Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 214(1): 107836, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101600

RESUMO

Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.


Assuntos
Complexo I de Proteína do Envoltório , Complexo I de Proteína do Envoltório/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Membranas/metabolismo , Transporte Proteico
2.
Commun Biol ; 5(1): 115, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136165

RESUMO

ß-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


Assuntos
COVID-19/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , COVID-19/genética , COVID-19/virologia , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/química , Proteína Coatomer/genética , Simulação por Computador , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Filogenia , Ligação Proteica , Domínios Proteicos , Transporte Proteico , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/classificação , Glicoproteína da Espícula de Coronavírus/genética , Repetições WD40/genética
3.
Genes Genet Syst ; 95(6): 303-314, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33583916

RESUMO

yata mutants of Drosophila melanogaster exhibit phenotypes including progressive brain shrinkage, developmental abnormalities and shortened lifespan, whereas in mammals, null mutations of the yata ortholog Scyl1 result in motor neuron degeneration. yata mutation also causes defects in the anterograde intracellular trafficking of a subset of proteins including APPL, which is the Drosophila ortholog of mammalian APP, a causative molecule in Alzheimer's disease. SCYL1 binds and regulates the function of coat protein complex I (COPI) in secretory vesicles. Here, we reveal a role for the Drosophila YATA protein in the proper localization of COPI. Immunohistochemical analyses performed using confocal microscopy and structured illumination microscopy showed that YATA colocalizes with COPI and GM130, a cis-Golgi marker. Analyses using transgenically expressed YATA with a modified N-terminal sequence revealed that the N-terminal portion of YATA is required for the proper subcellular localization of YATA. Analysis using transgenically expressed YATA proteins in which the C-terminal sequence was modified revealed a function for the C-terminal portion of YATA in the subcellular localization of COPI. Notably, when YATA was mislocalized, it also caused the mislocalization of COPI, indicating that YATA plays a role in directing COPI to the proper subcellular site. Moreover, when both YATA and COPI were mislocalized, the staining pattern of GM130 revealed Golgi with abnormal elongated shapes. Thus, our in vivo data indicate that YATA plays a role in the proper subcellular localization of COPI.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinases/metabolismo , Animais , Sítios de Ligação , Complexo I de Proteína do Envoltório/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Complexo de Golgi/metabolismo , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Vesículas Secretórias/metabolismo
4.
Adv Biol Regul ; 79: 100781, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436318

RESUMO

Arf GTPase activating (ArfGAP) proteins are critical regulatory and effector proteins in membrane trafficking pathways. Budding yeast contain two ArfGAP proteins (Gcs1 and Glo3) implicated in COPI coat function at the Golgi, and yeast require Glo3 catalytic function for viability. A new X-ray crystal structure of the Glo3 GAP domain was determined at 2.1 Å resolution using molecular replacement methods. The structure reveals a Cys4-family zinc finger motif with an invariant residue (R59) positioned to act as an "arginine finger" during catalysis. Comparisons among eukaryotic GAP domains show a key difference between ArfGAP1 and ArfGAP2/3 family members in the final helix located within the domain. Conservation at both the sequence and structural levels suggest the Glo3 GAP domain interacts with yeast Arf1 switch I and II regions to promote catalysis. Together, the structural data presented here provide additional evidence for placing Glo3 near Arf1 triads within membrane-assembled COPI coats and further support the molecular niche model for COPI coat regulation by ArfGAPs.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/genética , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Dedos de Zinco
5.
Proc Natl Acad Sci U S A ; 116(48): 24031-24040, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712447

RESUMO

Coat protein I (COPI)-coated vesicles mediate retrograde transport from the Golgi to the endoplasmic reticulum (ER), as well as transport within the Golgi. Major progress has been made in defining the structure of COPI coats, in vitro and in vivo, at resolutions as high as 9 Å. Nevertheless, important questions remain unanswered, including what specific interactions stabilize COPI coats, how COPI vesicles recognize their target membranes, and how coat disassembly is coordinated with vesicle fusion and cargo delivery. Here, we use X-ray crystallography to identify a conserved site on the COPI subunit α-COP that binds to flexible, acidic sequences containing a single tryptophan residue. One such sequence, found within α-COP itself, mediates α-COP homo-oligomerization. Another such sequence is contained within the lasso of the ER-resident Dsl1 complex, where it helps mediate the tethering of Golgi-derived COPI vesicles at the ER membrane. Together, our findings suggest that α-COP homo-oligomerization plays a key role in COPI coat stability, with potential implications for the coordination of vesicle tethering, uncoating, and fusion.


Assuntos
Complexo I de Proteína do Envoltório/química , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/química , Triptofano/fisiologia , Motivos de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/química , Modelos Moleculares , Saccharomyces cerevisiae , Triptofano/química
6.
Fungal Genet Biol ; 123: 78-86, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550852

RESUMO

Coatomer-I (COPI) is a heteromeric protein coat that facilitates the budding of membranous carriers mediating Golgi-to-ER and intra-Golgi transport. While the structural features of COPI have been thoroughly investigated, its physiological role is insufficiently understood. Here we exploit the amenability of A. nidulans for studying intracellular traffic, taking up previous studies by Breakspear et al. (2007) with the α-COP/CopA subunit of COPI. Endogenously tagged α-COP/CopA largely localizes to SedVSed5 syntaxin-containing early Golgi cisterna, and acute inactivation of ER-to-Golgi traffic delocalizes COPI to a haze, consistent with the cisternal maturation model. In contrast, the Golgi localization of COPI is independent of the TGN regulators HypBSec7 and HypATrs120, implying that COPI budding predominates at the SedVSed5 early Golgi, with lesser contribution of the TGN. This finding agrees with the proposed role of COPI-mediated intra-Golgi retrograde traffic in driving cisternal maturation, which predicts that the capacity of the TGN to generate COPI carriers is low. The COPI early Golgi compartments intimately associates with Sec13-containing ER exit sites. Characterization of the heat-sensitive copA1ts (sodVIC1) mutation showed that it results in a single residue substitution in the ε-COP-binding Carboxyl-Terminal-Domain of α-COP that likely destabilizes its folding. However, we show that Golgi disorganization by copA1ts necessitates >150 min-long incubation at 42 °C. This weak subcellular phenotype makes it unsuitable for inactivating COPI traffic acutely for microscopy studies, and explains the aneuploidy-stabilizing role of the mutation at subrestrictive temperatures.


Assuntos
Aspergillus nidulans/ultraestrutura , Complexo I de Proteína do Envoltório/química , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Aspergillus nidulans/química , Aspergillus nidulans/genética , Transporte Biológico/genética , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/química , Complexo de Golgi/química , Microscopia de Fluorescência , Mutação , Fenótipo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
7.
Elife ; 62017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29148969

RESUMO

COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath ß'-COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.


Assuntos
Chlamydomonas reinhardtii/química , Complexo I de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica
8.
Elife ; 62017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621666

RESUMO

COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of ßδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Fator 1 de Ribosilação do ADP/química , Animais , Complexo I de Proteína do Envoltório/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Camundongos , Modelos Moleculares , Conformação Proteica
9.
Annu Rev Biochem ; 86: 637-657, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28471691

RESUMO

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with ß-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.


Assuntos
Membrana Celular/ultraestrutura , Clatrina/química , Complexo I de Proteína do Envoltório/química , Vesículas Revestidas/ultraestrutura , Células Eucarióticas/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/química , Transporte Ativo do Núcleo Celular , Membrana Celular/química , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Vesículas Revestidas/química , Vesículas Revestidas/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Evolução Molecular , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Expressão Gênica , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos
10.
Methods Mol Biol ; 1496: 63-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27632002

RESUMO

The Golgi complex plays a central role in the intracellular sorting of proteins. Transport through the Golgi in the anterograde direction has been explained by cisternal maturation, while transport in the retrograde direction is attributed to vesicles formed by the coat protein I (COPI) complex. A more detailed understanding of how COPI acts in Golgi transport is being achieved in recent years, due in large part to a COPI reconstitution system. Through this approach, the mechanistic complexities of COPI vesicle formation are being elucidated. This approach has also uncovered a new mode of anterograde transport through the Golgi, which involves COPI tubules connecting the Golgi cisternae. We describe in this chapter the reconstitution of COPI vesicle and tubule formation from Golgi membrane.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Complexo I de Proteína do Envoltório , Complexo de Golgi , Animais , Transporte Biológico Ativo/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Humanos
11.
J Cell Sci ; 129(16): 3077-83, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27369768

RESUMO

Caveolae are specialized membrane domains that are crucial for the correct function of endothelial cells, adipocytes and muscle cells. Caveolins and cavins are both required for caveolae formation, and assemble into a large (80S) caveolar coat complex (80S-CCC). The architecture of the 80S-CCC, however, has not been analyzed. Here, we study the 80S-CCC isolated from mammalian cells using negative stain electron microscopy and 3D cryo-electron tomography. We show that the 80S-CCC is a hollow sphere with a diameter of 50-80 nm, and so has the same size and shape as individual caveolar bulbs. This provides strong evidence that the distinctive membrane shape of caveolae is generated by the shape of the 80S-CCC itself. The particle appears to be made up of two layers, an inner coat composed of polygonal units of caveolins that form a polyhedral cage, and an outer filamentous coat composed of cavins. The data suggest that the peripheral cavin coat is aligned along the edges of the inner polyhedral cage, thereby providing a mechanism for the generation of a morphologically stable caveolar coat.


Assuntos
Cavéolas/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Sequência de Aminoácidos , Cavéolas/ultraestrutura , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/ultraestrutura , Microscopia Crioeletrônica , Células HeLa , Humanos , Modelos Biológicos
12.
J Struct Biol ; 195(1): 49-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27134004

RESUMO

Electron tomography (ET) combining subsequent sub-volume averaging has been becoming a unique way to study the in situ 3D structures of macromolecular complexes. However, information missing in electron tomography due to limited angular sampling is still the bottleneck in high-resolution electron tomography application. Here, based on the understanding of smooth nature of biological specimen, we present a new iterative image reconstruction algorithm, FIRT (filtered iterative reconstruction technique) for electron tomography by combining the algebra reconstruction technique (ART) and the nonlinear diffusion (ND) filter technique. Using both simulated and experimental data, in comparison to ART and weight back projection method, we proved that FIRT could generate a better reconstruction with reduced ray artifacts and significant improved correlation with the ground truth and partially restore the information at the non-sampled angular region, which was proved by investigating the 90° re-projection and by the cross-validation method. This new algorithm will be subsequently useful in the future for both cellular and molecular ET with better quality and improved structural details.


Assuntos
Algoritmos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Artefatos , Complexo I de Proteína do Envoltório/química , Difusão , Fígado/química , Substâncias Macromoleculares , Ratos
13.
Biochem Biophys Res Commun ; 473(1): 249-254, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27005820

RESUMO

Sorting motifs are involved in the transport of diverse proteins. In the present study, we identified a hydrophobic peptide (WRPWRNFWWSIRVPWRRN) that was able to target enhanced green fluorescent protein- or DsRed2-enriched vesicular-like sub-compartments of the endoplasmic reticulum (ER). Analysis of mutation constructs revealed that the sequence WRPWRNFWW was responsible for the ER-targeting activity, and the arginine residue of the peptide is a critical determinant of ER localization. Results from co-immunoprecipitation, glutathione S-transferase pull-down, liquid chromatography-tandem mass spectrometry, and western blotting analyses demonstrated that this motif could bind with the γ2-COP subcomplex of coat protein complex I (COPI), which is involved in the retrieval and transport of ER-resident proteins from the Golgi apparatus to the ER. Overall, we report a new hydrophobic peptide that possesses an arginine-based ER localization motif, which can help elucidate the mechanisms of ER sorting mediated by COPI.


Assuntos
Motivos de Aminoácidos , Retículo Endoplasmático/metabolismo , Sequência de Aminoácidos , Arginina/química , Cromatografia Líquida , Complexo I de Proteína do Envoltório/química , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Peptídeos/química , Plasmídeos/metabolismo , Espectrometria de Massas em Tandem
15.
Science ; 349(6244): 195-8, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26160949

RESUMO

Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/química , Fator 1 de Ribosilação do ADP/química , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Proteínas Ativadoras de GTPase/química , Humanos , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1328-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057672

RESUMO

The heptameric COPI coat (coatomer) plays an essential role in vesicular transport in the early secretory system of eukaryotic cells. While the structures of some of the subunits have been determined, that of the δ-COP subunit has not been reported to date. The δ-COP subunit is part of a subcomplex with structural similarity to tetrameric clathrin adaptors (APs), where δ-COP is the structural homologue of the AP µ subunit. Here, the crystal structure of the µ homology domain (MHD) of δ-COP (δ-MHD) obtained by phasing using a combined SAD-MR method is presented at 2.15 Å resolution. The crystallographic asymmetric unit contains two monomers that exhibit short sections of disorder, which may allude to flexible regions of the protein. The δ-MHD is composed of two subdomains connected by unstructured linkers. Comparison between this structure and those of known MHD domains from the APs shows significant differences in the positions of specific loops and ß-sheets, as well as a more general change in the relative positions of the protein subdomains. The identified difference may be the major source of cargo-binding specificity. Finally, the crystal structure is used to analyze the potential effect of the I422T mutation in δ-COP previously reported to cause a neurodegenerative phenotype in mice.


Assuntos
Complexo I de Proteína do Envoltório/química , Animais , Bovinos , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Fenótipo , Conformação Proteica
17.
Proc Natl Acad Sci U S A ; 110(33): 13244-9, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901109

RESUMO

Intracellular trafficking between organelles is achieved by coat protein complexes, coat protomers, that bud vesicles from bilayer membranes. Lipid droplets are protected by a monolayer and thus seem unsuitable targets for coatomers. Unexpectedly, coat protein complex I (COPI) is required for lipid droplet targeting of some proteins, suggesting a possible direct interaction between COPI and lipid droplets. Here, we find that COPI coat components can bud 60-nm triacylglycerol nanodroplets from artificial lipid droplet (LD) interfaces. This budding decreases phospholipid packing of the monolayer decorating the mother LD. As a result, hydrophobic triacylglycerol molecules become more exposed to the aqueous environment, increasing LD surface tension. In vivo, this surface tension increase may prime lipid droplets for reactions with neighboring proteins or membranes. It provides a mechanism fundamentally different from transport vesicle formation by COPI, likely responsible for the diverse lipid droplet phenotypes associated with depletion of COPI subunits.


Assuntos
Complexo I de Proteína do Envoltório/química , Bicamadas Lipídicas/química , Transporte Proteico/fisiologia , Vesículas Transportadoras/química , Fator 1 de Ribosilação do ADP/genética , Animais , Escherichia coli , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica , Fosfatidilcolinas , Fosfatidiletanolaminas , Fosfolipídeos/química , Células Sf9 , Espectrometria de Fluorescência , Spodoptera , Tensão Superficial , Triglicerídeos/química , Água/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-23709684

RESUMO

The nuclear envelope (NE) is a specific extension of the endoplasmic reticulum (ER) that wraps around the nucleus and enables the spatial separation of gene transcription and protein translation, one of the signature features of eukaryotes. Rather than being completely closed, the double lipid bilayer of the NE is perforated at sites where the inner and outer nuclear membranes fuse, resulting in circular openings lined with sharply bent membranes. These openings are filled with nuclear pore complexes (NPCs), enormous protein assemblies that facilitate nuclear transport. The scaffold components of the NPC surprisingly share interesting similarities with elements of coat protein complexes, which have general implications for function and evolution of these membrane-coating complexes. Here I discuss, from a structural perspective, what these findings might teach us.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Complexo I de Proteína do Envoltório/fisiologia , Poro Nuclear/fisiologia , Complexo I de Proteína do Envoltório/química , Modelos Biológicos , Poro Nuclear/química , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
19.
Mol Biol Cell ; 24(8): 1111-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23427261

RESUMO

Endoplasmic reticulum (ER) α-1, 2-mannosidase (ERManI) contributes to ER-associated protein degradation (ERAD) by initiating the formation of degradation signals on misfolded N-linked glycoproteins. Despite its inferred intracellular location, we recently discovered that the mammalian homologue is actually localized to the Golgi complex. In the present study, the functional role of Golgi-situated ERManI was investigated. Mass spectrometry analysis and coimmunoprecipitation (co-IP) identified a direct interaction between ERManI and γ-COP, the gamma subunit of coat protein complex I (COPI) that is responsible for Golgi-to-ER retrograde cargo transport. The functional relationship was validated by the requirement of both ERManI and γ-COP to support efficient intracellular clearance of the classical ERAD substrate, null Hong Kong (NHK). In addition, site-directed mutagenesis of suspected γ-COP-binding motifs in the cytoplasmic tail of ERManI was sufficient to disrupt the physical interaction and ablate NHK degradation. Moreover, a physical interaction between NHK, ERManI, and γ-COP was identified by co-IP and Western blotting. RNA interference-mediated knockdown of γ-COP enhanced the association between ERManI and NHK, while diminishing the efficiency of ERAD. Based on these findings, a model is proposed in which ERManI and γ-COP contribute to a Golgi-based quality control module that facilitates the retrieval of captured ERAD substrates back to the ER.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Degradação Associada com o Retículo Endoplasmático , Complexo de Golgi/enzimologia , Manosidases/metabolismo , Subunidades Proteicas/metabolismo , Substituição de Aminoácidos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Células HeLa , Humanos , Células MCF-7 , Manosidases/química , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Transporte Proteico
20.
Trends Cell Biol ; 23(6): 279-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23414967

RESUMO

The transport of proteins and lipids between distinct cellular compartments is conducted by coated vesicles. These vesicles are formed by the self-assembly of coat proteins on a membrane, leading to collection of the vesicle cargo and membrane bending to form a bud. Scission at the bud neck releases the vesicle. X-ray crystallography and electron microscopy (EM) have recently generated models of isolated coat components and assembled coats. Here, we review these data to present a structural overview of the three main coats: clathrin, COPII, and COPI. The three coats have similar function, common ancestry, and structural similarities, but exhibit fundamental differences in structure and assembly. We describe the implications of structural similarities and differences for understanding the function, assembly principles, and evolution of vesicle coats.


Assuntos
Clatrina/química , Complexo I de Proteína do Envoltório/química , Vesículas Revestidas/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Clatrina/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Vesículas Revestidas/química , Cristalografia por Raios X , GTP Fosfo-Hidrolases/metabolismo , Humanos , Modelos Moleculares , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA