Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Biochem Biophys Res Commun ; 560: 66-71, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33975247

RESUMO

One major goal in tissue engineering is to create functional materials, mimicking scaffolds in native tissues, to modulate cell function for tissue repair. Collagen is the most abundant structural protein in human body. Though collagen I (COLI) and collagen III (COLIII) are the predominant collagen types in connective tissues and they form stable hybrid fibrils at varied ratios, cell responses to the hybrid matrices are underinvestigated. In this work, we aim to explicate the distinctive roles of COLI and COLIII in fibroblast activation. Unidirectionally aligned COLI, COLIII and COLI-COLIII hybrid nanofibrils were generated via epitaxial growth of collagen on mica. AFM analyses revealed that, with the increase of COLI/COLIII ratio, the fibril width and stiffness increased and the binding affinity of cells to the matrix decreased. A hybrid matrix was found to activate fibroblasts the most effectively, characterized by extensive cell polarization with rigid stress fiber bundles and high α-SMA expression, and by the highest-level of collagen synthesis. It is ascribed to the fine balance between biochemical and biophysical cues achieved on the hybrid matrix. Thus, matrices of aligned COLI-COLIII hybrid fibrils and their derived multifunctional composites can be good candidates of implantation scaffolds for tissue regeneration.


Assuntos
Colágeno Tipo III/fisiologia , Colágeno Tipo I/fisiologia , Fibroblastos/metabolismo , Polaridade Celular , Células Cultivadas , Colágeno/biossíntese , Colágeno/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/ultraestrutura , Colágeno Tipo III/metabolismo , Colágeno Tipo III/ultraestrutura , Citoesqueleto/ultraestrutura , Elasticidade , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Integrina alfa1beta1/metabolismo , Microscopia de Força Atômica
2.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807408

RESUMO

Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFß1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2ß1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFß1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2ß1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFß1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2ß1 signaling, ahead of establishing Peptide 5 as a potential intervention.


Assuntos
Colágeno Tipo I/metabolismo , Conexina 43/metabolismo , Túbulos Renais Proximais/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Adesão Celular , Linhagem Celular , Células Cultivadas , Colágeno Tipo I/fisiologia , Conexina 43/fisiologia , Conexinas/metabolismo , Citocinas , Células Epiteliais/metabolismo , Humanos , Integrina alfa2beta1/metabolismo , Integrina alfa2beta1/fisiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
3.
Nephrology (Carlton) ; 26(7): 623-631, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33811432

RESUMO

BACKGROUND: In this study, we aimed to explore whether COL1A2 and miR-1297 participated in the progression of diabetic nephropathy (DN) in vitro and classified the underlying mechanisms. METHODS: d-Glucose (30 mM; high glucose, HG)-stimulated HK-2 cells were used to mimic DN condition. RNA and non-coding RNA profiles were from Gene Expression Omnibus (GEO) database. The interaction between miR-1297 and COL1A2 was measured by dual-luciferase reporter assay. Gene Set Enrichment Analysis (GSEA) method was conducted to analyse COL1A2-associated signalling pathways. The role of miR-1297/COL1A2 in biological behaviours of HG-induced HK-2 cells were analysed by cell counting kit-8 and apoptosis assays. RESULTS: Bioinformatics analysis revealed that COL1A2 was up-regulated in DN tissues. We predicted and verified miR-1297 as the regulatory miRNA of COL1A2, and the expression of miR-1297 was decreased in DN tissues and HG-stimulated HK-2 cells. Overexpression of miR-1297 could promote cell proliferation and inhibit apoptosis to protect HK-2 cells from HG-induced damage. And knockdown of COL1A2 enhanced the protective effects of miR-1297 on HG-stimulated HK-2 cells. GSEA results revealed that several inflammatory pathways were enriched in COL1A2 high-expression group. Meanwhile, transfection of miR-1297 reduced the phosphorylation of NFκB and expression of three important pro-inflammatory genes including cytokine CCL5, adhesion molecules ICAM1 and VCAM1 via targeting COL1A2. These results suggested that miR-1297 protected HG-treated HK-2 cells probably through suppressing inflammation via targeting COL1A2. CONCLUSION: This study sheds a light on the role miR-1297/COL1A2 in DN progression and provides a novel promising therapy strategy for suppressing DN progression.


Assuntos
Colágeno Tipo I/fisiologia , Nefropatias Diabéticas/etiologia , MicroRNAs/fisiologia , Linhagem Celular , Glucose/farmacologia , Humanos , Túbulos Renais Proximais/citologia
4.
BMB Rep ; 53(10): 539-544, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32843132

RESUMO

Skin aging appears to be the result of overlapping intrinsic (including genetic and hormonal factors) and extrinsic (external environment including chronic light exposure, chemicals, and toxins) processes. These factors cause decreases in the synthesis of collagen type I and elastin in fibroblasts and increases in the melanin in melanocytes. Collagen Type I is the most abundant type of collagen and is a major structural protein in human body tissues. In previous studies, many products containing collagen derived from land and marine animals as well as other sources have been used for a wide range of purposes in cosmetics and food. However, to our knowledge, the effects of human collagenderived peptides on improvements in skin condition have not been investigated. Here we isolate and identify the domain of a human COL1A2-derived protein which promotes fibroblast cell proliferation and collagen type I synthesis. This human COL 1A2-derived peptide enhances wound healing and elastin production. Finally, the human collagen alpha-2 type I-derived peptide (SMM) ameliorates collagen type I synthesis, cell proliferation, cell migration, and elastin synthesis, supporting a significant anti-wrinkle effect. Collectively, these results demonstrate that human collagen alpha-2 type I-derived peptides is practically accessible in both cosmetics and food, with the goal of improving skin condition. [BMB Reports 2020; 53(10): 539-544].


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Pele/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Colágeno/metabolismo , Colágeno Tipo I/fisiologia , Elastina/biossíntese , Elastina/metabolismo , Elastina/farmacologia , Humanos , Envelhecimento da Pele/fisiologia , Cicatrização/fisiologia
5.
Theriogenology ; 139: 81-89, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377650

RESUMO

The collagen type I alpha 1 chain (COL1A1), as a major component of extracellular matrix, plays a potential role in the growth and development of bovine follicles. However, its specific role in bovine cumulus cells remains unclear. In this study, we examined apoptosis, the cell cycle and reactive oxygen species after inhibition of COL1A1 expression by siRNA in bovine cumulus cells. Cell proliferation was measured by CCK-8, and mitochondrial membrane potential was detected by fluorescence intensities of JC-1 staining. Moreover, cell autophagy was detected by immunofluorescence, and cell migration was detected by a cell scratch assay. Lactic acid and cholesterol concentration were measured to evaluate the glucose utilization and cholesterol synthesis activity in cumulus cell by optical density detection method. RT-qPCR and Western blot analysis were used to measure changes in key gene expression. The results showed that cumulus cells were found to have an abnormal cell cycle, and the numbers of cells in S phase were significantly reduced, accompanied by decreases in cholesterol synthesis, and cell proliferation ability and an increase in apoptosis rate with siRNA-COL1A1 treatment. These findings were likely due to inhibition of COL1A1 resulting in high levels of ROS in the cells, a decrease in mitochondrial membrane potential, an increase in intracellular autophagy, activation of the apoptotic pathway, and a decrease in lactic acid conversion ability. COL1A1 plays an important role in regulating the physiological and biological functions of bovine cumulus cells.


Assuntos
Apoptose , Autofagia , Colágeno Tipo I/fisiologia , Células do Cúmulo/citologia , Estresse Oxidativo , Animais , Bovinos , Ciclo Celular , Proliferação de Células , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Células do Cúmulo/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo
6.
J Mater Sci Mater Med ; 30(5): 55, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31041538

RESUMO

Thermally-crosslinked hydrogels in bioprinting have gained increasing attention due to their ability to undergo tunable crosslinking by modulating the temperature and time of crosslinking. In this paper, we present a new bioink composed of collagen type-I and Pluronic® F-127 hydrogels, which was bioprinted using a thermally-controlled bioprinting unit. Bioprintability and rheology of the composite bioink was studied in a thorough manner in order to determine the optimal bioprinting time and extrusion profile of the bioink for fabrication of three-dimensional (3D) constructs, respectively. It was observed that collagen fibers aligned themselves along the directions of the printed filaments after bioprinting based on the results on an anisotropy study. Furthermore, rat bone marrow-derived stem cells (rBMSCs) were bioprinted in order to determine the effect of thermally-controlled extrusion process. In vitro viability and proliferation study revealed that rBMSCs were able to maintain their viability after extrusion and attached to collagen fibers, spread and proliferated within the constructs up to seven days of culture.


Assuntos
Bioimpressão , Colágeno Tipo I/fisiologia , Impressão Tridimensional , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Células da Medula Óssea , Sobrevivência Celular , Células-Tronco Mesenquimais , Ratos , Reologia , Engenharia Tecidual/métodos
7.
Neuromolecular Med ; 21(2): 143-149, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30825116

RESUMO

Major depressive disorder is a common debilitating disorder that is associated with increased morbidity and mortality. However, the molecular mechanism underlying depression remains largely unknown. The current study investigated the association of depression with blood gene expression using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Depression was measured by the geriatric depression scale, and the blood gene expression was measured by the Affymetrix Human Genome U219 Array. Linear regression was used to test the association between gene expression and depression, and the model was adjusted for age and sex. A total of 671 participants were included in our study (mean age 75 ± 8 years, 43.2% women). We found three genes were associated with depression, including COL1A2 (P = 8.9 × 10-8), RNF150 (P = 1.4 × 10-7) and CTGF (P = 8.3 × 10-7). An interaction network was built, and the pathway analysis indicated that many depression-related genes were involved in the neurotrophin signaling pathway (P = 2.1 × 10-7). Future studies are necessary to validate our findings and further investigate potential mechanism of depression.


Assuntos
Doença de Alzheimer/genética , Colágeno Tipo I/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Depressão/genética , Transtorno Depressivo Maior/genética , Redes Reguladoras de Genes , Proteínas de Membrana/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Colágeno Tipo I/fisiologia , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Depressão/etiologia , Depressão/metabolismo , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Modelos Lineares , Masculino , Proteínas de Membrana/fisiologia , Escalas de Graduação Psiquiátrica
8.
J Cell Mol Med ; 23(3): 1735-1745, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30597759

RESUMO

Osteogenesis imperfecta (OI) is commonly caused by heterozygous type I collagen structural mutations that disturb triple helix folding and integrity. This mutant-containing misfolded collagen accumulates in the endoplasmic reticulum (ER) and induces a form of ER stress associated with negative effects on osteoblast differentiation and maturation. Therapeutic induction of autophagy to degrade the mutant collagens could therefore be useful in ameliorating the ER stress and deleterious downstream consequences. To test this, we treated a mouse model of mild to moderate OI (α2(I) G610C) with dietary rapamycin from 3 to 8 weeks of age and effects on bone mass and mechanical properties were determined. OI bone mass and mechanics were, as previously reported, compromised compared to WT. While rapamycin treatment improved the trabecular parameters of WT and OI bones, the biomechanical deficits of OI bones were not rescued. Importantly, we show that rapamycin treatment suppressed the longitudinal and transverse growth of OI, but not WT, long bones. Our work demonstrates that dietary rapamycin offers no clinical benefit in this OI model and furthermore, the impact of rapamycin on OI bone growth could exacerbate the clinical consequences during periods of active bone growth in patients with OI caused by collagen misfolding mutations.


Assuntos
Densidade Óssea/efeitos dos fármacos , Colágeno Tipo I/fisiologia , Modelos Animais de Doenças , Imunossupressores/farmacologia , Osteoblastos/efeitos dos fármacos , Osteogênese Imperfeita/tratamento farmacológico , Sirolimo/farmacologia , Animais , Apoptose , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Osteoblastos/citologia , Osteogênese , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia
9.
Anat Rec (Hoboken) ; 302(1): 125-135, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306735

RESUMO

Epithelial-to-mesenchymal transition (EMT) enables stationary epithelial cells to exhibit migratory behavior and is the key step that initiates heart valve development. Recent studies suggest that EMT is reactivated in the pathogenesis of myxomatous valve disease (MVD), a condition that involves the progressive degeneration and thickening of valve leaflets. These studies have been limited to in vitro experimentation and reliance on histologic costaining of epithelial and mesenchymal markers as evidence of EMT in mouse and sheep models of valve disease. However, longitudinal analysis of cell lineage origins and potential pathogenic or reparative contributions of newly generated mesenchymal cells have not been reported previously. In this study, a genetic lineage tracing strategy was pursued by irreversibly labeling valve endothelial cells in the Osteogenesis imperfecta and Marfan syndrome mouse models to determine whether they undergo EMT during valve disease. Tie2-CreER T2 and Cdh5(PAC)-CreER T2 mouse lines were used in combination with colorimetric and fluorescent reporters for longitudinal assessment of endothelial cells. These lineage tracing experiments showed no evidence of EMT during adult valve homeostasis or valve pathogenesis. Additionally, CD31 and smooth muscle α-actin (αSMA) double-positive cells, used as an indicator of EMT, were not detected, and levels of EMT transcription factors were not altered. Interestingly, contrary to the endothelial cell-specific Cdh5(PAC)-CreER T2 driver line, Tie2-CreER T2 lineage-derived cells in diseased heart valves also included CD45+ leukocytes. Altogether, our data indicate that EMT is not a feature of valve homeostasis and disease but that increased immune cells may contribute to MVD. Anat Rec, 302:125-135, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Linhagem da Célula , Modelos Animais de Doenças , Endotélio Vascular/patologia , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/patologia , Síndrome de Marfan/patologia , Osteogênese Imperfeita/patologia , Animais , Colágeno Tipo I/fisiologia , Endotélio Vascular/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Fibrilina-1/fisiologia , Valvas Cardíacas/metabolismo , Homeostase , Masculino , Síndrome de Marfan/metabolismo , Camundongos , Camundongos Knockout , Organogênese , Osteogênese Imperfeita/metabolismo
10.
Hum Mol Genet ; 28(7): 1053-1063, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358852

RESUMO

Spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL) is an autosomal-recessive skeletal dysplasia. A relatively large number of patients with SEMDJL have been identified in the Caucasian Afrikaans-speaking community in South Africa. We used a combination of Genome-Wide Human Single Nucleotide Polymorphism (SNP) Array 6.0 data and whole exomic data to potentially dissect genetic modifiers associated with SEMDJL in Caucasian Afrikaans-speaking patients. Leveraging the family-based association signal in prioritizing candidate mutations, we identified two potential modifier genes, COL1A2 and MATN1, and replicating previously identified mutation in KIF22. Importantly, our findings of genetic modifier genes and previously identified mutations are layered on the same sub-network implicated in syndromes characterized by skeletal abnormalities and intellectual disability, bone and connective tissue fragility. This study has potentially provided crucial insights in identifying the indirect modifying mutation(s) linked to the true causal mutation associated with SEMDJL. It is a critical lesson that one may use constructively especially when the pace of exomic sequencing of rare disorders continues apace.


Assuntos
Instabilidade Articular/genética , Osteocondrodisplasias/genética , População Branca/genética , Adulto , Colágeno Tipo I/genética , Colágeno Tipo I/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Modificadores , Estudo de Associação Genômica Ampla , Humanos , Instabilidade Articular/etnologia , Cinesinas/genética , Cinesinas/metabolismo , Desequilíbrio de Ligação/genética , Masculino , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Mutação , Osteocondrodisplasias/etnologia , Linhagem , Polimorfismo de Nucleotídeo Único , África do Sul
11.
J Orthop Res ; 37(3): 706-716, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30561137

RESUMO

This study was designed to investigate (i) extracellular matrix to specify adhesive substrates to human dura mater cell (hDMC); (ii) the alteration on adhesion-related molecules in hDMC; and (iii) secreted matrix metalloproteinases (MMPs) linked with extracellular matrix remodeling after exposure to inflammation. The hDMC was cultured from human dura mater tissue, and the studies were performed with hDMC after co-culturing with macrophage like THP-1 cells (Mϕ). The adhesion of co-cultured hDMC through collagen I increased 6.4-fold and through collagen IV increased 5.0-fold compared with the adhesion of naïve cells (p < 0.001). Integrin subtype α2 ß1 expression was increased 6.3-fold (p < 0.001) and α1 expression was decreased 2.0-fold (p < 0.001) in the co-cultured cells compared with the naïve cells. Co-culturing induced significant increases in MMP-1 (13.9-fold, p < 0.01), MMP-3 (7.6-fold, p < 0.01), and VEGF (VEGF: 3.8-fold, p < 0.05) expression and decreases in MMP-9 (0.1-fold, p < 0.01) compared with the sum of naïve hDMC and Mϕ values. Increased hDMC adhesion under inflammatory conditions is caused by an increased cellular affinity for collagen I and IV mediated by increased hDMC levels of integrin subtype α2 ß1 and environmental MMP-1, -3 and decreased MMP-9. Selective integrin subtype α2 ß1 inhibition assay showed 37.8% and 35.7% reduction in adhesion of co-cultured hDMC to collagen I (p < 0.001) and IV (p = 0.057), respectively. The present study provides insight into the pathological conditions related to dura mater adhesion in inflammation. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2019.


Assuntos
Adesão Celular , Dura-Máter/citologia , Matriz Extracelular/fisiologia , Inflamação/fisiopatologia , Metaloproteinases da Matriz/metabolismo , Adulto , Idoso , Técnicas de Cocultura , Colágeno Tipo I/fisiologia , Colágeno Tipo IV/fisiologia , Dura-Máter/enzimologia , Dura-Máter/fisiopatologia , Feminino , Humanos , Integrina alfa2beta1/fisiologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Células THP-1
12.
Med Sci Monit ; 24: 8722-8733, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30504760

RESUMO

BACKGROUND Hypoxia induces cell apoptosis in the uterosacral ligaments of patients with pelvic organ prolapse by upregulation of hypoxia-inducible factor-1α (HIF-1α). This study aimed to investigate the effects of HIF-1α on human uterosacral ligament fibroblasts (hUSLFs) following treatment with the chemical inducer of hypoxia, cobalt chloride (CoCl2), and to explore the underlying mechanisms. MATERIAL AND METHODS Ten women who underwent hysterectomy for benign disease provided uterosacral ligament tissue for cell extraction. Following CoCl2 treatment, cell viability of isolated and cultured hUSLFs was evaluated by the MTT assay. JC-1 fluorescence mitochondrial imaging was used to study the change in mitochondrial membrane potential. Cell apoptosis and expression of apoptosis-associated proteins and collagen type I alpha 1 (COL1A1) were measured by flow cytometry, TUNEL and Western blot, respectively. RESULTS Hypoxia increased the expression of HIF-1a and increased cell apoptosis, decreased cell viability and expression levels of COL1A1. The JC-1 assay showed that the mitochondrial membrane potential was reduced and caspase-8, and -9 inhibitors partly reduced hUSLF apoptosis. HIF-1α treatment downregulated the expression of cellular FLICE inhibitory protein (c-FLIP), decoy receptor 2 (DcR2), and the ratio of Bcl-2 to Bax, and upregulated the expression tumor necrosis factor related apoptosis-inducing ligand (TRAIL), death receptor 5 (DR5) or TRAIL-R2, Fas, Bcl-2 interacting protein 3 (BNIP3), and cytochrome C, and increased the activation of caspase-3, caspase-8, and caspase-9, all of which were reversed by knockdown of HIF-1α. CONCLUSIONS HIF-1α significantly induced apoptosis of hUSLFs through both the cell death receptor and the mitochondrial-associated apoptosis pathways.


Assuntos
Fibroblastos/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Receptores de Morte Celular/fisiologia , Adulto , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Hipóxia Celular/fisiologia , Sobrevivência Celular , China , Cobalto/farmacologia , Colágeno Tipo I/genética , Colágeno Tipo I/fisiologia , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Fibroblastos/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ligamentos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Prolapso de Órgão Pélvico/complicações , Cultura Primária de Células , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Útero
13.
Mol Biol Cell ; 29(25): 2979-2988, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30303750

RESUMO

Tumor initiation and growth is associated with significant changes in the surrounding tissue. During carcinoma progression, a global stiffening of the extracellular matrix is observed and is interpreted as a signature of aggressive invasive tumors. However, it is still unknown whether this increase in matrix rigidity promotes invasion and whether this effect is constant along the course of invasion. Here we have developed a biomimetic in vitro assay that enabled us to address the question of the importance of tissue rigidity in the chronology of tumor invasion. Using low concentrations of the sugar threose, we can effectively stiffen reconstituted collagen I matrices and control the stiffening in time with no direct effect on residing cells. Our findings demonstrate that, depending on the timing of its stiffening, the extracellular matrix could either inhibit or promote cancer cell invasion and subsequent metastasis: while matrix stiffening after the onset of invasion promotes cancer cell migration and tumor spreading, stiff matrices encapsulate the tumor at an early stage and prevent cancer cell invasion. Our study suggests that adding a temporal dimension in in vitro models to analyze biological processes in four dimensions is necessary to fully capture their complexity.


Assuntos
Biomimética/métodos , Colágeno/fisiologia , Invasividade Neoplásica/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transformação Celular Neoplásica/patologia , Colágeno/efeitos dos fármacos , Colágeno Tipo I/fisiologia , Matriz Extracelular/patologia , Humanos , Camundongos , Tetroses/farmacologia , Microambiente Tumoral/fisiologia
14.
J. oral res. (Impresa) ; 7(6): 232-235, ago. 1, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1120975

RESUMO

Objective: to compare the gene expression levels of collagen type I alpha 2 (COL1A2) in children with and without dental fluorosis. methods: cross-sectional study involving 92 children between 5 and 12 years of age. socio-demographic characteristics, the presence of dental fluorosis by means of the Thylstrup-Fejerskov index, and gene expression analysis of COL1A2 in peripheral blood samples by reverse transcription polymerase chain reaction (RT-PCR) assays, were described. for the descriptive analysis, measures of central tendency, dispersion and proportions were used. differences between the groups (p<0.05) were established by the student t-test. results: mean age was 8.6 (SD=1.9) years, 51.1 percent were female; 54 children were diagnosed with fluorosis and 38 without fluorosis; prevalence of dental fluorosis was 58.7 percent (95 percent CI: 48.4 percent -68.9 percent). gene expression of COL1A2 was statistically significantly lower (p<0.05) in the participants with dental fluorosis. conclusion: there are differences in the expression levels of the COL1A2 gene among the population under study. therefore, COL1A2 may be potentially involved in the development of dental fluorosis.


Assuntos
Humanos , Masculino , Feminino , Pré-Escolar , Criança , Colágeno Tipo I/fisiologia , Fluorose Dentária/etiologia , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Estudos Transversais , Colômbia/epidemiologia
15.
Arch Oral Biol ; 90: 33-39, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29529483

RESUMO

OBJECTIVE: The bone morphogenetic proteins (BMPs) play crucial roles in tooth development. However, several BMPs retain expression in the dentin of the fully patterned and differentiated tooth. We hypothesized that BMP signaling therefore plays a role in the function of the differentiated odontoblast, the job of which is to lay down and mineralize the dentin matrix. DESIGN: We generated mice deficient in Bmp2 and 4 using a dentin matrix protein 1 (Dmp1) promoter-driven cre recombinase that was expressed in differentiated odontoblasts. RESULTS: The first and second molars of these Bmp2 and Bmp4 double conditional knockout (DcKO) mice displayed reduced dentin and enlarged pulp chambers compared to cre-negative littermate controls. DcKO mouse dentin in first molars was characterized by small, disorganized dentinal fibers, a wider predentin layer, and reduced expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), and bone sialoprotein (BSP). DcKO mouse odontoblasts demonstrated increased type I collagen mRNA production, indicating that the loss of BMP signaling altered the rate of collagen gene expression in these cells. Bmp2 and Bmp4 single Dmp1-cre knockout mice displayed no discernable dentin phenotype. CONCLUSIONS: These data demonstrate that BMP signaling in differentiated odontoblasts is necessary for proper dentin production in mature teeth.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Proteína Morfogenética Óssea 4/fisiologia , Dentina/fisiologia , Dentinogênese/fisiologia , Odontoblastos/fisiologia , Transdução de Sinais , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/fisiologia , Cadeia alfa 1 do Colágeno Tipo I , Cavidade Pulpar/citologia , Cavidade Pulpar/diagnóstico por imagem , Cavidade Pulpar/crescimento & desenvolvimento , Cavidade Pulpar/fisiologia , Dentina/citologia , Dentina/diagnóstico por imagem , Dentina/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Sialoproteína de Ligação à Integrina/metabolismo , Camundongos , Camundongos Knockout , Dente Molar/citologia , Dente Molar/diagnóstico por imagem , Dente Molar/fisiologia , Odontoblastos/citologia , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Microtomografia por Raio-X
16.
Arterioscler Thromb Vasc Biol ; 37(10): 1881-1890, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28818856

RESUMO

OBJECTIVE: Infusion of angiotensin II (Ang II) induces extracellular matrix remodeling and inflammation resulting in abdominal aortic aneurysms (AAAs) in normolipidemic mice. Although Ang II activates mesenchymal cells in the media and adventitia to become fibrogenic, the sentinel role of this mesenchymal population in modulating the inflammatory response and aneurysms is not known. We test the hypothesis that these fibrogenic mesenchymal cells play a critical role in Ang II-induced aortic wall vascular inflammation and AAA formation. APPROACH AND RESULTS: Ang II infusion increased phospho-Ser536-RelA and interleukin (IL)-6 immunostaining in the abdominal aorta. In addition, aortic mRNA transcripts of RelA-dependent cytokines IL-6 and IL-1ß were significantly elevated suggesting that Ang II functionally activates RelA signaling. To test the role of mesenchymal RelA in AAA formation, we generated RelA-CKO mice by administering tamoxifen to double transgenic mice harboring RelA-flox alleles and tamoxifen-inducible Col1a2 promoter-driven Cre recombinase (Col1a2-CreERT). Tamoxifen administration to Col1a2-CreERT•mT/mG mice induced Cre expression and RelA depletion in aortic smooth muscle cells and fibroblasts but not in endothelial cells. Infusion of Ang II significantly increased abdominal aortic diameter and the incidence of AAA in RelA wild-type but not in RelA-CKO mice, independent of changes in systolic blood pressure. Furthermore, mesenchymal cell-specific RelA-CKO mice exhibited decreased expression of IL-6 and IL-1ß cytokines and decreased recruitment of C68+ and F4/80lo•Ly6Chi monocytes during Ang II infusion. CONCLUSIONS: Fibrogenic mesenchymal RelA plays a causal role in Ang II-induced vascular inflammation and AAA in normolipidemic mice.


Assuntos
Aorta Abdominal/fisiopatologia , Aorta/fisiopatologia , Aneurisma da Aorta Abdominal/fisiopatologia , Células-Tronco Mesenquimais/fisiologia , Fator de Transcrição RelA/fisiologia , Angiotensina II/farmacologia , Animais , Aorta/citologia , Pressão Sanguínea/fisiologia , Colágeno Tipo I/fisiologia , Integrases/fisiologia , Camundongos , Camundongos Transgênicos , Monócitos/fisiologia , Tamoxifeno/farmacologia
17.
J Dent Res ; 96(9): 999-1005, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28535357

RESUMO

The aim of this study was to evaluate the degradation of completely demineralized dentin specimens in contact with a filler-free or 2 ion-releasing resins containing micrometer-sized particles of Bioglass 45S5 (BAG) or fluoride-containing phosphate-rich bioactive glass (BAG-F). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were also used to evaluate the remineralization induced by the experimental ion-releasing resin-based materials. Dentin beams were totally demineralized in H3PO4 (10%) and placed in direct contact with a filler-free (RESIN) or 2 experimental ion-releasing resins (BAG or BAG-F) and immersed in artificial saliva (AS) up to 30 d. Further specimens were also processed and submitted to FTIR and SEM analysis to evaluate the remineralization induced by such ion-releasing resins before and after AS immersion. BAG and BAG-F alkalinized the incubation media. A significant decrease of the dry mass was observed between the specimens of all groups stored for 3 and 30 d in AS. However, the fluoride-containing phosphate-rich bioactive glass incorporated into a resin-based material (BAG-F) showed greater ability in reducing the solubilization of C-terminal cross-linked telopeptide (ICTP) and C-terminal telopeptide (CTX) after prolonged AS storage. Moreover, after 30 d of AS storage, BAG-F showed the greatest remineralizing effect on the stiffness of the completely demineralized dentin matrices. In conclusion, fluoride-containing phosphate-rich bioactive glass incorporated as micrometer-sized filler in dental composites may offer greater beneficial effects than Bioglass 45S5 in reducing the enzyme-mediated degradation and remineralization of demineralized dentin.


Assuntos
Cerâmica/química , Resinas Compostas/química , Dentina/efeitos dos fármacos , Vidro/química , Desmineralização do Dente , Colágeno Tipo I/fisiologia , Humanos , Técnicas In Vitro , Teste de Materiais , Metaloproteinases da Matriz/fisiologia , Metacrilatos/química , Microscopia Eletrônica de Varredura , Peptídeos/fisiologia , Saliva Artificial , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
18.
World J Urol ; 35(7): 1125-1132, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27783146

RESUMO

PURPOSE: Urethral strictures are a common disease of the lower urinary tract in men. At present, the use of buccal mucosa is the method of choice for long or recurrent strictures. However, autologous tissue-engineered grafts are still under investigation for reconstructive urological surgery. The aim of this pilot study was to evaluate the use of human urothelial cells (HUC) seeded on bovine collagen type I-based cell carriers (CCC) in an animal model and to evaluate short-term outcome of the surgical procedure. METHODS: Four male Göttingen minipigs were used with immunosuppression (cyclosporine A) for this pilot xenograft study. HUC obtained from human benign ureteral tissue were stained by PKH26 and seeded on a collagen cell carrier (CCC). Seven weeks after urethral stricture induction and protective vesicostomy, cell-seeded CCC was implanted in the urethra with HUC luminal and antiluminal, respectively. After two weeks animals were euthanized, urethrography and histological assessment were performed. RESULTS: Surgery was technically feasible in all minipigs. Stricture was radiologically established 7 weeks after induction. CCC was visible after two weeks and showed good integration without signs of inflammation or rejection. In the final urethrography, no remaining stricture could be detected. Near porcine urothelium, PKH26-positive areas were found even if partially detached from CCC. Although diminished, immunofluorescence with pankeratin, CK20, E-cadherin and ZO-1 showed intact urothelium in several areas on and nearby CCC. CONCLUSION: Finally, this study demonstrates that the HUC-seeded CCC used as a xenograft in minipigs is technically feasible and shows promising results for further studies.


Assuntos
Transplante de Células/métodos , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual/métodos , Estreitamento Uretral/cirurgia , Procedimentos Cirúrgicos Urológicos Masculinos/métodos , Urotélio/citologia , Animais , Bovinos , Colágeno Tipo I/fisiologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Modelos Anatômicos , Suínos , Porco Miniatura , Resultado do Tratamento
19.
Tumour Biol ; 37(10): 14235-14248, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27571738

RESUMO

Cancer-associated fibroblasts (CAFs) are the crucial components of the dynamic tumor microenvironment, which not only supports the growth and metastasis of melanoma but also contributes to drug resistance in melanoma treatment. We recently discovered that loss of ß-catenin signaling deactivated stromal fibroblasts and reduced the production of paracrine factors and extracellular matrix proteins. Based on this finding, we aimed to determine whether melanoma growth could be suppressed by targeted deactivation of CAFs via ß-catenin ablation using a combination of in vitro and in vivo approaches. Using an in vitro three-dimensional (3D) tumor co-culture model, we showed that ß-catenin-deficient fibroblasts lost the ability to respond to melanoma cell stimulation and to support the growth of B16F10 melanoma cells. To determine the in vivo effects of CAF deactivation on melanoma growth, we designed a novel genetic approach to ablate ß-catenin expression in melanoma-associated fibroblasts only after melanoma tumor was formed. As expected, our observation showed that development of B16F10 melanoma was significantly delayed when ß-catenin expression was ablated in CAFs. We determined that inhibition of tumor growth was due to decreased melanoma cell proliferation and increased cell death. Further analysis revealed that CAF deactivation caused the downregulation of the MAPK/ERK signaling cascade and S and G2/M phase cell cycle arrest in B16F10 melanoma cells. Overall, our data emphasize the significance of targeting CAFs as a potential novel therapeutic approach to improve melanoma treatment by creating a tumor-suppressive microenvironment through tumor-stroma interactions.


Assuntos
Fibroblastos Associados a Câncer/patologia , Proliferação de Células , Colágeno Tipo I/fisiologia , Melanoma Experimental/prevenção & controle , beta Catenina/fisiologia , Animais , Apoptose , Western Blotting , Ciclo Celular , Técnicas de Cocultura , Regulação para Baixo , Feminino , Técnicas Imunoenzimáticas , Masculino , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral
20.
J Dent Res ; 95(9): 1034-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126446

RESUMO

Osteopontin (OPN) is a highly phosphorylated glycoprotein that is a prominent component of the mineralized extracellular matrix of bone. The secretion of OPN by immunocompetent cells plays a role in the differentiation of odontoblast-like cells during pulpal healing following tooth transplantation. This study aimed to clarify the role of OPN during reparative dentinogenesis. A groove-shaped cavity was prepared on the mesial surface of the upper first molars of wild-type (WT) and Opn knockout (KO) mice, and the samples were collected at intervals of 1 to 14 d. The demineralized sections were processed for immunohistochemistry for Ki67, nestin, OPN, dentin sialoprotein (DSP), integrin αvß3, and type I collagen; in situ hybridization for Opn, col1a1, and dentin sialophosphoprotein (Dspp); and apoptosis assay. For the loss and gain of function experiments, an in vitro culture assay for evaluating dentin-pulp complex regeneration was performed. On day 1 in WT mice, odontoblasts beneath the affected dentin lost nestin immunoreactivity. On day 3, the expression of Opn was recognized at the mesial dental pulp, and OPN was deposited along the predentin-dentin border. Nestin-positive newly differentiated odontoblast-like cells expressed both Dspp and col1a1 and showed positive immunoreactivity for integrin αvß3, DSP, and type I collagen. Until day 14, reparative dentin formation continued next to the preexisting dentin at the mesial coronal pulp. In contrast, there was no reparative dentin in the Opn KO mice where nestin- and DSP-positive newly differentiated odontoblast-like cells lacked immunoreaction for type I collagen. The in vitro organ culture demonstrated that the administration of recombinant OPN rescued the type I collagen secretion by odontoblast-like cells in the Opn KO mice. The results suggested that the deposition of OPN at the calcification front is essential for the type I collagen secretion by newly differentiated odontoblast-like cells to form reparative dentin during pulpal healing following cavity preparation.


Assuntos
Colágeno Tipo I/fisiologia , Dentina/metabolismo , Osteopontina/fisiologia , Animais , Regeneração Óssea/fisiologia , Dentina/crescimento & desenvolvimento , Dentina/fisiologia , Matriz Extracelular/metabolismo , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odontoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA