Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614151

RESUMO

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Assuntos
Antimitóticos , Proliferação de Células , Colchicina , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacologia , Sítios de Ligação , Antimitóticos/farmacologia , Antimitóticos/química , Antimitóticos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Benzenossulfonatos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tubulina (Proteína)/metabolismo , Estrutura Molecular , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Dose-Resposta a Droga
2.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578272

RESUMO

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Assuntos
Bivalves , Dinoflagellida , Animais , Rifampina/metabolismo , alfa-Tocoferol/metabolismo , Frutos do Mar/análise , Colchicina/metabolismo , Dinoflagellida/metabolismo
3.
Bioorg Chem ; 146: 107299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547722

RESUMO

We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.


Assuntos
Antineoplásicos , Neoplasias , Embrião de Galinha , Humanos , Ratos , Camundongos , Animais , Benzenossulfonatos , Colchicina/metabolismo , Proliferação de Células , Sítios de Ligação , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Moduladores de Tubulina/farmacologia
4.
Int J Biol Macromol ; 263(Pt 2): 130451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408582

RESUMO

Atherosclerosis (AS) is the common basis for the onset of cardiovascular events. The lipid metabolism theory considers foam cell formation as an important marker for the initiation of AS. Fucoidan is an acidic polysaccharide that can reduce lipid accumulation in foam cells. Studies show that tea polysaccharides can be transported to lysosomes via the tubulin pathway. However, the specific mechanism of action of fucoidan on foam cells has not been extensively studied. Therefore, we further explored the mechanism of action of fucoidan and evaluated whether it could reduce lipid accumulation in foam cells by affecting the expression of lysosomal pathway-related genes and proteins. In this study, three inhibitors, CPZ, EIPA, and colchicine, were used to inhibit endocytosis, macropinocytosis, and the tubulin pathway, respectively, to study the pathways of action. Transcriptomics and proteomics analysis, as well as western blotting and qRT-PCR were used to determine the effects of fucoidan and the inhibitors on lysosomal genes and proteins. Fucoidan could enter foam cells through both endocytosis and via macropinocytosis, and then further undergo intracellular transport via the tubulin pathway. After fucoidan treatment, the expression of lysosomal pathway-related genes and proteins including LAMP2, AP3, AP4, MCOLN1, and TFEB in foam cells increased significantly (P < 0.01). However, the expression of lysosomal genes and proteins after colchicine intervention was comparable with that in the model group. Therefore, the tubulin pathway inhibited by colchicine is an important pathway for the transport and distribution of fucoidan within cells. In summary, fucoidan may be transported to lysosomes via the tubulin pathway and may enhance the expression of lysosomal genes, promoting autophagy, thereby accelerating lipid clearance in foam cells. Due to its significant lipid-lowering effect, it can be used in the clinical treatment of AS.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Tubulina (Proteína)/metabolismo , Aterosclerose/tratamento farmacológico , Polissacarídeos/uso terapêutico , Lipídeos/farmacologia , Lisossomos/metabolismo , Colchicina/metabolismo
5.
J Med Chem ; 67(4): 2619-2630, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38294341

RESUMO

Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin ßIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microtúbulos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células
6.
J Enzyme Inhib Med Chem ; 39(1): 2302320, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38221788

RESUMO

A new series of 1H-pyrrolo[3,2-c]pyridine derivatives were designed and synthesised as colchicine-binding site inhibitors. Preliminary biological evaluations showed that most of the target compounds displayed moderate to excellent antitumor activities against three cancer cell lines (HeLa, SGC-7901, and MCF-7) in vitro. Among them, 10t exhibited the most potent activities against three cancer cell lines with IC50 values ranging from 0.12 to 0.21 µM. Tubulin polymerisation experiments indicated that 10t potently inhibited tubulin polymerisation at concentrations of 3 µM and 5 µM, and immunostaining assays revealed that 10t remarkably disrupted tubulin microtubule dynamics at a concentration of 0.12 µM. Furthermore, cell cycle studies and cell apoptosis analyses demonstrated that 10t at concentrations of 0.12 µM, 0.24 µM, and 0.36 µM significantly caused G2/M phase cell cycle arrest and apoptosis. The results of molecular modelling studies suggested that 10t interacts with tubulin by forming hydrogen bonds with colchicine sites Thrα179 and Asnß349. In addition, the prediction of physicochemical properties disclosed that 10t conformed well to the Lipinski's rule of five.


Assuntos
Antineoplásicos , Colchicina , Humanos , Colchicina/farmacologia , Colchicina/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/química , Sítios de Ligação , Piridinas/química , Células HeLa , Moduladores de Tubulina/química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
7.
J Nanobiotechnology ; 21(1): 460, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037046

RESUMO

Atherosclerosis, a chronic inflammatory disease characterized by arterial plaque formation, is one of the most prominent causes of cardiovascular diseases. However, the current treatments often do not adequately compromise the chronic inflammation-mediated plaque accumulation and the disease progression. Therefore, a new and effective strategy that blocks atherosclerosis-associated inflammation is urgently needed to further reduce the risk. Colchicine, a potent anti-inflammatory medication, has shown great potential in the treatment of atherosclerosis, but its adverse effects have hampered its clinical application. Herein, we developed a novel delivery nanosystem encapsulated with colchicine (VHPK-PLGA@COL), which exhibited improved biosafety and sustained drug release along with the gradual degradation of PLGA and PEG as confirmed both in vitro and in vivo. Surface modification of the nanoparticles with the VHPK peptide ensured its capability to specifically target inflammatory endothelial cells and alleviate atherosclerotic plaque accumulation. In the ApoE - / - atherosclerotic mouse model, both colchicine and VHPK-PLGA@COL treatment significantly decreased the plaque area and enhanced plaque stability by blocking the NF-κB/NLRP3 pathways, while VHPK-PLGA@COL exhibited enhanced therapeutic effects due to its unique ability to target inflammatory endothelial cells without obvious long-term safety concerns. In summary, VHPK-PLGA@COL has the potential to overcome the key translational barriers of colchicine and open new avenues to repurpose this drug for anti-atherosclerotic therapy.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Animais , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Endoteliais/metabolismo , Colchicina/farmacologia , Colchicina/metabolismo , Colchicina/uso terapêutico , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Nanopartículas/química
8.
AAPS PharmSciTech ; 24(8): 229, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964102

RESUMO

This study aimed to prepare colchicine (CO), 4-hydroxyacetophenone (HA), and protocatechuic acid (CA) contained in transdermal rubber plasters into a more releasable and acrylate pressure-sensitive adhesive (PSA) to optimize traditional Touguling rubber plasters (TOU) with enhanced transdermal permeability by using deep eutectic solvents (DES) technology. We compared the difference in the release behavior of CO between rubber plaster and PSA, determined the composition of the patch through pharmacodynamic experiments, explored the transdermal behavior of the three components, optimized the patch formula factors, and improved the penetration of CO through the skin. We also focused on elucidating the interactions among the three components of DES and the intricate relationship between DES and the skin. The melting point of DES was determined using DSC, while FTIR, 13C NMR, and ATR-FTIR were used to explore the intricate molecular mechanisms underlying the formation of DES, as well as its enhancement of skin permeability. The results of this investigation confirmed the successful formation of DES, marked by a discernible melting point at 27.33°C. The optimized patch, formulated with a molar ratio of 1:1:1 for CO, HA, and CA, significantly enhanced skin permeability, with the measured skin permeation quantities being 32.26 ± 2.98 µg/cm2, 117.67 ± 7.73 µg/cm2, and 56.79 ± 1.30 µg/cm2 respectively. Remarkably, the optimized patch also demonstrated similar analgesic and anti-inflammatory effects compared to commercial diclofenac diethylamide patches in different pharmacodynamics studies. The formation of DES altered drug compatibility with skin lipids and increased retention, driven by the interaction among the three component molecules through hydrogen bonding, effectively shielding the skin-binding sites and enhancing component permeation. In summary, the study demonstrated that optimized DES patches can concurrently enhance the penetration of CO, HA, and CA, thereby providing a promising approach for the development of DES in transdermal drug delivery systems. The findings also shed light on the molecular mechanisms underlying the transdermal behavior of DES and offer insights for developing more effective traditional Chinese medicine transdermal drug delivery systems.


Assuntos
Solventes Eutéticos Profundos , Absorção Cutânea , Colchicina/metabolismo , Colchicina/farmacologia , Borracha/metabolismo , Borracha/farmacologia , Administração Cutânea , Pele/metabolismo , Adesivo Transdérmico
9.
Future Med Chem ; 15(21): 1967-1986, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37937524

RESUMO

Aim: A series of novel trifluoromethylquinoline derivatives were designed, synthesized and evaluated for antitumor activities. Methodology: All compounds were evaluated for antiproliferative activity against four human cancer cell lines. Results: Among them, 5a, 5m, 5o and 6b exhibited remarkable antiproliferative activities against all the tested cell lines at nanomolar concentrations. Mechanism of action studies demonstrated that 6b targeted the colchicine binding site, potentially inhibiting tubulin polymerization, and further studies indicated that 6b could arrest LNCaP cells in the G2/M phase and induce cell apoptosis. Molecular docking confirmed that 6b could bind to the colchicine binding site. Conclusion: Results suggested that 6b could serve as a promising lead compound for the development of novel tubulin polymerization inhibitors and cancer therapy.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Moduladores de Tubulina/química , Simulação de Acoplamento Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Relação Estrutura-Atividade , Polimerização
10.
J Chem Inf Model ; 63(20): 6396-6411, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37774242

RESUMO

Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of ß-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 µM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relação Estrutura-Atividade , Estudos Prospectivos , Colchicina/farmacologia , Colchicina/química , Colchicina/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
11.
Curr Drug Targets ; 24(11): 889-918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519203

RESUMO

Microtubules are a well-known target in cancer chemotherapy because of their critical role in cell division. Chromosome segregation during mitosis depends on the establishment of the mitotic spindle apparatus through microtubule dynamics. The disruption of microtubule dynamics through the stabilization or destabilization of microtubules results in the mitotic arrest of the cells. Microtubule-targeted drugs, which interfere with microtubule dynamics, inhibit the growth of cells at the mitotic phase and induce apoptotic cell death. The principle of microtubule-targeted drugs is to arrest the cells at mitosis and reduce their growth because cancer is a disease of unchecked cell proliferation. Many anti-microtubule agents produce significant inhibition of cancer cell growth and are widely used as chemotherapeutic drugs for the treatment of cancer. The drugs that interact with microtubules generally bind at one of the three sites vinblastine site, taxol site, or colchicine site. Colchicine binds to the interface of tubulin heterodimer and induces the depolymerization of microtubules. The colchicine binding site on microtubules is a much sought-after target in the history of anti-microtubule drug discovery. Many colchicine-binding site inhibitors have been discovered, but their use in the treatment of cancer is limited due to their dose-limiting toxicity and resistance in humans. Combination therapy can be a new treatment strategy to overcome these drawbacks of currently available microtubule-targeted anticancer drugs. This review discusses the significance of microtubules as a potential pharmacological target for cancer and stresses the necessity of finding new microtubule inhibitors to fight the disease.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Células HeLa , Microtúbulos/metabolismo , Mitose , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Colchicina/metabolismo , Colchicina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
12.
Bioorg Chem ; 139: 106727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451147

RESUMO

In this work, a series of 2-(trifluoromethyl)quinolin-4-amine derivatives were designed and synthesized through structural optimization strategy as a microtubule-targeted agents (MTAs) and their cytotoxicity activity against PC3, K562 and HeLa cell lines were evaluated. The half maximal inhibitory concentration (IC50) of 5e, 5f, and 5o suggested that their potency of anti-proliferative activities against HeLa cell lines were better than the combretastatin A-4. Compound 5e showed the higher anti-proliferative activity against PC3, K562 and HeLa in vitro with IC50 values of 0.49 µM, 0.08 µM and 0.01 µM, respectively. Further mechanism study indicated that the representative compound 5e was new class of tubulin inhibitors by EBI competition assay and tubulin polymerization assays, it is similar to colchicine. Immunofluorescence staining revealed that compound 5e apparently disrupted tubulin network in HeLa cells, and compound 5e arrested HeLa cells at the G2/M phase and induced cells apoptosis in a dose-dependent manner. Molecular docking results illustrated that the hydrogen bonds of represented compounds reinforced the interactions in the pocket of colchicine binding site. Preliminary results suggested that 5e deserves further research as a promising tubulin inhibitor for the development of anticancer agents.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Estrutura Molecular , Células HeLa , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Polimerização , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Microtúbulos/metabolismo , Colchicina/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3913-3921, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475083

RESUMO

The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-ß1(TGF-ß1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-ß1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.


Assuntos
Isodon , NF-kappa B , NF-kappa B/genética , NF-kappa B/metabolismo , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Colchicina/metabolismo , Colchicina/farmacologia , Caspases
14.
Nephron ; 147(11): 693-700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37263257

RESUMO

INTRODUCTION: Low-grade inflammation is seen in many chronic illnesses, including chronic kidney disease (CKD). We have recently reported on beneficiary effects of anti-inflammatory treatment in the interleukin (IL-) 1 pathway on anemia as well as CKD extent in a mouse model. Colchicine has been shown to have beneficiary effects in several inflammatory conditions through various mechanisms, including inhibition of tubulin polymerization as well as caspase-1-mediated IL-1 activation. METHODS: Kidney injury (KI) was induced by administering an adenine diet to 8-week-old C57BL/6J mice treated with colchicine (Col) (30 µg/kg) or saline injections for 3 weeks, generating 4 groups: C, Ccol, KI, and KIcol. RESULTS: KI animals had an increase in inflammation indices in the blood (neutrophils), liver, and kidneys (uromodulin, IL-6, pSTAT3). Increased kidney tubulin polymerization and caspase-1 in KI, as well as kidney Mid88 and IRAK4 (downstream of IL-1), were inhibited in KIcol. Kidney macrophage and polymorphonuclear infiltration (positive for F4/80 and MPO, respectively), the percentage of fibrotic area, and TGFß mRNA levels were lower in KIcol versus KI. CONCLUSIONS: Colchicine inhibited tubulin polymerization and caspase-1 activation and attenuated kidney inflammation and fibrosis in a mouse model of adenine-induced KI. Given its reported safety profile for long-term anti-inflammatory therapy without increasing infection tendency, it may serve as novel therapeutic approach in CKD.


Assuntos
Colchicina , Insuficiência Renal Crônica , Camundongos , Animais , Colchicina/uso terapêutico , Colchicina/metabolismo , Colchicina/farmacologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Tubulina (Proteína)/uso terapêutico , Camundongos Endogâmicos C57BL , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/uso terapêutico , Caspase 1/metabolismo , Fibrose , Adenina/metabolismo , Adenina/farmacologia , Adenina/uso terapêutico , Interleucina-1/metabolismo , Interleucina-1/farmacologia , Interleucina-1/uso terapêutico , Modelos Animais de Doenças
15.
Eur J Pharm Sci ; 187: 106488, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302769

RESUMO

The activity of four typical organotin benzohydroxamate compounds (OTBH) with the different electronegativity of fluorine and chlorine atoms was assessed both in vitro and in vivo, revealing that they all exhibited notable antitumor effects. Furthermore, it was discovered that the biochemical capacity against cancer was influenced by their substituents' electronegativity and structural symmetry. For instance, benzohydroxamate derivatives with single chlorine at the fourth site on the benzene ring, two normal­butyl organic ligands, a symmetrical structure, and so on ([n-Bu2Sn[{4-ClC6H4C(O)NHO}2] (OTBH-1)) had stronger antitumor activity than others. Furthermore, the quantitative proteomic analysis discovered 203 proteins in HepG2 cells and 146 proteins in rat liver tissues that were differently identified before and after administration. Simultaneously, bioinformatics analysis of differentially expressed proteins demonstrated that the antiproliferative effects involved in the microtubule-based process, tight junction and its downstream apoptosis pathways. As predicted analytically, molecular docking indicated that ''-O-'' were the target docking atoms for the colchicine-binding site; meanwhile, this site was additionally verified by the EBI competition experiment and the microtubule assembly inhibition test. In conclusion, these derivatives promising for developing microtubule-targeting agents (MTAs) were shown to target the colchicine-binding site, impair cancer cell microtubule networks, and then halt mitosis and trigger apoptosis.


Assuntos
Antineoplásicos , Colchicina , Colchicina/metabolismo , Antineoplásicos/química , Simulação de Acoplamento Molecular , Cloro/farmacologia , Proteômica , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral , Moduladores de Tubulina/farmacologia
16.
Int J Biol Sci ; 19(9): 2934-2956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324937

RESUMO

Rationale: Acute inflammation is a major risk factor for post-operative atrial fibrillation (POAF), and epicardial adipose tissue (EAT) is considered as a source of inflammatory mediators. However, underlying mechanisms and pharmacological targets of POAF are poorly understood. Methods: Integrative analysis of array data from EAT and right atrial appendage (RAA) samples was conducted to identify potential hub genes. Lipopolysaccharide (LPS)-stimulated inflammatory models in mice and in induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) were used to examine the exact mechanism underlying POAF. Electrophysiological analysis, multi-electrode array, and Ca2+ imaging was employed to explore the alterations of electrophysiology and Ca2+ homeostasis under inflammation. Flow cytometry analysis, histology and immunochemistry were performed to investigate immunological alterations. Results: We observed electrical remodeling, enhanced atrial fibrillation (AF) susceptibility, immune cell activation, inflammatory infiltration, and fibrosis in LPS-stimulated mice. LPS-stimulated iPSC-aCMs showed arrhythmias, abnormal Ca2+ signaling, reduced cell viability, disrupted microtubule network and increased α-tubulin degradation. VEGFA, EGFR, MMP9 and CCL2 were identified as hub genes simultaneously targeted in the EAT and RAA of POAF patients. Notably, treatment of colchicine in LPS-stimulated mice resulted in a U-shape dose-response curve, where greatly improved survival rates were observed only at doses between 0.10-0.40 mg/kg. At this therapeutic dose level, colchicine inhibited the expression of all the identified hub genes and effectively rescued the pathogenic phenotypes observed in LPS-stimulated mice and iPSC-aCM models. Conclusions: Acute inflammation promotes α-tubulin degradation, induces electrical remodeling, and both recruits and facilitates the infiltration of circulating myeloid cells. A certain dose of colchicine attenuates electrical remodeling and decreases the recurrence of AF.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Camundongos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Tubulina (Proteína)/metabolismo , Remodelamento Atrial/fisiologia , Colchicina/farmacologia , Colchicina/uso terapêutico , Colchicina/metabolismo , Lipopolissacarídeos/farmacologia , Microtúbulos/metabolismo , Inflamação/metabolismo
17.
Plant Sci ; 334: 111776, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343603

RESUMO

Novel approaches to optimize the production of plant specialized metabolites are crucial to reach maximum productivity of plant biofactories. Plant polyploidization frequently enhances protein synthesis and thereby increases the biosynthesis of specialized metabolites. Paclitaxel is a valuable anticancer agent scarcely produced in nature. Therefore, plant biofactories represent a sustainable alternative source of this compound and related taxanes. With the aim of improving the productivity of Taxus spp. cell cultures, we induced polyploidy in vitro by treating immature embryos of Taxus baccata with colchicine. To obtain the polyploid cell lines, calli were induced from T. baccata plantlets previously treated with colchicine and ploidy levels were accurately identified using flow cytometry. In terms of cell morphology, tetraploid cells were about 3-fold bigger than the diploid cells. The expression of taxane pathway genes was higher in the tetraploid cell line compared to the diploid cells. Moreover, taxane production was 6.2-fold higher and the production peak was achieved 8 days earlier than in the diploid cell line, indicating a higher productivity. The obtained tetraploid cell line proved to be highly productive, constituting a step forward towards the development of a bio-sustainable production system for this chemotherapeutic drug.


Assuntos
Taxus , Taxus/genética , Taxus/metabolismo , Tetraploidia , Taxoides/farmacologia , Taxoides/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Colchicina/farmacologia , Colchicina/metabolismo
18.
J Med Chem ; 66(10): 6697-6714, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37145846

RESUMO

A series of novel indole analogues were discovered as colchicine-binding site inhibitors of tubulin. Among them, 3a exhibited the highest antiproliferative activity (average IC50 = 4.5 nM), better than colchicine (IC50 = 65.3 nM). The crystal structure of 3a in complex with tubulin was solved by X-ray crystallography, which explained the improved binding affinity of 3a to tubulin and thus its higher anticancer activity (IC50 = 4.5 nM) than the lead compound 12b (IC50 = 32.5 nM). In vivo, 3a (5 mg/kg) displayed significant antitumor efficacy against B16-F10 melanoma with a TGI of 62.96% and enhanced the antitumor efficacy of a small-molecule PD-1/PD-L1 inhibitor NP19 (TGI = 77.85%). Moreover, 3a potentiated the antitumor immunity of NP19 by activating the tumor immune microenvironment, as demonstrated by the increased tumor-infiltrating lymphocytes (TIL). Collectively, this work shows a successful example of crystal structure-guided discovery of a novel tubulin inhibitor 3a as a potential anticancer and immune-potentiating agent.


Assuntos
Antineoplásicos , Melanoma Experimental , Animais , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Raios X , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Sítios de Ligação , Indóis/farmacologia , Indóis/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Microambiente Tumoral
19.
Bioorg Chem ; 137: 106580, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149948

RESUMO

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Sistema de Sinalização das MAP Quinases , Tubulina (Proteína)/metabolismo , Microtúbulos , Colchicina/metabolismo , Proliferação de Células , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 256: 115402, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37182330

RESUMO

Tubulin/colchicine-binding site inhibitors (CBSIs) co-crystal structures play an important role in the exploration of novel small molecules for oncotherapy. Based on the analysis of the binding models of tubulin and reported CBSIs, a series of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles were designed as potential tubulin polymerization inhibitors by binding to distinct colchicine domain of tubulin. Among the compounds synthesized, 7w not only shown noteworthy potency against SGC-7901 cancer cell line (IC50 = 0.21 µM) but also exhibited lower cytotoxicity than colchicine in normal cell line (HUVEC). The mechanism studies elucidated that 7w could cause the apoptosis of cancer cells by inhibiting tubulin polymerization to trigger G2/M arrest. In 4T1-xenograft mice model, 7w significantly inhibited tumor growth without losing weight, demonstrating a promising potential for further development with a unique binding mode at the colchicine-binding site.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Animais , Camundongos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Tiazóis/farmacologia , Linhagem Celular Tumoral , Triazóis/farmacologia , Triazóis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Colchicina/metabolismo , Polimerização , Ensaios de Seleção de Medicamentos Antitumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA