RESUMO
BACKGROUND: Anthrax is endemic to many countries, including the United States. The causative agent, Bacillus anthracis, poses a global bioterrorism threat. Without effective antimicrobial postexposure prophylaxis (PEPAbx) and treatment, the mortality of systemic anthrax is high. To inform clinical guidelines for PEPAbx and treatment of B. anthracis infections in humans, we systematically evaluated animal anthrax treatment model studies. METHODS: We searched for survival outcome data in 9 scientific search engines for articles describing antimicrobial PEPAbx or treatment of anthrax in animals in any language through February 2019. We performed meta-analyses of efficacy of antimicrobial PEPAbx and treatment for each drug or drug combination using random-effects models. Pharmacokinetic/pharmacodynamic relationships were developed for 5 antimicrobials with available pharmacokinetic data. Monte Carlo simulations were used to predict unbound drug exposures in humans. RESULTS: We synthesized data from 34 peer-reviewed studies with 3262 animals. For PEPAbx and treatment of infection by susceptible B. anthracis, effective monotherapy can be accomplished with fluoroquinolones, tetracyclines, ß-lactams (including penicillin, amoxicillin-clavulanate, and imipenem-cilastatin), and lipopeptides or glycopeptides. For naturally occurring strains, unbound drug exposures in humans were predicted to adequately cover the minimal inhibitory concentrations (MICs; those required to inhibit the growth of 50% or 90% of organisms [MIC50 or MIC90]) for ciprofloxacin, levofloxacin, and doxycycline for both the PEPAbx and treatment targets. Dalbavancin covered its MIC50 for PEPAbx. CONCLUSIONS: These animal studies show many reviewed antimicrobials are good choices for PEPAbx or treatment of susceptible B. anthracis strains, and some are also promising options for combating resistant strains. Monte Carlo simulations suggest that oral ciprofloxacin, levofloxacin, and doxycycline are particularly robust choices for PEPAbx or treatment.
Assuntos
Antraz , Anti-Infecciosos , Bacillus anthracis , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Animais , Antraz/tratamento farmacológico , Antraz/prevenção & controle , Antibacterianos/farmacologia , Anti-Infecciosos/uso terapêutico , Combinação Imipenem e Cilastatina/farmacologia , Combinação Imipenem e Cilastatina/uso terapêutico , Ciprofloxacina/uso terapêutico , Doxiciclina/uso terapêutico , Glicopeptídeos/farmacologia , Glicopeptídeos/uso terapêutico , Humanos , Levofloxacino/uso terapêutico , Lipopeptídeos/farmacologia , Lipopeptídeos/uso terapêutico , Modelos Animais , Tetraciclinas/uso terapêutico , Estados Unidos , beta-Lactamas/uso terapêuticoRESUMO
Antimicrobial resistance is a growing threat to public health and an increasingly common problem for acute care physicians to confront. Several novel antibiotics have been approved in the past decade to combat these infections; however, physicians may be unfamiliar with how to appropriately utilize them. The purpose of this review is to evaluate novel antibiotics active against resistant gram-negative bacteria and highlight clinical information regarding their use in the acute care setting. This review focuses on novel antibiotics useful in the treatment of infections caused by resistant gram-negative organisms that may be seen in the acute care setting. These novel antibiotics include ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/cilistatin/relebactam, cefiderocol, plazomicin, eravacycline, and omadacycline. Acute care physicians should be familiar with these novel antibiotics so they can utilize them appropriately.
Assuntos
Antibacterianos , Desenho de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/farmacologia , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Ceftazidima/administração & dosagem , Ceftazidima/farmacologia , Cefalosporinas/administração & dosagem , Cefalosporinas/farmacologia , Combinação Imipenem e Cilastatina/administração & dosagem , Combinação Imipenem e Cilastatina/farmacologia , Combinação de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Compostos Heterocíclicos com 1 Anel/farmacologia , Humanos , Meropeném/administração & dosagem , Meropeném/farmacologia , Sisomicina/administração & dosagem , Sisomicina/análogos & derivados , Sisomicina/farmacologia , Tazobactam/administração & dosagem , Tazobactam/farmacologia , Tetraciclinas/administração & dosagem , Tetraciclinas/farmacologia , CefiderocolRESUMO
BACKGROUND: Due to the appearance of resistant bacterial strains against the antimicrobial drugs and the reduced efficiency of these valuable resources, the health of a community and the economies of countries have been threatened. OBJECTIVE: In this study, the antibacterial assessment of zinc sulfide nanoparticles (ZnS NPs) against Streptococcus pyogenes and Acinetobacter baumannii has been performed. METHODS: ZnS NPs were synthesized through a co-precipitation method using polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and polyethylene glycol (PEG-4000). The size and morphology of the synthesized ZnS NPs were determined by a scanning electron microscope (SEM) and it was found that the average size of the applied NPs was about 70 nm. In order to evaluate the antibacterial effect of the synthesized ZnS NPs, various concentrations (50µg/mL, 100 µg/mL and 150 µg/mL) of ZnS NPs were prepared. Antibacterial assessments were performed through the disc diffusion method in Mueller Hinton Agar (MHA) culture medium and also the optical density (OD) method was performed by a UV-Vis spectrophotometer in Trypticase™ Soy Broth (TSB) medium. Then, in order to compare the antibacterial effects of the applied NPs, several commercial antibiotics including penicillin, amikacin, ceftazidime and primaxin were used. RESULTS: The achieved results indicated that the antibacterial effects of ZnS NPs had a direct relation along with the concentrations and the concentration of 150 µg/mL showed the highest antibacterial effect in comparison with others. In addition, the ZnS NPs were more effective on Acinetobacter baumannii. CONCLUSION: The findings of this research suggest a novel approach against antibiotic resistance.
Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Nanopartículas Metálicas/química , Streptococcus pyogenes/efeitos dos fármacos , Sulfetos/química , Compostos de Zinco/química , Amicacina/farmacologia , Animais , Antibacterianos/farmacologia , Ceftazidima/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Combinação Imipenem e Cilastatina/farmacologia , Desenvolvimento de Medicamentos , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Penicilinas/farmacologia , Polietilenoglicóis/química , Álcool de Polivinil/química , Povidona/química , Ratos , Sulfetos/farmacologia , Compostos de Zinco/farmacologiaRESUMO
INTRODUCTION: Carbapenems are broad-spectrum antibacterial molecules. Imipenem-cilastatin and meropenem are the two main molecules used in French healthcare services. OBJECTIVE: We aimed to evaluate the relative strengths and weaknesses of these two molecules by considering their pharmacokinetic, pharmacodynamic, microbiological, and clinical properties. We demonstrated that imipenem-cilastatin and meropenem are not alike. METHOD: Review of the literature by querying the MEDLINE network. RESULTS: Imipenem-cilastatin is the first marketed molecule of the carbapenem class. It is more effective against Gram-positive cocci. Its stability does not allow for long infusions and its main adverse effect on the central nervous system limits its use. Meropenem is more effective against Gram-negative bacilli. Its stability and its milder adverse effects distinguish it from imipenem-cilastatin. CONCLUSION: Meropenem is preferred for daily use in healthcare services when carbapenems are to be used.
Assuntos
Antibacterianos/farmacologia , Combinação Imipenem e Cilastatina/farmacologia , Meropeném/farmacologia , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Biotransformação , Criança , Pré-Escolar , Combinação Imipenem e Cilastatina/efeitos adversos , Combinação Imipenem e Cilastatina/farmacocinética , Combinação Imipenem e Cilastatina/uso terapêutico , Contraindicações de Medicamentos , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana Múltipla , Estabilidade de Medicamentos , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lactente , Falência Hepática/metabolismo , Meropeném/efeitos adversos , Meropeném/farmacocinética , Meropeném/uso terapêutico , Estrutura Molecular , Especificidade de Órgãos , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Ligação ProteicaRESUMO
The aim of this study was to investigate the in vitro interactions of ambroxol hydrochloride (ABH) or amlodipine (AML) with commonly used antibacterial agents, including meropenem, imipenem-cilastatin sodium, biapenem, cefoperazone-sulbactam, polymyxin B, and tigecycline, against six carbapenem-resistant Acinetobacter baumannii (CRAB) clinical isolates. Drug interactions were interpreted using two models, that is, the fractional inhibitory concentration index (FICI) model and the percentage of growth difference (ΔE) model. The results show that a majority of the combination groups exhibited partial synergy and additive interactions, such as the combinations of carbapenems and cefoperazone-sulbactam (SCF) with ABH or AML. While the combination of PB/AML exhibited synergistic interactions against all tested isolates, and PB/ABH exhibited synergistic interactions against two isolates. The FICI and ΔE model correlated very well for the combinations of PBABH and PB/AML against AB2. The combinations of TGC with ABH or AML mainly exhibited additive and indifferent interactions. There were no antagonistic interactions observed in any of the combinations. In conclusion, this study revealed that the non-antibacterial agents ABH or AML can work synergistically or partial synergistically with antibacterial agents against CRAB. This finding is crucial for overcoming the carbapenem resistance of A. baumannii. SIGNIFICANCE AND IMPACT OF THE STUDY: Drug combination is an effective approach for the treatment of resistant bacterial infection. The significance of using drug combination is that it can reduce drug dosage requirements, reduce the toxic effects of agents and prevent or delay the emergence of drug resistance. This study measured the in vitro interactions between non-antimicrobial agents and antibacterial agents against carbapenem-resistant Acinetobacter baumannii and the results of this study provide new insight to find strategies to overcome the carbapenem resistance in A. baumannii.
Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Ambroxol/farmacologia , Anlodipino/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Carbapenêmicos/farmacologia , Cefoperazona/farmacologia , Combinação Imipenem e Cilastatina/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Sulbactam/farmacologia , Tienamicinas/farmacologiaRESUMO
BACKGROUND: We demonstrated therapeutic nonequivalence of "bioequivalent" generics for meropenem, but there is no data with generics of other carbapenems. METHODS: One generic product of imipenem-cilastatin was compared with the innovator in terms of in vitro susceptibility testing, pharmaceutical equivalence, pharmacokinetic (PK) and pharmacodynamic (PD) equivalence in the neutropenic mouse thigh, lung and brain infection models. Both pharmaceutical forms were then subjected to analytical chemistry assays (LC/MS). RESULTS AND CONCLUSION: The generic product had 30% lower concentration of cilastatin compared with the innovator of imipenem-cilastatin. Regarding the active pharmaceutical ingredient (imipenem), we found no differences in MIC, MBC, concentration or potency or AUC, confirming equivalence in terms of in vitro activity. However, the generic failed therapeutic equivalence in all three animal models. Its Emax against S. aureus in the thigh model was consistently lower, killing from 0.1 to 7.3 million less microorganisms per gram in 24 hours than the innovator (P = 0.003). Against K. pneumoniae in the lung model, the generic exhibited a conspicuous Eagle effect fitting a Gaussian equation instead of the expected sigmoid curve of the Hill model. In the brain infection model with P. aeruginosa, the generic failed when bacterial growth was >4 log10 CFU/g in 24 hours, but not if it was less than 2.5 log10 CFU/g. These large differences in the PD profile cannot be explained by the lower concentration of cilastatin, and rather suggested a failure attributable to the imipenem constituent of the generic product. Analytical chemistry assays confirmed that, besides having 30% less cilastatin, the generic imipenem was more acidic, less stable, and exhibited four different degradation masses that were absent in the innovator.