Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 977
Filtrar
1.
Sci Rep ; 14(1): 11165, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750092

RESUMO

Kinetic aspects of enzymatic reactions are described by equations based on the Michaelis-Menten theory for the initial stage. However, the kinetic parameters provide little information on the atomic mechanism of the reaction. In this study, we analyzed structures of glutamate dehydrogenase in the initial and steady stages of the reaction using cryoEM at near-atomic resolution. In the initial stage, four metastable conformations displayed different domain motions and cofactor/ligand association modes. The most striking finding was that the enzyme-cofactor-substrate complex, treated as a single state in the enzyme kinetic theory, comprised at least three different metastable conformations. In the steady stage, seven conformations, including derivatives from the four conformations in the initial stage, made the reaction pathway complicated. Based on the visualized conformations, we discussed stage-dependent pathways to illustrate the dynamics of the enzyme in action.


Assuntos
Microscopia Crioeletrônica , Glutamato Desidrogenase , Conformação Proteica , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Microscopia Crioeletrônica/métodos , Ligantes , Cinética , Modelos Moleculares , Coenzimas/metabolismo , Coenzimas/química , Catálise , Ligação Proteica
2.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005178

RESUMO

The pyranopterin dithiolene ligand is remarkable in terms of its geometric and electronic structure and is uniquely found in mononuclear molybdenum and tungsten enzymes. The pyranopterin dithiolene is found coordinated to the metal ion, deeply buried within the protein, and non-covalently attached to the protein via an extensive hydrogen bonding network that is enzyme-specific. However, the function of pyranopterin dithiolene in enzymatic catalysis has been difficult to determine. This focused account aims to provide an overview of what has been learned from the study of pyranopterin dithiolene model complexes of molybdenum and how these results relate to the enzyme systems. This work begins with a summary of what is known about the pyranopterin dithiolene ligand in the enzymes. We then introduce the development of inorganic small molecule complexes that model aspects of a coordinated pyranopterin dithiolene and discuss the results of detailed physical studies of the models by electronic absorption, resonance Raman, X-ray absorption and NMR spectroscopies, cyclic voltammetry, X-ray crystallography, and chemical reactivity.


Assuntos
Metaloproteínas , Molibdênio , Modelos Moleculares , Molibdênio/química , Ligantes , Metaloproteínas/química , Catálise , Coenzimas/química
3.
Science ; 382(6669): 423-429, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883544

RESUMO

A DNA polymerase with a single mutation and a divalent calcium cofactor catalyzes the synthesis of unnatural N3'→P5' phosphoramidate (NP) bonds to form NP-DNA. However, this template-directed phosphoryl transfer activity remains orders of magnitude slower than native phosphodiester synthesis. Here, we used time-resolved x-ray crystallography to show that NP-DNA synthesis proceeds with a single detectable calcium ion in the active site. Using insights from isotopic and elemental effects, we propose that one-metal-ion electrophilic substrate activation is inferior to the native two-metal-ion mechanism. We found that this deficiency in divalent activation could be ameliorated by trivalent rare earth and post-transition metal cations, substantially enhancing NP-DNA synthesis. Scandium(III), in particular, confers highly specific NP activity with kinetics enhanced by more than 100-fold over calcium(II), yielding NP-DNA strands up to 100 nucleotides in length.


Assuntos
Proteínas de Bactérias , Cálcio , Coenzimas , DNA Polimerase Dirigida por DNA , DNA , Geobacillus stearothermophilus , Cálcio/química , DNA/biossíntese , DNA Polimerase Dirigida por DNA/química , Nucleotídeos/química , Coenzimas/química , Geobacillus stearothermophilus/enzimologia , Proteínas de Bactérias/química , Ativação Enzimática , Cristalografia por Raios X , Conformação Proteica , Biocatálise
4.
Protein Sci ; 32(9): e4753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572332

RESUMO

Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Proteínas de Arabidopsis/química , Calnexina/química , Calnexina/metabolismo , Arabidopsis/química , Molibdênio/metabolismo , Coenzimas/química , Metaloproteínas/química , Pteridinas/química
5.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513211

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Assuntos
Formiato Desidrogenases , Metaloproteínas , Formiato Desidrogenases/metabolismo , Oxirredução , Metaloproteínas/química , Molibdênio/química , Domínio Catalítico , Pteridinas/química , Coenzimas/química
6.
Bioorg Chem ; 138: 106602, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201323

RESUMO

Thiamine diphosphate (ThDP), the bioactive form of vitamin B1, is an essential coenzyme needed for processes of cellular metabolism in all organisms. ThDP-dependent enzymes all require ThDP as a coenzyme for catalytic activity, although individual enzymes vary significantly in substrate preferences and biochemical reactions. A popular way to study the role of these enzymes through chemical inhibition is to use thiamine/ThDP analogues, which typically feature a neutral aromatic ring in place of the positively charged thiazolium ring of ThDP. While ThDP analogues have aided work in understanding the structural and mechanistic aspects of the enzyme family, at least two key questions regarding the ligand design strategy remain unresolved: 1) which is the best aromatic ring? and 2) how can we achieve selectivity towards a given ThDP-dependent enzyme? In this work, we synthesise derivatives of these analogues covering all central aromatic rings used in the past decade and make a head-to-head comparison of all the compounds as inhibitors of several ThDP-dependent enzymes. Thus, we establish the relationship between the nature of the central ring and the inhibitory profile of these ThDP-competitive enzyme inhibitors. We also demonstrate that introducing a C2-substituent onto the central ring to explore the unique substrate-binding pocket can further improve both potency and selectivity.


Assuntos
Tiamina Pirofosfato , Tiamina , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Tiamina/farmacologia , Tiamina/química , Especificidade por Substrato , Coenzimas/química , Biocatálise
7.
Nature ; 617(7960): 403-408, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138074

RESUMO

Biosynthesis is an environmentally benign and renewable approach that can be used to produce a broad range of natural and, in some cases, new-to-nature products. However, biology lacks many of the reactions that are available to synthetic chemists, resulting in a narrower scope of accessible products when using biosynthesis rather than synthetic chemistry. A prime example of such chemistry is carbene-transfer reactions1. Although it was recently shown that carbene-transfer reactions can be performed in a cell and used for biosynthesis2,3, carbene donors and unnatural cofactors needed to be added exogenously and transported into cells to effect the desired reactions, precluding cost-effective scale-up of the biosynthesis process with these reactions. Here we report the access to a diazo ester carbene precursor by cellular metabolism and a microbial platform for introducing unnatural carbene-transfer reactions into biosynthesis. The α-diazoester azaserine was produced by expressing a biosynthetic gene cluster in Streptomyces albus. The intracellularly produced azaserine was used as a carbene donor to cyclopropanate another intracellularly produced molecule-styrene. The reaction was catalysed by engineered P450 mutants containing a native cofactor with excellent diastereoselectivity and a moderate yield. Our study establishes a scalable, microbial platform for conducting intracellular abiological carbene-transfer reactions to functionalize a range of natural and new-to-nature products and expands the scope of organic products that can be produced by cellular metabolism.


Assuntos
Azasserina , Azasserina/biossíntese , Azasserina/química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Família Multigênica/genética , Estireno/química , Ciclopropanos/química , Coenzimas/química , Coenzimas/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
8.
Sci Total Environ ; 868: 161630, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657682

RESUMO

Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.


Assuntos
Coenzimas , Niacinamida , Coenzimas/química , Enzimas Imobilizadas/metabolismo , Biocatálise , Trifosfato de Adenosina
9.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235107

RESUMO

The molybdenum cofactor (Moco) is the active site prosthetic group found in numerous vitally important enzymes (Mo-enzymes), which predominantly catalyze 2 electron transfer reactions. Moco is synthesized by an evolutionary old and highly conserved multi-step pathway, whereby the metal insertion reaction is the ultimate reaction step here. Moco and its intermediates are highly sensitive towards oxidative damage and considering this, they are believed to be permanently protein bound during synthesis and also after Moco maturation. In plants, a cellular Moco transfer and storage system was identified, which comprises proteins that are capable of Moco binding and release but do not possess a Moco-dependent enzymatic activity. The first protein described that exhibited these properties was the Moco carrier protein (MCP) from the green alga Chlamydomonas reinhardtii. However, MCPs and similar proteins have meanwhile been described in various plant species. This review will summarize the current knowledge of the cellular Moco distribution system.


Assuntos
Chlamydomonas reinhardtii , Metaloproteínas , Proteínas de Transporte/metabolismo , Domínio Catalítico , Chlamydomonas reinhardtii/metabolismo , Coenzimas/química , Metaloproteínas/química , Molibdênio/metabolismo , Cofatores de Molibdênio , Plantas/metabolismo
10.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080140

RESUMO

For most organisms molybdenum is essential for life as it is found in the active site of various vitally important molybdenum dependent enzymes (Mo-enzymes). Here, molybdenum is bound to a pterin derivative called molybdopterin (MPT), thus forming the molybdenum cofactor (Moco). Synthesis of Moco involves the consecutive action of numerous enzymatic reaction steps, whereby molybdenum insertases (Mo-insertases) catalyze the final maturation step, i.e., the metal insertion reaction yielding Moco. This final maturation step is subdivided into two partial reactions, each catalyzed by a distinctive Mo-insertase domain. Initially, MPT is adenylylated by the Mo-insertase G-domain, yielding MPT-AMP which is used as substrate by the E-domain. This domain catalyzes the insertion of molybdate into the MPT dithiolene moiety, leading to the formation of Moco-AMP. Finally, the Moco-AMP phosphoanhydride bond is cleaved by the E-domain to liberate Moco from its synthesizing enzyme. Thus formed, Moco is physiologically active and may be incorporated into the different Mo-enzymes or bind to carrier proteins instead.


Assuntos
Metaloproteínas , Molibdênio , Monofosfato de Adenosina , Domínio Catalítico , Coenzimas/química , Metaloproteínas/química , Molibdênio/metabolismo , Cofatores de Molibdênio , Pterinas
11.
Biochem Soc Trans ; 50(4): 1187-1196, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35960008

RESUMO

The nickel-pincer nucleotide (NPN) coenzyme, a substituted pyridinium mononucleotide that tri-coordinates nickel, was first identified covalently attached to a lysine residue in the LarA protein of lactate racemase. Starting from nicotinic acid adenine dinucleotide, LarB carboxylates C5 of the pyridinium ring and hydrolyzes the phosphoanhydride, LarE converts the C3 and C5 carboxylates to thiocarboxylates, and LarC incorporates nickel to form a C-Ni and two S-Ni bonds, during the biosynthesis of this cofactor. LarB uses a novel carboxylation mechanism involving the transient formation of a cysteinyl-pyridinium adduct. Depending on the source of the enzyme, LarEs either catalyze a sacrificial sulfur transfer from a cysteinyl side chain resulting in the formation of dehydroalanine or they utilize a [4Fe-4S] cluster bound by three cysteine residues to accept and transfer a non-core sulfide atom. LarC is a CTP-dependent enzyme that cytidinylylates its substrate, adds nickel, then hydrolyzes the product to release NPN and CMP. Homologs of the four lar genes are widely distributed in microorganisms, with some species containing multiple copies of larA whereas others lack this gene, consistent with the cofactor serving other functions. Several LarA-like proteins were shown to catalyze racemase or epimerase activities using 2-hydroxyacid substrates other than lactic acid. Thus, lactate racemase is the founding member of a large family of NPN-containing enzymes.


Assuntos
Lactobacillus plantarum , Níquel , Coenzimas/química , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Níquel/química , Níquel/metabolismo , Nucleotídeos/metabolismo , Enxofre/metabolismo
12.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956883

RESUMO

The transition element molybdenum (Mo) is an essential micronutrient for plants, animals, and microorganisms, where it forms part of the active center of Mo enzymes. To gain biological activity in the cell, Mo has to be complexed by a pterin scaffold to form the molybdenum cofactor (Moco). Mo enzymes and Moco are found in all kingdoms of life, where they perform vital transformations in the metabolism of nitrogen, sulfur, and carbon compounds. In this review, I recall the history of Moco in a personal view, starting with the genetics of Moco in the 1960s and 1970s, followed by Moco biochemistry and the description of its chemical structure in the 1980s. When I review the elucidation of Moco biosynthesis in the 1990s and the early 2000s, I do it mainly for eukaryotes, as I worked with plants, human cells, and filamentous fungi. Finally, I briefly touch upon human Moco deficiency and whether there is life without Moco.


Assuntos
Metaloproteínas , Cofatores de Molibdênio , Animais , Coenzimas/química , Eucariotos/metabolismo , Humanos , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio/genética , Cofatores de Molibdênio/metabolismo , Plantas/metabolismo , Pterinas
13.
J Inorg Biochem ; 235: 111907, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932756

RESUMO

Resonance Raman spectroscopy (rR) is a powerful spectroscopic probe that is widely used for studying the geometric and electronic structure of metalloproteins. In this focused review, we detail how resonance Raman spectroscopy has contributed to a greater understanding of electronic structure, geometric structure, and the reaction mechanisms of pyranopterin molybdenum enzymes. The review focuses on the enzymes sulfite oxidase (SO), dimethyl sulfoxide reductase (DMSOR), xanthine oxidase (XO), and carbon monoxide dehydrogenase. Specifically, we highlight how Mo-Ooxo, Mo-Ssulfido, Mo-Sdithiolene, and dithiolene CC vibrational modes, isotope and heavy atom perturbations, resonance enhancement, and associated Raman studies of small molecule analogs have provided detailed insight into the nature of these metalloenzyme active sites.


Assuntos
Metaloproteínas , Molibdênio , Coenzimas/química , Metaloproteínas/química , Modelos Moleculares , Molibdênio/química , Pterinas/química , Análise Espectral Raman
14.
Proc Natl Acad Sci U S A ; 119(31): e2122677119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881795

RESUMO

Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.


Assuntos
Materiais Biomiméticos , Coenzimas , Hidrocarbonetos , Ferro , Nitrogenase , Enxofre , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Coenzimas/síntese química , Coenzimas/química , Hidrocarbonetos/síntese química , Hidrocarbonetos/química , Ferro/química , Nitrogenase/química , Oxirredução , Enxofre/química
15.
Angew Chem Int Ed Engl ; 61(39): e202206926, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35762738

RESUMO

Herein, we report a multifunctional chemoenzymatic nanoreactor (NanoNOx) for the glucose-controlled regeneration of natural and artificial nicotinamide cofactors. NanoNOx are built of glucose oxidase-polymer hybrids that assemble in the presence of an organometallic catalyst: hemin. The design of the hybrid is optimized to increase the effectiveness and the directional channeling at low substrate concentration. Importantly, NanoNOx can be reutilized without affecting the catalytic properties, can show high stability in the presence of organic solvents, and can effectively oxidize assorted natural and artificial enzyme cofactors. Finally, the hybrid was successfully coupled with NADH-dependent dehydrogenases in one-pot reactions, using a strategy based on the sequential injection of a fuel, namely, glucose. Hence, this study describes the first example of a hybrid chemoenzymatic nanomaterial able to efficiently mimic NOx enzymes in cooperative one-pot cascade reactions.


Assuntos
NADPH Oxidases , NAD , Biocatálise , Coenzimas/química , Glucose , Glucose Oxidase , Hemina , NAD/metabolismo , Nanotecnologia , Niacinamida , Oxirredutases , Polímeros , Regeneração , Solventes
16.
Acc Chem Res ; 55(8): 1087-1096, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353478

RESUMO

Harnessing biocatalysts for novel abiological transformations is a longstanding goal of synthetic chemistry. Combining the merits of biocatalysis and photocatalysis allows for selective transformations fueled by visible light and offers many advantages including new reactivity, high enantioselectivity, greener syntheses, and high yields. Photoinduced electron or energy transfer enables synthetic methodologies that complement conventional two electron processes or offer orthogonal pathways for developing new reactions. Enzymes are well suited and can be tuned by directed evolution to exert control over open-shell intermediates, thereby suppressing undesirable reactions and delivering high chemo- and stereoselectivities. Within the past decade, the combination of biocatalysis and photocatalysis was mainly focused on exploiting light-regenerated cofactors to function native enzymatic activity. However, recent developments have demonstrated that the combination can unlock new-to-nature chemistry. Particularly, the discovery and application of new strategies are well poised to expand the applications of photobiocatalysis.In the past five years, our lab has been studying the combinations of photocatalysis and biocatalysis that can be applied to create new synthetic methodologies and solve challenges in synthetic organic chemistry. Our efforts have expanded the strategies for combining external photocatalysts with enzymes through the construction of a synergistic cooperative stereoconvergent reduction system consisting of photosensitized energy transfer and ene-reductase-catalyzed alkene reduction. Additionally, our efforts have also extended the capability of cofactor-dependent photoenzymatic systems to include enantioselective bimolecular radical hydroalkylations of alkenes by irradiating electron donor-acceptor complexes comprised of enzymatic redox active cofactors and unnatural substrates.In this Account, we highlight strategies developed by our group and others for combining biocatalysis and photocatalysis with the aim of introducing non-natural reactivity to enzymes. Presently, strategies applied to achieve this goal include the repurposing of natural photoenzymes, the elucidation of new photoreactivity within cofactor-dependent enzymes, the combination of external photocatalysts with enzymes, and the construction of artificial photoenzymes. By demonstrating the successful applications of these strategies for achieving selective new-to-nature transformations, we hope to spur interest in expanding the scope of photobiocatalytic systems through the use and extension of these strategies and creation of new strategies. Additionally, we hope to elucidate the intuition in synergizing the unique capabilities of biocatalysis and photocatalysis so that photobiocatalysis can be recognized as a potential solution to difficult challenges in synthetic organic chemistry.


Assuntos
Coenzimas , Oxirredutases , Alcenos/química , Biocatálise , Coenzimas/química , Luz , Oxirredutases/química
17.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 2): 52-58, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102893

RESUMO

Burkholderia phymatum is an important symbiotic nitrogen-fixing betaproteobacterium. B. phymatum is beneficial, unlike other Burkholderia species, which cause disease or are potential bioagents. Structural genomics studies at the SSGCID include characterization of the structures of short-chain dehydrogenases/reductases (SDRs) from multiple Burkholderia species. The crystal structure of a short-chain dehydrogenase from B. phymatum (BpSDR) was determined in space group C2221 at a resolution of 1.80 Å. BpSDR shares less than 38% sequence identity with any known structure. The monomer is a prototypical SDR with a well conserved cofactor-binding domain despite its low sequence identity. The substrate-binding cavity is unique and offers insights into possible functions and likely inhibitors of the enzymatic functions of BpSDR.


Assuntos
Burkholderiaceae/enzimologia , NAD/química , Redutases-Desidrogenases de Cadeia Curta/química , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , NAD/metabolismo , Conformação Proteica
18.
Nitric Oxide ; 119: 41-49, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942379

RESUMO

Nitric oxide synthase (NOS) catalyzes NO formation from the substrate l-arginine (Arg). Previously, NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied the effect of recombinant OtNOS and SyNOS expressed under IPTG-induced promoter in E. coli, a bacterium that lacks NOS. Results show that OtNOS and SyNOS expression promote E. coli growth in a nutrient replete medium and allow to better metabolize Arg as N source. In LB medium, OtNOS induces the expression of the NO dioxygenase hmp in E. coli, in accordance with high NO levels visualized with the probe DAF-FM DA. In contrast, SyNOS expression does not induce hmp and show a slight increase of NO production compared to OtNOS. NOS expression reduces ROS production and increases viability of E. coli cultures growing in LB. A strong nitrosative stress provoked by the addition of 1 mM of the NO donors sodium nitroprusside (SNP) and nitrosoglutathione (GSNO) inhibits bacterial growth rate. Under these conditions, the expression of OtNOS or SyNOS counteracts NO donor toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we postulate that tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, could act as cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in NOS-lacking bacteria.


Assuntos
Biopterinas/análogos & derivados , Coenzimas/metabolismo , Escherichia coli/crescimento & desenvolvimento , Óxido Nítrico Sintase/metabolismo , Estresse Nitrosativo/fisiologia , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopterinas/química , Biopterinas/metabolismo , Clorófitas/enzimologia , Coenzimas/química , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Synechococcus/enzimologia
19.
Nat Chem ; 13(12): 1228-1234, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635813

RESUMO

Molybdenum nitrogenase catalyses the reduction of N2 to NH3 at its cofactor, an [(R-homocitrate)MoFe7S9C] cluster synthesized via the formation of a [Fe8S9C] L-cluster prior to the insertion of molybdenum and homocitrate. We have previously identified a [Fe8S8C] L*-cluster, which is homologous to the core structure of the L-cluster but lacks the 'ninth sulfur' in the belt region. However, direct evidence and mechanistic details of the L*- to L-cluster conversion upon 'ninth sulfur' insertion remain elusive. Here we trace the 'ninth sulfur' insertion using SeO32- and TeO32- as 'labelled' SO32-. Biochemical, electron paramagnetic resonance and X-ray absorption spectroscopy/extended X-ray absorption fine structure studies suggest a role of the 'ninth sulfur' in cluster transfer during cofactor biosynthesis while revealing the incorporation of Se2-- and Te2--like species into the L-cluster. Density functional theory calculations further point to a plausible mechanism involving in situ reduction of SO32- to S2-, thereby suggesting the utility of this reaction to label the catalytically important belt region for mechanistic investigations of nitrogenase.


Assuntos
Coenzimas/química , Proteínas Ferro-Enxofre/química , Nitrogenase/química , Ácido Selenioso/química , Enxofre/química , Telúrio/química , Proteínas Arqueais/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Methanosarcina/enzimologia , Modelos Químicos , Espectroscopia por Absorção de Raios X
20.
Chem Commun (Camb) ; 57(87): 11416-11428, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34636371

RESUMO

The merger of enzyme immobilisation and flow chemistry has attracted the attention of the scientific community during recent years. Immobilisation enhances enzyme stability and enables recycling, flow chemistry allows process intensification. Their combination is desirable for the development of more efficient and environmentally friendly biocatalytic processes. In this feature article, we aim to point out important metrics for successful enzyme immobilisation and for reporting flow biocatalytic processes. Relevant examples of immobilised enzymes used in flow systems in organic, biphasic and aqueous systems are discussed. Finally, we describe recent developments to address the cofactor recycling hurdle.


Assuntos
Enzimas Imobilizadas/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Biocatálise , Coenzimas/química , Estabilidade Enzimática , Proteínas de Plantas/química , Plantas/enzimologia , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA