Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS One ; 12(10): e0184629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29028839

RESUMO

Human Respiratory Syncytial Virus (HRSV) is a leading cause of bronchopneumonia in infants and the elderly. To date, knowledge of viral and host protein interactions within HRSV is limited and are critical areas of research. Here, we show that HRSV Matrix (M) protein interacts with the cellular adaptor protein complex 3 specifically via its medium subunit (AP-3Mu3A). This novel protein-protein interaction was first detected via yeast-two hybrid screen and was further confirmed in a mammalian system by immunofluorescence colocalization and co-immunoprecipitation. This novel interaction is further substantiated by the presence of a known tyrosine-based adaptor protein MU subunit sorting signal sequence, YXXФ: where Ф is a bulky hydrophobic residue, which is conserved across the related RSV M proteins. Analysis of point-mutated HRSV M derivatives indicated that AP-3Mu3A- mediated trafficking is contingent on the presence of the tyrosine residue within the YXXL sorting sequence at amino acids 197-200 of the M protein. AP-3Mu3A is up regulated at 24 hours post-infection in infected cells versus mock-infected HEp2 cells. Together, our data suggests that the AP-3 complex plays a critical role in the trafficking of HRSV proteins specifically matrix in epithelial cells. The results of this study add new insights and targets that may lead to the development of potential antivirals and attenuating mutations suitable for candidate vaccines in the future.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas da Matriz Viral/metabolismo , Complexo 3 de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Células HeLa , Humanos , Ligação Proteica , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Vírus Sincicial Respiratório Humano/fisiologia , Regulação para Cima , Proteínas da Matriz Viral/química , Montagem de Vírus
2.
Thromb Haemost ; 117(1): 105-115, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27761583

RESUMO

The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit ß3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Leucemia Megacarioblástica Aguda/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Complexo 3 de Proteínas Adaptadoras/química , Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/química , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Animais , Plaquetas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/genética , Cães , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Macrolídeos/farmacologia , Células Madin Darby de Rim Canino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Transfecção
3.
Biol Chem ; 394(11): 1411-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23787465

RESUMO

During the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.


Assuntos
Complexo 3 de Proteínas Adaptadoras/química , Centrossomo/química , Proteínas Associadas aos Microtúbulos/química , Mitose , Complexo 3 de Proteínas Adaptadoras/genética , Complexo 3 de Proteínas Adaptadoras/fisiologia , Animais , Divisão Celular/genética , Centrossomo/patologia , Centrossomo/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose/genética , Família Multigênica/genética , Estrutura Terciária de Proteína/genética , Fuso Acromático/genética
4.
J Biol Chem ; 288(13): 9563-71, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23404500

RESUMO

Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous µ1, µ2, µ3, and µ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on µ2 and µ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the µ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the µ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The µ3A C-terminal domain consists of an immunoglobulin-like ß-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on µ3A subdomain A, at a location similar to the YXXØ-binding site on µ2 but not µ4. The binding sites on µ3A and µ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the µ3A site and show that this protein binds YXXØ signals with 14-19 µm affinity. The surface electrostatic potential of µ3A is less basic than that of µ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.


Assuntos
Complexo 3 de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Tirosina/química , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Animais , Calorimetria/métodos , Clatrina/química , Endossomos/metabolismo , Humanos , Imunoglobulinas/química , Lisossomos/química , Camundongos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatidilinositóis/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Tirosina/metabolismo
5.
J Allergy Clin Immunol ; 120(4): 735-41; quiz 742-3, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17931556

RESUMO

Hermansky-Pudlak type 2 is an autosomal recessive disorder characterized by oculocutaneous albinism, bleeding disorders, recurrent infections, and moderate/severe neutropenia. The disease is caused by mutations in the AP3B1 gene encoding for the beta3A subunit of the adaptor protein 3 (AP-3) complex. Because the expression of the beta3A subunit is normally ubiquitous, its deficiency leads to a precise phenotype in cells with a large number of intracellular granules, such as neutrophils, natural killer cells, cytotoxic T lymphocytes, platelets, and melanocytes. Given the AP-3 deficiency, the lysosomal membrane proteins are not appropriately sorted to the granules but are delivered to plasma membrane with subsequent effects on cell development and differentiation. Missorting of proteins (eg, tyrosinase) in melanocytes and platelets accounts for oculocutaneous albinism and bleeding disorders, respectively. Absence of AP-3 leads to low intracellular content of neutrophil elastase and consequently to neutropenia. Abnormal movement of lytic granules and reduced perforin content in cytotoxic T lymphocytes and natural killer cells account for their respective defects in cytolytic activity. It is likely that the investigation of the physiopathology of Hermansky-Pudlak type 2 syndrome will reveal nonredundant functions of this adaptor protein in the intracellular trafficking of membrane proteins.


Assuntos
Complexo 3 de Proteínas Adaptadoras/deficiência , Complexo 3 de Proteínas Adaptadoras/química , Animais , Modelos Animais de Doenças , Síndrome de Hermanski-Pudlak/etiologia , Humanos , Células Matadoras Naturais/imunologia , Linfócitos T Citotóxicos/imunologia
6.
DNA Seq ; 18(3): 165-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17453999

RESUMO

A novel splice variant of human AP3B2, named AP3B2_v2, was isolated through the large-scale sequencing analysis of a human fetal brain cDNA library. The AP3B2_v2 cDNA is 1171 bp in length. Sequence analysis revealed AP3B2_v2 missed 22 exons that existed in AP3B2_v1, leading to a different putative protein. The deduced proteins were 145 amino acids (designated as AP3B2_v2) and 1082 amino acids (AP3B2_v1) in length, sharing the C-terminal 145 amino acids. RT-PCR analysis showed that human AP3B2_v2 were expressed in several human adult tissues analyzed. The expression levels of AP3B2_v2 were relatively high in brain and testis. In contrast, low levels of expression were detected in kidney, pancreas, spleen, thymus, prostate, ovary and small intestine.


Assuntos
Complexo 3 de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Processamento Alternativo , Complexo 3 de Proteínas Adaptadoras/química , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/química , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/metabolismo , Feto/metabolismo , Expressão Gênica , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Eur J Cell Biol ; 85(6): 457-67, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16542748

RESUMO

AP3 is a heteromeric adaptor protein complex involved in the biogenesis of late endosomal/lysosomal structures. It recognizes tyrosine- and leucine-based sorting signals present in the cytoplasmic tails or loops of a number of proteins and is thought to be responsible for the direct transport of these proteins from the Golgi network to late endosomal/lysosomal structures. We have previously reported (Rodionov, Höning, Silye, Kongsvik, von Figura, Bakke, 2002. Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3. J. Biol. Chem. 277, 47436-47443) that in vitro binding of AP3 to the leucine signals is dependent on the nature of three residues immediately upstream of the leucine signal and suggested that these three amino acids define whether the protein is sorted to endosomes via the plasma membrane (PM) or traffics directly to the late endosomes/lysosomes. In this paper, we show in vivo evidence that residues favoring AP3 binding introduced into a protein that is transported via the PM such as the invariant chain can re-route such protein into direct sorting to late endosomal/lysosomal structures.


Assuntos
Complexo 3 de Proteínas Adaptadoras/química , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Receptores Depuradores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação de Linfócitos B/química , Células Cultivadas , Cães , Antígenos de Histocompatibilidade Classe II/química , Humanos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
8.
J Gen Virol ; 84(Pt 5): 1309-1316, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692298

RESUMO

A candidate gene of the bovine leukaemia virus (BLV) receptor (BLVR) was cloned previously and predicted to encode a transmembrane protein. Subsequent cloning of related genes from other organisms indicated that the candidate gene is related, but unique, to a gene family of the delta subunit of the adaptor protein (AP) complex 3, AP-3. Therefore, bovine cDNAs (boAP3delta) that are highly homologous to the candidate gene were cloned and sequenced. The nucleotide sequences suggested that the boAP3delta cDNA encodes the delta subunit of boAP3 without transmembrane domains. Part of the AP3delta cDNA isolated from the lymph node, spleen and MDBK cells, from which the BLVR candidate cDNA was derived, has almost the same nucleotide sequences as the boAP3delta cDNA. A boAP3delta protein tagged with green fluorescent protein was localized in the cytoplasm and incorporated into AP-3 in bovine cells. Unlike the previous report about the candidate gene, the boAP3delta gene introduced into murine NIH 3T3 cells did not increase the susceptibility of the cells to BLV infection. Many small insertions and deletions of nucleotides could generate the predicted transmembrane and cytoplasmic regions of the BLVR protein from the prototypic boAP3delta gene.


Assuntos
Complexo 3 de Proteínas Adaptadoras/química , Complexo 3 de Proteínas Adaptadoras/metabolismo , Vírus da Leucemia Bovina/patogenicidade , Receptores Virais/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Linhagem Celular , Clonagem Molecular , Proteínas de Fluorescência Verde , Humanos , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA
9.
J Biol Chem ; 277(49): 47436-43, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12370188

RESUMO

Cytoplasmic tails of LIMPII and the invariant chain contain similar leucine-based sorting signals, but the invariant chain interacts only with AP1 and AP2, whereas LIMPII interacts strongly with AP3. In a series of in vitro experiments, we investigated the effect of residues upstream of the leucine pairs and demonstrated that these residues determine adapter binding, and certain residues favor interactions with AP3. Furthermore, constructs that interacted stronger with AP3 interacted weakly with AP1 and vice versa. Exchanging residues upstream of the leucine-based signal in LIMPII with those of the invariant chain reduced LIMPII binding to AP3 in vitro, and in vivo the corresponding LIMPII mutant was rerouted via the plasma membrane like the invariant chain. These preferential interactions of different leucine signals with different AP complexes may thus be the determining step sorting proteins from the trans-Golgi network to their final destinations. Proteins that interact with AP3 are sorted directly to endosomes/lysosomes, whereas proteins that interact with AP1 are sorted via a different route. At the same time, constructs that exhibited specificity for either AP1 or AP3 might still interact with AP2, suggesting that AP2 may recognize a wider variety of leucine signals. This is consistent with the suggested role of AP2 in internalization of proteins containing general leucine-based signals, including proteins that have been missorted to the plasma membrane.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/química , Complexo 3 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Leucina/química , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA/metabolismo , Cães , Glutationa Transferase/metabolismo , Cinética , Leucina/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA