Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Nat Commun ; 15(1): 3367, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719808

RESUMO

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Assuntos
Anti-Helmínticos , Caenorhabditis elegans , Complexo I de Transporte de Elétrons , Ubiquinona/análogos & derivados , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Caenorhabditis elegans/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/química , Especificidade da Espécie , Quinonas/química , Quinonas/farmacologia , Quinonas/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química
2.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697987

RESUMO

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Assuntos
Antineoplásicos , Proliferação de Células , Complexo I de Transporte de Elétrons , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Antineoplásicos/farmacologia , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desacopladores/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Ratos , NADH Desidrogenase/metabolismo , NADH Desidrogenase/antagonistas & inibidores
3.
Nature ; 628(8006): 195-203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480879

RESUMO

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Assuntos
Complexo I de Transporte de Elétrons , Inflamação , Microglia , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Multiômica , Células Mieloides/metabolismo , Células Mieloides/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
Pest Manag Sci ; 80(6): 2679-2688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38284296

RESUMO

BACKGROUND: Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases of rice, and there is a lack of bactericides for controlling this disease. We previously found parthenolide (PTL) is a potential lead for developing bactericides against Xoo, and subunit F of respiratory chain complex I (NuoF) is an important target protein of PTL. However, the binding modes of PTL with NuoF need further elucidation. RESULTS: In this study, we obtained the crystal structure of Xoo NuoEF (complex of subunit E and F of respiratory chain complex I) with a resolution of 2.36 Å, which is the first report on the protein structure of NuoEF in plant-pathogenic bacteria. The possible binding sites of PTL with NuoF (Cys105 and Cys187) were predicted with molecular docking and mutated into alanine using a base mismatch method. The mutated proteins were expressed in Escherichia coli and purified with affinity chromatography. The binding abilities of PTL with mutated proteins were investigated via pull-down assay and BIAcore analysis, which revealed that double mutation of Cys105 and Cys187 in NuoF severely affected the binding ability of PTL with NuoF. In addition, the binding modes were further simulated with combined quantum mechanical/molecular mechanical calculations, and the results indicated that PTL may have a stronger binding with Cys105 than Cys187. CONCLUSION: NuoEF protein structure of Xoo was resolved, and Cys105 and Cys187 in NuoF are important binding sites of PTL. This study further clarified the action mechanism of PTL against Xoo, and will promote the innovation of bactericides targeting Xoo complex I. © 2024 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias , Simulação de Acoplamento Molecular , Sesquiterpenos , Xanthomonas , Xanthomonas/efeitos dos fármacos , Xanthomonas/genética , Xanthomonas/enzimologia , Xanthomonas/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Sítios de Ligação
5.
Cell Rep ; 42(6): 112616, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289585

RESUMO

Combined inhibition of oxidative phosphorylation (OXPHOS) and glycolysis has been shown to activate a PP2A-dependent signaling pathway, leading to tumor cell death. Here, we analyze highly selective mitochondrial complex I or III inhibitors in vitro and in vivo to elucidate the molecular mechanisms leading to cell death following OXPHOS inhibition. We show that IACS-010759 treatment (complex I inhibitor) induces a reactive oxygen species (ROS)-dependent dissociation of CIP2A from PP2A, leading to its destabilization and degradation through chaperone-mediated autophagy. Mitochondrial complex III inhibition has analogous effects. We establish that activation of the PP2A holoenzyme containing B56δ regulatory subunit selectively mediates tumor cell death, while the arrest in proliferation that is observed upon IACS-010759 treatment does not depend on the PP2A-B56δ complex. These studies provide a molecular characterization of the events subsequent to the alteration of critical bioenergetic pathways and help to refine clinical studies aimed to exploit metabolic vulnerabilities of tumor cells.


Assuntos
Autofagia Mediada por Chaperonas , Complexo I de Transporte de Elétrons , Neoplasias , Humanos , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Neoplasias/patologia , Fosforilação Oxidativa , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Complexo I de Transporte de Elétrons/antagonistas & inibidores
6.
Science ; 379(6630): 351-357, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701435

RESUMO

The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.


Assuntos
Biguanidas , Complexo I de Transporte de Elétrons , Animais , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metformina/farmacologia , Mitocôndrias/metabolismo , Biguanidas/farmacologia
7.
Nature ; 607(7920): 756-761, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859172

RESUMO

Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5. Yet, how healthy oocytes balance essential mitochondrial activity with the production of ROS is unknown. Here we show that oocytes evade ROS by remodelling the mitochondrial electron transport chain through elimination of complex I. Combining live-cell imaging and proteomics in human and Xenopus oocytes, we find that early oocytes exhibit greatly reduced levels of complex I. This is accompanied by a highly active mitochondrial unfolded protein response, which is indicative of an imbalanced electron transport chain. Biochemical and functional assays confirm that complex I is neither assembled nor active in early oocytes. Thus, we report a physiological cell type without complex I in animals. Our findings also clarify why patients with complex-I-related hereditary mitochondrial diseases do not experience subfertility. Complex I suppression represents an evolutionarily conserved strategy that allows longevity while maintaining biological activity in long-lived oocytes.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Oócitos , Espécies Reativas de Oxigênio , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Mitocôndrias/metabolismo , Oócitos/citologia , Oócitos/enzimologia , Oócitos/metabolismo , Proteômica , Resposta a Proteínas não Dobradas , Xenopus laevis
8.
Science ; 376(6600): eabh2841, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737799

RESUMO

Tumor necrosis factor (TNF) is a critical host resistance factor against tuberculosis. However, excess TNF produces susceptibility by increasing mitochondrial reactive oxygen species (mROS), which initiate a signaling cascade to cause pathogenic necrosis of mycobacterium-infected macrophages. In zebrafish, we identified the mechanism of TNF-induced mROS in tuberculosis. Excess TNF in mycobacterium-infected macrophages elevates mROS production by reverse electron transport (RET) through complex I. TNF-activated cellular glutamine uptake leads to an increased concentration of succinate, a Krebs cycle intermediate. Oxidation of this elevated succinate by complex II drives RET, thereby generating the mROS superoxide at complex I. The complex I inhibitor metformin, a widely used antidiabetic drug, prevents TNF-induced mROS and necrosis of Mycobacterium tuberculosis-infected zebrafish and human macrophages; metformin may therefore be useful in tuberculosis therapy.


Assuntos
Complexo I de Transporte de Elétrons , Macrófagos , Metformina , Mycobacterium tuberculosis , Espécies Reativas de Oxigênio , Tuberculose , Fator de Necrose Tumoral alfa , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transporte de Elétrons , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Metformina/farmacologia , Mycobacterium tuberculosis/metabolismo , Necrose , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Tuberculose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
9.
Sci Rep ; 12(1): 8020, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577908

RESUMO

Anticancer strategies aimed at inhibiting Complex I of the mitochondrial respiratory chain are increasingly being attempted in solid tumors, as functional oxidative phosphorylation is vital for cancer cells. Using ovarian cancer as a model, we show that a compensatory response to an energy crisis induced by Complex I genetic ablation or pharmacological inhibition is an increase in the mitochondrial biogenesis master regulator PGC1α, a pleiotropic coactivator of transcription regulating diverse biological processes within the cell. We associate this compensatory response to the increase in PGC1α target gene expression, setting the basis for the comprehension of the molecular pathways triggered by Complex I inhibition that may need attention as drawbacks before these approaches are implemented in ovarian cancer care.


Assuntos
Complexo I de Transporte de Elétrons , Neoplasias Ovarianas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Biogênese de Organelas , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
10.
Chem Biol Interact ; 351: 109677, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34634269

RESUMO

Methylglyoxal (MG) is a reactive metabolite derived from different physiological pathways. Its production can be harmful to cells via glycation reactions of lipids, DNA, and proteins. But, the effects of MG on mitochondrial functioning and bioenergetic responses are still elusive. Then, the effects of MG on key parameters of mitochondrial functionality were examined here. Isolated rat liver mitochondria were exposed to 0.1-10 mM of MG to determine its toxicity in the mitochondrial viability, membrane potential (Δψm), swelling and the superoxide (O2•-) production. Besides, mitochondrial oxidative phosphorylation parameters were analyzed by high-resolution respiratory (HRR) assay. In this set of experiments, routine state, PM state (pyruvate/malate), oxidative phosphorylation (OXPHOS), LEAK respiration, electron transport system (ETS) and oxygen residual (ROX) states were evaluated. HRR showed that PM state, OXPHOS CI-Linked, LEAK respiration, ETS CI/CII-Linked and ETS CII-Linked/ROX were significantly inhibited by MG exposure. MG also inhibited the complex II activity, and decreased Δψm and the viability of mitochondria. Taken together, our data indicates that MG is an inductor of mitochondrial dysfunctions and impairs important steps of respiratory chain, effects that can alter bioenergetics responses.


Assuntos
Inibidores Enzimáticos/toxicidade , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos Wistar
11.
PLoS Genet ; 17(12): e1009971, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965247

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal recessive genetic disorder characterized by poikiloderma, small stature, skeletal anomalies, sparse brows/lashes, cataracts, and predisposition to cancer. Type 2 RTS patients with biallelic RECQL4 pathogenic variants have multiple skeletal anomalies and a significantly increased incidence of osteosarcoma. Here, we generated RTS patient-derived induced pluripotent stem cells (iPSCs) to dissect the pathological signaling leading to RTS patient-associated osteosarcoma. RTS iPSC-derived osteoblasts showed defective osteogenic differentiation and gain of in vitro tumorigenic ability. Transcriptome analysis of RTS osteoblasts validated decreased bone morphogenesis while revealing aberrantly upregulated mitochondrial respiratory complex I gene expression. RTS osteoblast metabolic assays demonstrated elevated mitochondrial respiratory complex I function, increased oxidative phosphorylation (OXPHOS), and increased ATP production. Inhibition of mitochondrial respiratory complex I activity by IACS-010759 selectively suppressed cellular respiration and cell proliferation of RTS osteoblasts. Furthermore, systems analysis of IACS-010759-induced changes in RTS osteoblasts revealed that chemical inhibition of mitochondrial respiratory complex I impaired cell proliferation, induced senescence, and decreased MAPK signaling and cell cycle associated genes, but increased H19 and ribosomal protein genes. In summary, our study suggests that mitochondrial respiratory complex I is a potential therapeutic target for RTS-associated osteosarcoma and provides future insights for clinical treatment strategies.


Assuntos
Complexo I de Transporte de Elétrons/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , RecQ Helicases/genética , Síndrome de Rothmund-Thomson/genética , Trifosfato de Adenosina/biossíntese , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Senescência Celular/genética , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Mutação/genética , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , Osteossarcoma/complicações , Osteossarcoma/patologia , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piperidinas/farmacologia , Síndrome de Rothmund-Thomson/complicações , Síndrome de Rothmund-Thomson/patologia
12.
Sci Rep ; 11(1): 23549, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876614

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) has become an attractive target in anti-cancer studies in recent years. In this study, we found that a small molecule phenylbutenoid dimer NMac1 (Nm23-H1 activator 1), (±)-trans-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene, a previously identified anti-metastatic agent, has novel anti-proliferative effect only under glucose starvation in metastatic breast cancer cells. NMac1 causes significant activation of AMPK by decreasing ATP synthesis, lowers mitochondrial membrane potential (MMP, ΔΨm), and inhibits oxygen consumption rate (OCR) under glucose starvation. These effects of NMac1 are provoked by a consequence of OXPHOS complex I inhibition. Through the structure-activity relationship (SAR) study of NMac1 derivatives, NMac24 was identified as the most effective compound in anti-proliferation. NMac1 and NMac24 effectively suppress cancer cell proliferation in 3D-spheroid in vivo-like models only under glucose starvation. These results suggest that NMac1 and NMac24 have the potential as anti-cancer agents having cytotoxic effects selectively in glucose restricted cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cicloexenos/farmacologia , Nucleosídeo NM23 Difosfato Quinases/efeitos dos fármacos , Estirenos/farmacologia , Trifosfato de Adenosina/biossíntese , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cicloexenos/química , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Glucose/metabolismo , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Estirenos/química
13.
Angew Chem Int Ed Engl ; 60(52): 27277-27281, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612584

RESUMO

NADH:ubiquinone oxidoreductase, respiratory complex I, plays a central role in cellular energy metabolism. As a major source of reactive oxygen species (ROS) it affects ageing and mitochondrial dysfunction. The novel inhibitor NADH-OH specifically blocks NADH oxidation and ROS production by complex I in nanomolar concentrations. Attempts to elucidate its structure by NMR spectroscopy have failed. Here, by using X-ray crystallographic analysis, we report the structure of NADH-OH bound in the active site of a soluble fragment of complex I at 2.0 Šresolution. We have identified key amino acid residues that are specific and essential for binding NADH-OH. Furthermore, the structure sheds light on the specificity of NADH-OH towards the unique Rossmann-fold of complex I and indicates a regulatory role in mitochondrial ROS generation. In addition, NADH-OH acts as a lead-structure for the synthesis of a novel class of ROS suppressors.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , NAD/análogos & derivados , Aquifex/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , NAD/química , NAD/metabolismo , NAD/farmacologia , Ligação Proteica
14.
Aging (Albany NY) ; 13(19): 22629-22648, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607977

RESUMO

Green tea catechins are associated with a delay in aging. We have designed the current study to investigate the impact and to unveil the target of the most abundant green tea catechins, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). Experiments were performed in Caenorhabditis elegans to analyze cellular metabolism, ROS homeostasis, stress resistance, physical exercise capacity, health- and lifespan, and the underlying signaling pathways. Besides, we examined the impact of EGCG and ECG in isolated murine mitochondria. A concentration of 2.5 µM EGCG and ECG enhanced health- and lifespan as well as stress resistance in C. elegans. Catechins hampered mitochondrial respiration in C. elegans after 6-12 h and the activity of complex I in isolated rodent mitochondria. The impaired mitochondrial respiration was accompanied by a transient drop in ATP production and a temporary increase in ROS levels in C. elegans. After 24 h, mitochondrial respiration and ATP levels got restored, and ROS levels even dropped below control conditions. The lifespan increases induced by EGCG and ECG were dependent on AAK-2/AMPK and SIR-2.1/SIRT1, as well as on PMK-1/p38 MAPK, SKN-1/NRF2, and DAF-16/FOXO. Long-term effects included significantly diminished fat content and enhanced SOD and CAT activities, required for the positive impact of catechins on lifespan. In summary, complex I inhibition by EGCG and ECG induced a transient drop in cellular ATP levels and a temporary ROS burst, resulting in SKN-1 and DAF-16 activation. Through adaptative responses, catechins reduced fat content, enhanced ROS defense, and improved healthspan in the long term.


Assuntos
Catequina/análogos & derivados , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Longevidade/efeitos dos fármacos , Chá/química , Animais , Caenorhabditis elegans , Catequina/química , Catequina/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Fisiológico/efeitos dos fármacos
15.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623325

RESUMO

Mitochondrial electron transport chain complex I (ETCC1) is the essential core of cancer metabolism, yet potent ETCC1 inhibitors capable of safely suppressing tumor growth and metastasis in vivo are limited. From a plant extract screening, we identified petasin (PT) as a highly potent ETCC1 inhibitor with a chemical structure distinct from conventional inhibitors. PT had at least 1700 times higher activity than that of metformin or phenformin and induced cytotoxicity against a broad spectrum of tumor types. PT administration also induced prominent growth inhibition in multiple syngeneic and xenograft mouse models in vivo. Despite its higher potency, it showed no apparent toxicity toward nontumor cells and normal organs. Also, treatment with PT attenuated cellular motility and focal adhesion in vitro as well as lung metastasis in vivo. Metabolome and proteome analyses revealed that PT severely depleted the level of aspartate, disrupted tumor-associated metabolism of nucleotide synthesis and glycosylation, and downregulated major oncoproteins associated with proliferation and metastasis. These findings indicate the promising potential of PT as a potent ETCC1 inhibitor to target the metabolic vulnerability of tumor cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Sesquiterpenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metaboloma/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Neoplasias Experimentais/patologia , Petasites/química , Fenformin/farmacologia , Sesquiterpenos/química , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500765

RESUMO

Two series of novel amino acid Schiff base ligands containing heterocyclic moieties, such as quinazolinone 3-11 and indole 12-20 were successfully synthesized and confirmed by spectroscopic techniques and elemental analysis. Furthermore, all compounds were investigated in silico for their ability to inhibit mitochondrial NADH: ubiquinone oxidoreductase (complex I) by targeting the AMPK/mTOR signaling pathway and inhibiting hexokinase, a key glycolytic enzyme to prevent the Warburg effect in cancer cells. This inhibitory pathway may be an effective strategy to cause cancer cell death due to an insufficient amount of ATP. Our results revealed that, out of 18 compounds, two (11 and 20) were top-ranked as they exhibited the highest binding energies of -8.8, -13.0, -7.9, and -10.0 kcal/mol in the docking analysis, so they were then selected for in vitro assessment. Compound 11 promoted the best cytotoxic effect on MCF-7 with IC50 = 64.05 ± 0.14 µg/mL (0.135 mM) while compound 20 exhibited the best cytotoxic effect on MDA-231 with IC50 = 46.29 ± 0.09 µg/mL (0.166 mM) Compounds 11 and 20 showed significant activation of AMPK protein and oxidative stress, which led to elevated expression of p53 and Bax, reduced Bcl-2 expression, and caused cell cycle arrest at the sub-G0/G1 phase. Moreover, compounds 11 and 20 showed significant inhibition of the mTOR protein, which led to the activation of aerobic glycolysis for survival. This alternative pathway was also blocked as compounds 11 and 20 showed significant inhibitory effects on the hexokinase enzyme. These findings demonstrate that compounds 11 and 20 obeyed Lipinski's rule of five and could be used as privileged scaffolds for cancer therapy via their potential inhibition of mitochondrial complex I-associated hexokinase.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Aminoácidos/síntese química , Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Humanos , Mitocôndrias/metabolismo , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
17.
Pharmacol Res Perspect ; 9(5): e00854, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478236

RESUMO

Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/metabolismo , Proliferação de Células/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/metabolismo , Linfonodos/efeitos dos fármacos , Linfoma de Células B/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/genética , Animais , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Respiração Celular , Técnicas In Vitro , Neoplasias Pulmonares/patologia , Linfonodos/patologia , Linfoma de Células B/patologia , Camundongos , Mitocôndrias/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias
18.
Nat Commun ; 12(1): 3299, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083537

RESUMO

Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fenformin/farmacologia , Fator de Transcrição STAT1/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Feminino , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Humanos , Interferon gama/administração & dosagem , Interferon gama/deficiência , Interferon gama/metabolismo , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenformin/administração & dosagem , Poli I-C/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/agonistas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 11(1): 9854, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972583

RESUMO

We present the design and synthesis of a small library of substituted biguanidium salts and their capacity to inhibit the growth of pancreatic cancer cells. We first present their in vitro and membrane activity, before we address their mechanism of action in living cells and in vivo activity. We show that phenylethynyl biguanidium salts possess higher ability to cross hydrophobic barriers, improve mitochondrial accumulation and anticancer activity. Mechanistically, the most active compound, 1b, like metformin, activated AMPK, decreased the NAD+/NADH ratio and mitochondrial respiration, but at 800-fold lower concentration. In vivo studies show that compound 1b significantly inhibits the growth of pancreatic cancer xenografts in mice, while biguanides currently in clinical trials had little activity.


Assuntos
Biguanidas/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biguanidas/química , Biguanidas/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral/transplante , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos , Humanos , Concentração Inibidora 50 , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia
20.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947138

RESUMO

Ovarian clear cell carcinoma (OCCC) is a rare but chemorefractory tumor. About 50% of all OCCC patients have inactivating mutations of ARID1A, a member of the SWI/SNF chromatin-remodeling complex. Members of the SWI/SNF remodeling have emerged as regulators of the energetic metabolism of mammalian cells; however, the role of ARID1A as a modulator of the mitochondrial metabolism in OCCCs is yet to be defined. Here, we show that ARID1A loss results in increased mitochondrial metabolism and renders ARID1A-mutated cells increasingly and selectively dependent on it. The increase in mitochondrial activity following ARID1A loss is associated with increase in c-Myc expression and increased mitochondrial number and reduction of their size consistent with a higher mitochondrial cristae/outer membrane ratio. Significantly, preclinical testing of the complex I mitochondrial inhibitor IACS-010759 showed it extends overall survival in a preclinical model of ARID1A-mutated OCCC. These findings provide for the targeting mitochondrial activity in ARID1A-mutated OCCCs.


Assuntos
Adenocarcinoma de Células Claras/tratamento farmacológico , Antineoplásicos/uso terapêutico , Proteínas de Ligação a DNA/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Oxidiazóis/uso terapêutico , Piperidinas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Piperidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Esferoides Celulares , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA