obesity.


Assuntos
Codonopsis , Animais , Codonopsis/química , Dieta , Carboidratos da Dieta , Galactose , Humanos , Manose , Camundongos , Obesidade/tratamento farmacológico , Polissacarídeos/química , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA