Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Mol Biol Cell ; 35(5): ar61, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446634

RESUMO

Neurons are polarized cells that require accurate membrane trafficking to maintain distinct protein complements at dendritic and axonal membranes. The Kinesin-3 family members KIF13A and KIF13B are thought to mediate dendrite-selective transport, but the mechanism by which they are recruited to polarized vesicles and the differences in the specific trafficking role of each KIF13 have not been defined. We performed live-cell imaging in cultured hippocampal neurons and found that KIF13A is a dedicated dendrite-selective kinesin. KIF13B confers two different transport modes, dendrite- and axon-selective transport. Both KIF13s are maintained at the trans-Golgi network by interactions with the heterotetrameric adaptor protein complex AP-1. Interference with KIF13 binding to AP-1 resulted in disruptions to both dendrite- and axon-selective trafficking. We propose that AP-1 is the molecular link between the sorting of polarized cargoes into vesicles and the recruitment of kinesins that confer polarized transport.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Complexo de Golgi , Cinesinas , Rede trans-Golgi , Células Cultivadas , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Rede trans-Golgi/metabolismo
2.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307383

RESUMO

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Assuntos
Complexo 1 de Proteínas Adaptadoras , ATPases Transportadoras de Cobre , Endossomos , Transporte Proteico , Receptor IGF Tipo 2 , Rede trans-Golgi , Humanos , Endossomos/metabolismo , Células HeLa , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo
3.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38240799

RESUMO

The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving cofactors to bind to AP1. However, how HEATR5 proteins interact with these cofactors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their cofactors and indicate that Laa1 performs functions besides recruiting AP1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Oncogene ; 43(2): 92-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952080

RESUMO

Several studies have demonstrated the role of the oncogenic mutant p53 in promoting tumor progression; however, there is limited information on the effects of secreted oncogenic mutant p53 on the tumor microenvironment and tumor immune escape. In this study, we found that secretion of mutant p53, determined by exosome content, is dependent on its N-terminal dileucine motif via its binding to ß-adaptin, and inhibited by the CHK2-mediated-Ser 20 phosphorylation. Moreover, we observed that the mutant p53 caused downregulation and dysfunction of CD4+ T lymphocytes in vivo and downregulated the levels and activities of rate-limiting glycolytic enzymes in vitro. Furthermore, inhibition of mutant p53 secretion by knocking down AP1B1 or mutation of dileucine motif could reverse the quantity and function of CD4+ T lymphocytes and restrain the tumor growth. Our study demonstrates that the tumor-derived exosome-mediated secretion of oncogenic mutant p53 inhibits glycolysis to alter the immune microenvironment via functional suppression of CD4+ T cells, which may be the underlying mechanism for tumor immune escape. Therefore, targeting TDE-mediated p53 secretion may serve as a potential therapeutic target for cancer treatment.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Microambiente Tumoral/genética , Linfócitos T/metabolismo , Mutação , Neoplasias/genética , Linhagem Celular Tumoral , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo
5.
J Biol Chem ; 299(3): 102979, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739948

RESUMO

The epidermal growth factor receptor (EGFR) plays important roles in cancer progression and is one of the major drug targets for targeted cancer therapy. Although fundamentally important, how newly synthesized EGFR is delivered to the cell surface to perform its cellular functions remains to be further investigated. In this study, we found using the approaches of gene knockout, siRNA knockdown, streptavidin pull-down, and co-immunoprecipitation assays that the clathrin adaptor complex-1 (AP-1) and Rab12 interact with EGFR and regulate the export of EGFR out of the trans-Golgi network (TGN). In addition, the tyrosine residue at the 998 position on human EGFR is critical to bind to AP-1, and this residue is important for TGN export of EGFR. We demonstrate that AP-1 and Rab12 are important for epidermal growth factor-induced phosphorylation of EGFR, cell elongation, and proliferation, suggesting that AP-1-mediated and Rab12-mediated post-Golgi trafficking is important for EGFR signaling. Moreover, TGN export of the constitutively activated mutant form of EGFR (EGFRL858R) is independent of AP-1 and Rab12. Our results reveal insights into the molecular mechanisms that mediate the TGN-to-cell surface delivery of EGFR and indicate that TGN export of WT EGFR and EGFRL858R depends on different cellular factors.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Proteínas rab de Ligação ao GTP , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo
7.
Nature ; 610(7933): 761-767, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261523

RESUMO

Stimulator of interferon genes (STING) functions downstream of cyclic GMP-AMP synthase in DNA sensing or as a direct receptor for bacterial cyclic dinucleotides and small molecules to activate immunity during infection, cancer and immunotherapy1-10. Precise regulation of STING is essential to ensure balanced immune responses and prevent detrimental autoinflammation11-16. After activation, STING, a transmembrane protein, traffics from the endoplasmic reticulum to the Golgi, where its phosphorylation by the protein kinase TBK1 enables signal transduction17-20. The mechanism that ends STING signalling at the Golgi remains unknown. Here we show that adaptor protein complex 1 (AP-1) controls the termination of STING-dependent immune activation. We find that AP-1 sorts phosphorylated STING into clathrin-coated transport vesicles for delivery to the endolysosomal system, where STING is degraded21. We identify a highly conserved dileucine motif in the cytosolic C-terminal tail (CTT) of STING that, together with TBK1-dependent CTT phosphorylation, dictates the AP-1 engagement of STING. A cryo-electron microscopy structure of AP-1 in complex with phosphorylated STING explains the enhanced recognition of TBK1-activated STING. We show that suppression of AP-1 exacerbates STING-induced immune responses. Our results reveal a structural mechanism of negative regulation of STING and establish that the initiation of signalling is inextricably associated with its termination to enable transient activation of immunity.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Clatrina , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/ultraestrutura , Clatrina/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , Imunidade Inata , Proteínas Serina-Treonina Quinases , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Motivos de Aminoácidos , Endossomos/metabolismo , Lisossomos/metabolismo , Fosforilação
8.
Mol Biol Cell ; 33(12): ar109, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35976721

RESUMO

Adaptor protein 4 (AP-4) is a heterotetrameric complex composed of ε, ß4, µ4, and σ4 subunits that mediates export of a subset of transmembrane cargos, including autophagy protein 9A (ATG9A), from the trans-Golgi network (TGN). AP-4 has received particular attention in recent years because mutations in any of its subunits cause a complicated form of hereditary spastic paraplegia referred to as "AP-4-deficiency syndrome." The identification of proteins that interact with AP-4 has shed light on the mechanisms of AP-4-dependent cargo sorting and distribution within the cell. However, the mechanisms by which the AP-4 complex itself is assembled have remained unknown. Here, we report that the alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34) binds to and stabilizes the AP-4 ε and σ4 subunits, thus promoting complex assembly. The physiological importance of these interactions is underscored by the observation that AAGAB-knockout cells exhibit reduced levels of AP-4 subunits and accumulation of ATG9A at the TGN like those in cells with mutations in AP-4-subunit genes. These findings demonstrate that AP-4 assembly is not spontaneous but AAGAB-assisted, further contributing to the understanding of an adaptor protein complex that is critically involved in development of the central nervous system.


Assuntos
Subunidades do Complexo de Proteínas Adaptadoras , Proteínas de Membrana , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Rede trans-Golgi/metabolismo
9.
Methods Mol Biol ; 2473: 195-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819768

RESUMO

Clathrin-coated vesicles mediate membrane cargo transportation from the plasma membrane, the trans-Golgi network, the endosome, and the lysosome. Heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) are bridges that link cargo-loaded membranes to clathrin coats. Assembly of AP2 was previously considered to be spontaneous; however, a recent study found AP2 assembly is a highly orchestrated process controlled by alpha and gamma adaptin binding protein (AAGAB). Evidence shows that AAGAB controls AP1 assembly in a similar way. Insights into the orchestrated assembly process and three-dimensional structures of assembly intermediates are only emerging. Here, we describe a protocol for reconstitution and purification of the complexes containing AAGAB and AP1 or AP2 subunits, known as AP1 and AP2 hemicomplexes. Our purification routinely yields milligrams of pure complexes suitable for structural analysis by X-ray crystallography and electron microscopy.


Assuntos
Complexo 2 de Proteínas Adaptadoras , Proteínas Adaptadoras de Transporte Vesicular , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo
10.
Mol Cell Biol ; 42(7): e0007122, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727026

RESUMO

Host cell membrane-trafficking pathways are often manipulated by bacterial pathogens to gain cell entry, avoid immune responses, or to obtain nutrients. The 1,369-residue OtDUB protein from the obligate intracellular human pathogen Orientia tsutsugamushi bears a deubiquitylase (DUB) and additional domains. Here we show that OtDUB ectopic expression disrupts membrane trafficking through multiple mechanisms. OtDUB binds directly to the clathrin adaptor-protein (AP) complexes AP-1 and AP-2, and the OtDUB275-675 fragment is sufficient for binding to either complex. To assess the impact of OtDUB interactions with AP-1 and AP-2, we examined trans-Golgi trafficking and endocytosis, respectively. Endocytosis is reduced by two separate OtDUB fragments: one contains the AP-binding domain (OtDUB1-675), and the other does not (OtDUB675-1369). OtDUB1-675 disruption of endocytosis requires its ubiquitin-binding capabilities. OtDUB675-1369 also fragments trans- and cis-Golgi structures. Using a growth-based selection in yeast, we identified viable OtDUB675-1369 point mutants that also no longer caused Golgi defects in human cells. In parallel, we found OtDUB675-1369 binds directly to phosphatidylserine, and this lipid binding is lost in the same mutants. Together these results show that OtDUB contains multiple activities capable of modulating membrane trafficking. We discuss how these activities may contribute to Orientia infections.


Assuntos
Orientia tsutsugamushi , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose , Complexo de Golgi/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Orientia tsutsugamushi/metabolismo , Ligação Proteica , Tifo por Ácaros/metabolismo , Tifo por Ácaros/microbiologia , Tifo por Ácaros/patologia
11.
Mol Biol Cell ; 33(9): ar80, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609212

RESUMO

Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1 that localizes at the subapical adherens junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumor-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Fator de Transcrição AP-1 , Complexo 1 de Proteínas Adaptadoras/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Polaridade Celular , Drosophila/metabolismo , Células Epiteliais/metabolismo , Integrinas/metabolismo , Morfogênese/fisiologia , Transporte Proteico/fisiologia , Fator de Transcrição AP-1/metabolismo
12.
Curr Opin Cell Biol ; 76: 102079, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429729

RESUMO

The clathrin adaptor protein complex-1 (AP-1) is a central player in cell physiology and human health. It is best known for its role in linking clathrin to its cargo at the trans-Golgi network and endosomes. It participates in traffic important for the correct function of a large number of organelles, including the trans-Golgi network, endosomes, lysosomes, lysosome-related organelles, and plasma membrane. Although it was one of the first clathrin adaptors identified, new discoveries about cargo and pathways that depend on AP-1 continue to emerge. This review summarizes new research into AP-1 that further illuminates its roles in the traffic of plasma membrane proteins, in maintaining TGN content, and in human disease.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Fator de Transcrição AP-1 , Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Clatrina/metabolismo , Endossomos/metabolismo , Humanos , Transporte Proteico , Fator de Transcrição AP-1/metabolismo , Rede trans-Golgi/metabolismo
13.
Development ; 148(1)2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33298463

RESUMO

Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Notch/metabolismo , Órgãos dos Sentidos/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem da Célula , Núcleo Celular/metabolismo , Polaridade Celular , Mutação com Ganho de Função , Penetrância , Fenótipo
14.
FEBS Open Bio ; 11(2): 367-374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206455

RESUMO

The Golgi-localized, gamma-ear containing, ADP-ribosylation factor-binding proteins (GGAs 1, 2, and 3) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) at the Golgi and play a role, along with adaptor protein complex 1 (AP-1), in the sorting of newly synthesized lysosomal hydrolases to the endolysosomal system. However, the relative importance of the two types of coat proteins in this process is still unclear. Here, we report that inactivation of all three GGA genes in HeLa cells decreased the sorting efficiency of cathepsin D from 97% to 73% relative to wild-type, with marked redistribution of the cation-independent MPR from peripheral punctae to the trans-Golgi network. In comparison, GNPTAB-/- HeLa cells with complete inactivation of the mannose 6-phosphate pathway sorted only 20% of the cathepsin D. We conclude that the residual sorting of cathepsin D in the GGA triple-knockout cells is mediated by AP-1.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Catepsina D/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Lisossomos/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Rede trans-Golgi/metabolismo
15.
Cancer Res ; 80(22): 4972-4985, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32978168

RESUMO

Lung squamous carcinoma (LUSC) is a highly metastatic disease with a poor prognosis. Using an integrated screening approach, we found that miR-671-5p reduces LUSC metastasis by inhibiting a circular RNA (circRNA), CDR1as. Although the putative function of circRNA is through miRNA sponging, we found that miR-671-5p more potently silenced an axis of CDR1as and its antisense transcript, cerebellar degeneration related protein 1 (CDR1). Silencing of CDR1as or CDR1 significantly inhibited LUSC metastases and CDR1 was sufficient to promote migration and metastases. CDR1, which directly interacted with adaptor protein 1 (AP1) complex subunits and coatomer protein I (COPI) proteins, no longer promoted migration upon blockade of Golgi trafficking. Therapeutic inhibition of the CDR1as/CDR1 axis with miR-671-5p mimics reduced metastasis in vivo. This report demonstrates a novel role for CDR1 in promoting metastasis and Golgi trafficking. These findings reveal an miRNA/circRNA axis that regulates LUSC metastases through a previously unstudied protein, CDR1. SIGNIFICANCE: This study shows that circRNA, CDR1as, promotes lung squamous migration, metastasis, and Golgi trafficking through its complimentary transcript, CDR1.


Assuntos
Autoantígenos/metabolismo , Carcinoma de Células Escamosas/secundário , Complexo de Golgi/metabolismo , Neoplasias Pulmonares/patologia , Proteínas do Tecido Nervoso/metabolismo , RNA Circular/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Autoantígenos/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Ácido Hialurônico/uso terapêutico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Nanopartículas/uso terapêutico , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética
16.
Mol Biol Cell ; 31(22): 2475-2493, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816642

RESUMO

The epithelial cell-specific clathrin adaptor protein (AP)-1B has a well-established role in polarized sorting of cargos to the basolateral membrane. Here we show that ß1 integrin was dependent on AP-1B and its coadaptor, autosomal recessive hypercholesterolemia protein (ARH), for sorting to the basolateral membrane. We further demonstrate an unprecedented role for AP-1B at the basal plasma membrane during collective cell migration of epithelial sheets. During wound healing, expression of AP-1B (and ARH in AP-1B-positive cells) slowed epithelial-cell migration. We show that AP-1B colocalized with ß1 integrin in focal adhesions during cell migration using confocal microscopy and total internal reflection fluorescence microscopy on fixed specimens. Further, AP-1B labeling in cell protrusions was distinct from labeling for the endocytic adaptor complex AP-2. Using stochastic optical reconstruction microscopy we identified numerous AP-1B-coated structures at or close to the basal plasma membrane in cell protrusions. In addition, immunoelectron microscopy showed AP-1B in coated pits and vesicles at the plasma membrane during cell migration. Lastly, quantitative real-time reverse transcription PCR analysis of human epithelial-derived cell lines revealed a loss of AP-1B expression in highly migratory metastatic cancer cells suggesting that AP-1B's novel role at the basal plasma membrane during cell migration might be an anticancer mechanism.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Movimento Celular/fisiologia , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Clatrina/metabolismo , Cães , Endossomos/metabolismo , Células Epiteliais/metabolismo , Humanos , Integrina beta1/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia
17.
PLoS One ; 15(3): e0230142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210464

RESUMO

Neuroinflammation is a major risk factor associated with the pathogenesis of neurodegenerative diseases. Conventional non-steroidal anti-inflammatory drugs are prescribed but their long term use is associated with adverse effects. Thus, herbal based medicines are attracting major attraction worldwide as potential therapeutic candidates. Tylophora indica (Burm. f) Merrill is a valuable medicinal plant well known in Ayurvedic practices for its immunomodulatory, anti-oxidant, anti-asthmatic and antirheumatic activities. The present study aimed to elucidate the anti-neuroinflammatory potential of water and hydroalcoholic leaf extracts of micropropagated plants of T. indica using BV-2 microglia activated with lipopolysaccharide as an in vitro model system and development of an efficient reproducible protocol for its in vitro cloning. Non cytotoxic doses of the water and hydroalcoholic extracts (0.2µg/ml and 20µg/ml, respectively) were selected using MTT assay. α-Tubulin, Iba-1 and inflammatory cascade proteins like NFκB, AP1 expression was studied using immunostaining to ascertain the anti-neuroinflammatory potential of these extracts. Further, anti-migratory activity was also analyzed by Wound Scratch Assay. Both extracts effectively attenuated lipopolysaccharide induced microglial activation, migration and the production of nitrite via regulation of the expression of NFκB and AP1 as the possible underlying target molecules. An efficient and reproducible protocol for in vitro cloning of T. indica through multiple shoot proliferation from nodal segments was established on both solid and liquid Murashige and Skoog's (MS) media supplemented with 15µM and 10µM of Benzyl Amino Purine respectively. Regenerated shoots were rooted on both solid and liquid MS media supplemented with Indole-3-butyric acid (5-15µM) and the rooted plantlets were successfully acclimatized and transferred to open field conditions showing 90% survivability. The present study suggests that T. indica may prove to be a potential anti-neuroinflammatory agent and may be further explored as a potential therapeutic candidate for the management of neurodegenerative diseases. Further, the current study will expedite the conservation of T. indica ensuring ample supply of this threatened medicinal plant to fulfill its increasing demand in herbal industry.


Assuntos
Microglia/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Plantas Medicinais/crescimento & desenvolvimento , Tylophora/crescimento & desenvolvimento , Complexo 1 de Proteínas Adaptadoras/efeitos dos fármacos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Linhagem Celular , Humanos , Técnicas In Vitro , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Microglia/imunologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
18.
PLoS One ; 15(1): e0226298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31895934

RESUMO

LZTFL1 participates in immune synapse formation, ciliogenesis, and the localization of ciliary proteins, and knockout of LZTFL1 induces abnormal distribution of heterotetrameric adaptor protein complex-1 (AP-1) in the Lztfl1-knockout mouse photoreceptor cells, suggesting that LZTFL1 is involved in intracellular transport. Here, we demonstrate that in vitro LZTFL1 directly binds to AP-1 and AP-2 and coimmunoprecipitates AP-1 and AP-2 from cell lysates. DxxFxxLxxxR motif of LZTFL1 is essential for these bindings, suggesting LZTFL1 has roles in AP-1 and AP-2-mediated protein trafficking. Since AP-1 and AP-2 are known to be involved in transferrin receptor 1 (TfR1) trafficking, the effect of LZTFL1 on TfR1 recycling was analyzed. TfR1, AP-1 and LZTFL1 from cell lysates could be coimmunoprecipitated. However, pull-down results indicate there is no direct interaction between TfR1 and LZTFL1, suggesting that LZTFL1 interaction with TfR1 is indirect through AP-1. We report the colocalization of LZTFL1 and AP-1, AP-1 and TfR1 as well as LZTFL1 and TfR1 in the perinuclear region (PNR) and the cytoplasm, suggesting a potential complex between LZTFL1, AP-1 and TfR1. The results from the disruption of adaptin recruitment with brefeldin A treatment suggested ADP-ribosylation factor-dependent localization of LZFL1 and AP-1 in the PNR. Knockdown of AP-1 reduces the level of LZTFL1 in the PNR, suggesting that AP-1 plays a role in LZTFL1 trafficking. Knockout of LZTFL1 reduces the cell surface level and the rate of internalization of TfR1, leading to a decrease of transferrin uptake, efflux, and internalization. However, knockout of LZTFL1 did not affect the cell surface levels of epidermal growth factor receptor and cation-independent mannose 6-phosphate receptor, indicating that LZTFL1 specifically regulates the cell surface level of TfR1. These data support a novel role of LZTFL1 in regulating the cell surface TfR1 level by interacting with AP-1 and AP-2.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Antígenos CD/metabolismo , Membrana Celular/metabolismo , Receptores da Transferrina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Antígenos CD/genética , Movimento Celular , Endocitose , Células HeLa , Humanos , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Receptores da Transferrina/genética , Fatores de Transcrição/genética
19.
Nat Microbiol ; 5(1): 181-191, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686029

RESUMO

Intestinal epithelial cells (IECs) act as a physical barrier separating the commensal-containing intestinal tract from the sterile interior. These cells have found a complex balance allowing them to be prepared for pathogen attacks while still tolerating the presence of bacterial or viral stimuli present in the lumen of the gut. Using primary human IECs, we probed the mechanisms that allow for such a tolerance. We discovered that viral infections emanating from the basolateral side of IECs elicit a stronger intrinsic immune response in comparison to lumenal apical infections. We determined that this asymmetric immune response is driven by the clathrin-sorting adaptor AP-1B, which mediates the polarized sorting of Toll-like receptor 3 (TLR3) towards the basolateral side of IECs. Mice and human IECs lacking AP-1B showed an exacerbated immune response following apical stimulation. Together, these results suggest a model where the cellular polarity program plays an integral role in the ability of IECs to partially tolerate apical commensals while remaining fully responsive to invasive basolateral pathogens.


Assuntos
Polaridade Celular/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Receptor 3 Toll-Like/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Interferons/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virologia , Camundongos , Receptor 3 Toll-Like/agonistas , Vírus/imunologia
20.
Traffic ; 20(10): 741-751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313456

RESUMO

Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Sítio Alostérico , Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Regulação Alostérica , Animais , Clatrina/química , Clatrina/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA