Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nature ; 615(7954): 934-938, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949187

RESUMO

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.


Assuntos
Microscopia Crioeletrônica , Complexo III da Cadeia de Transporte de Elétrons , Complexo II de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Complexo I de Transporte de Elétrons , Mitocôndrias , Membranas Mitocondriais , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/ultraestrutura , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/ultraestrutura , Mitocôndrias/química , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/ultraestrutura , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/ultraestrutura , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Simulação de Dinâmica Molecular , Sítios de Ligação , Evolução Molecular
2.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34259807

RESUMO

Long-lived proteins (LLPs) have recently emerged as vital components of intracellular structures whose function is coupled to long-term stability. Mitochondria are multifaceted organelles, and their function hinges on efficient proteome renewal and replacement. Here, using metabolic stable isotope labeling of mice combined with mass spectrometry (MS)-based proteomic analysis, we demonstrate remarkable longevity for a subset of the mitochondrial proteome. We discovered that mitochondrial LLPs (mt-LLPs) can persist for months in tissues harboring long-lived cells, such as brain and heart. Our analysis revealed enrichment of mt-LLPs within the inner mitochondrial membrane, specifically in the cristae subcompartment, and demonstrates that the mitochondrial proteome is not turned over in bulk. Pioneering cross-linking experiments revealed that mt-LLPs are spatially restricted and copreserved within protein OXPHOS complexes, with limited subunit exchange throughout their lifetimes. This study provides an explanation for the exceptional mitochondrial protein lifetimes and supports the concept that LLPs provide key structural stability to multiple large and dynamic intracellular structures.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Miocárdio/enzimologia , Proteoma/metabolismo , Animais , Sítios de Ligação , Encéfalo/enzimologia , Ciclo do Ácido Cítrico/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Meia-Vida , Metabolismo dos Lipídeos/genética , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Modelos Moleculares , Especificidade de Órgãos , Fosforilação Oxidativa , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteoma/química , Proteoma/genética
3.
Metab Brain Dis ; 36(4): 581-588, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471299

RESUMO

Isolated defects in the mitochondrial respiratory chain complex II (CII; succinate-ubiquinone oxidoreductase) are extremely rare and mainly result from bi-allelic mutations in one of the nuclear encoded subunits: SDHA, SDHB and SDHD, which comprise CII and the assembly CII factor SDHAF1. We report an adolescent female who presented with global developmental delay, intellectual disability and childhood onset progressive bilateral optic atrophy. Whole exome sequencing of the patient and her unaffected parents identified the novel heterozygous de novo variant c.1984C > T [NM_004168.4] in the SDHA gene. Biochemical assessment of CII in the patient's derived fibroblasts and lymphocytes displayed considerably decreased CII residual activity compared with normal controls, when normalized to the integral mitochondrial enzyme citrate synthase. Protein modeling of the consequent p.Arg662Cys variant [NP-004159.2] suggested that this substitution will compromise the structural integrity of the FAD-binding protein at the C-terminus that will ultimately impair the FAD binding to SDHA, thus decreasing the entire CII activity. Our study emphasizes the role of certain heterozygous SDHA mutations in a distinct clinical phenotype dominated by optic atrophy and neurological impairment. This is the second mutation that has been reported to cause this phenotype. Furthermore, it adds developmental delay and cognitive disability to the expanding spectrum of the disorder. We propose to add SDHA to next generation sequencing gene panels of optic atrophy.


Assuntos
Disfunção Cognitiva/genética , Complexo II de Transporte de Elétrons/genética , Variação Genética/genética , Heterozigoto , Atrofia Óptica/genética , Adolescente , Sequência de Aminoácidos , Disfunção Cognitiva/complicações , Disfunção Cognitiva/diagnóstico por imagem , Complexo II de Transporte de Elétrons/química , Feminino , Humanos , Atrofia Óptica/complicações , Atrofia Óptica/diagnóstico por imagem , Estrutura Secundária de Proteína
4.
Proc Natl Acad Sci U S A ; 117(38): 23548-23556, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32887801

RESUMO

Mitochondrial complex II, also known as succinate dehydrogenase (SDH), is an integral-membrane heterotetramer (SDHABCD) that links two essential energy-producing processes, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. A significant amount of information is available on the structure and function of mature complex II from a range of organisms. However, there is a gap in our understanding of how the enzyme assembles into a functional complex, and disease-associated complex II insufficiency may result from incorrect function of the mature enzyme or from assembly defects. Here, we investigate the assembly of human complex II by combining a biochemical reconstructionist approach with structural studies. We report an X-ray structure of human SDHA and its dedicated assembly factor SDHAF2. Importantly, we also identify a small molecule dicarboxylate that acts as an essential cofactor in this process and works in synergy with SDHAF2 to properly orient the flavin and capping domains of SDHA. This reorganizes the active site, which is located at the interface of these domains, and adjusts the pKa of SDHAR451 so that covalent attachment of the flavin adenine dinucleotide (FAD) cofactor is supported. We analyze the impact of disease-associated SDHA mutations on assembly and identify four distinct conformational forms of the complex II flavoprotein that we assign to roles in assembly and catalysis.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Complexo II de Transporte de Elétrons , Flavinas/metabolismo , Proteínas Mitocondriais , Ácidos Dicarboxílicos/química , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Flavinas/química , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dobramento de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Cell Commun Signal ; 17(1): 128, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619261

RESUMO

BACKGROUND: Linoleic acid is the major fatty acid moiety of cardiolipin, which is central to the assembly of components involved in mitochondrial oxidative phosphorylation (OXPHOS). Although linoleic acid is an essential nutrient, its excess intake is harmful to health. On the other hand, linoleic acid has been shown to prevent the reduction in cardiolipin content and to improve mitochondrial function in aged rats with spontaneous hypertensive heart failure (HF). In this study, we found that lower dietary intake of linoleic acid in HF patients statistically correlates with greater severity of HF, and we investigated the mechanisms therein involved. METHODS: HF patients, who were classified as New York Heart Association (NYHA) functional class I (n = 45), II (n = 93), and III (n = 15), were analyzed regarding their dietary intakes of different fatty acids during the one month prior to the study. Then, using a mouse model of HF, we confirmed reduced cardiolipin levels in their cardiac myocytes, and then analyzed the mechanisms by which dietary supplementation of linoleic acid improves cardiac malfunction of mitochondria. RESULTS: The dietary intake of linoleic acid was significantly lower in NYHA III patients, as compared to NYHA II patients. In HF model mice, both CI-based and CII-based OXPHOS activities were affected together with reduced cardiolipin levels. Silencing of CRLS1, which encodes cardiolipin synthetase, in cultured cardiomyocytes phenocopied these events. Feeding HF mice with linoleic acid improved both CI-based and CII-based respiration as well as left ventricular function, together with an increase in cardiolipin levels. However, although assembly of the respirasome (i.e., CI/CIII2/CIV complex), as well as assembly of CII subunits and the CIII2/CIV complex statistically correlated with cardiolipin levels in cultured cardiomyocytes, respirasome assembly was not notably restored by dietary linoleic acid in HF mice. Therefore, although linoleic acid may significantly improve both CI-based and CII-based respiration of cardiomyocytes, respirasomes impaired by HF were not easily repaired by the dietary intake of linoleic acid. CONCLUSIONS: Dietary supplement of linoleic acid is beneficial for improving cardiac malfunction in HF, but is unable to completely cure HF.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/metabolismo , Ácido Linoleico/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Idoso , Animais , Cardiolipinas/metabolismo , Complexo II de Transporte de Elétrons/química , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Ácido Linoleico/metabolismo , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Subunidades Proteicas/metabolismo
6.
Curr Opin Struct Biol ; 59: 38-46, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30851631

RESUMO

Respiratory complexes are complicated multi-subunit cofactor-containing machines that allow cells to harvest energy from the environment. Maturation of these complexes requires protein folding, cofactor insertion, and assembly of multiple subunits into a final, functional complex. Because the intermediate states in complex maturation are transitory, these processes are poorly understood. This review gives an overview of the process of maturation in respiratory complex II with a focus on recent structural studies on intermediates formed during covalent flavinylation of the catalytic subunit, SDHA. Covalent flavinylation has an evolutionary significance because variants of complex II enzymes with the covalent ligand removed by mutagenesis cannot oxidize succinate, but can still perform the reverse reaction and reduce fumarate. Since succinate oxidation is a key step of aerobic respiration, the covalent bond of complex II appears to be important for aerobic life.


Assuntos
Respiração Celular , Complexo II de Transporte de Elétrons/metabolismo , Flavoproteínas/metabolismo , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Flavina-Adenina Dinucleotídeo/biossíntese , Flavoproteínas/química , Humanos , Ligação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade
7.
J Biol Chem ; 293(20): 7754-7765, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29610278

RESUMO

Complex II (SdhABCD) is a membrane-bound component of mitochondrial and bacterial electron transport chains, as well as of the TCA cycle. In this capacity, it catalyzes the reversible oxidation of succinate. SdhABCD contains the SDHA protein harboring a covalently bound FAD redox center and the iron-sulfur protein SDHB, containing three distinct iron-sulfur centers. When assembly of this complex is compromised, the flavoprotein SDHA may accumulate in the mitochondrial matrix or bacterial cytoplasm. Whether the unassembled SDHA has any catalytic activity, for example in succinate oxidation, fumarate reduction, reactive oxygen species (ROS) generation, or other off-pathway reactions, is not known. Therefore, here we investigated whether unassembled Escherichia coli SdhA flavoprotein, its homolog fumarate reductase (FrdA), and the human SDHA protein have succinate oxidase or fumarate reductase activity and can produce ROS. Using recombinant expression in E. coli, we found that the free flavoproteins from these divergent biological sources have inherently low catalytic activity and generate little ROS. These results suggest that the iron-sulfur protein SDHB in complex II is necessary for robust catalytic activity. Our findings are consistent with those reported for single-subunit flavoprotein homologs that are not associated with iron-sulfur or heme partner proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Escherichia coli/enzimologia , Flavoproteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/química , Catálise , Cristalografia por Raios X , Complexo II de Transporte de Elétrons/química , Flavoproteínas/química , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Subunidades Proteicas
8.
Chemistry ; 24(20): 5246-5252, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29124817

RESUMO

A covalently bound flavin cofactor is predominant in the succinate-ubiquinone oxidoreductase (SQR; Complex II), an essential component of aerobic electron transport, and in the menaquinol-fumarate oxidoreductase (QFR), the anaerobic counterpart, although it is only present in approximately 10 % of the known flavoenzymes. This work investigates the role of this 8α-N3-histidyl linkage between the flavin adenine dinucleotide (FAD) cofactor and the respiratory Complex II. After parameterization with DFT calculations, classical molecular-dynamics simulations and quantum-mechanics calculations for Complex II:FAD and Complex II:FADH2 , with and without the covalent bond, were performed. It was observed that the covalent bond is essential for the active-center arrangement of the FADH2 /FAD cofactor. Removal of this bond causes a displacement of the isoalloxazine group, which influences interactions with the protein, flavin solvation, and possible proton-transfer pathways. Specifically, for the noncovalently bound FADH2 cofactor, the N1 atom moves away from the His-A365 and His-A254 residues and the N5 atom moves away from the glutamine-62A residue. Both of the histidine and glutamine residues interact with a chain of water molecules that cross the enzyme, which is most likely involved in proton transfer. Breaking this chain of water molecules could thereby compromise proton transfer across the two active sites of Complex II.


Assuntos
Complexo II de Transporte de Elétrons/química , Flavina-Adenina Dinucleotídeo/química , Modelos Moleculares , Sequência de Aminoácidos , Sítios de Ligação , Transporte de Elétrons , Flavinas/química , Glutamina/química , Histidina/química , Oxirredução , Ligação Proteica , Conformação Proteica , Prótons
9.
Cell ; 170(6): 1247-1257.e12, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844695

RESUMO

The respiratory megacomplex represents the highest-order assembly of respiratory chain complexes, and it allows mitochondria to respond to energy-requiring conditions. To understand its architecture, we examined the human respiratory chain megacomplex-I2III2IV2 (MCI2III2IV2) with 140 subunits and a subset of associated cofactors using cryo-electron microscopy. The MCI2III2IV2 forms a circular structure with the dimeric CIII located in the center, where it is surrounded by two copies each of CI and CIV. Two cytochrome c (Cyt.c) molecules are positioned to accept electrons on the surface of the c1 state CIII dimer. Analyses indicate that CII could insert into the gaps between CI and CIV to form a closed ring, which we termed the electron transport chain supercomplex. The structure not only reveals the precise assignment of individual subunits of human CI and CIII, but also enables future in-depth analysis of the electron transport chain as a whole.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexos Multienzimáticos/química , Microscopia Crioeletrônica , Complexo de Proteínas da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/isolamento & purificação , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo
10.
Clin Cancer Res ; 23(21): 6733-6743, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724664

RESUMO

Purpose: Patients who inherit a pathogenic loss-of-function genetic variant involving one of the four succinate dehydrogenase (SDH) subunit genes have up to an 86% chance of developing one or more cancers by the age of 50. If tumors are identified and removed early in these high-risk patients, they have a higher potential for cure. Unfortunately, many alterations identified in these genes are variants of unknown significance (VUS), confounding the identification of high-risk patients. If we could identify misclassified SDH VUS as benign or pathogenic SDH mutations, we could better select patients for cancer screening procedures and remove tumors at earlier stages.Experimental Design: In this study, we combine data from clinical observations, a functional yeast model, and a computational model to determine the pathogenicity of 22 SDHA VUS. We gathered SDHA VUS from two primary sources: The OHSU Knight Diagnostics Laboratory and the literature. We used a yeast model to identify the functional effect of a VUS on mitochondrial function with a variety of biochemical assays. The computational model was used to visualize variants' effect on protein structure.Results: We were able to draw conclusions on functional effects of variants using our three-prong approach to understanding VUS. We determined that 16 (73%) of the alterations are actually pathogenic, causing loss of SDH function, and six (27%) have no effect upon SDH function.Conclusions: We thus report the reclassification of the majority of the VUS tested as pathogenic, and highlight the need for more thorough functional assessment of inherited SDH variants. Clin Cancer Res; 23(21); 6733-43. ©2017 AACR.


Assuntos
Complexo II de Transporte de Elétrons/genética , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética , Detecção Precoce de Câncer , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/enzimologia , Neoplasias/patologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo
11.
Anal Chem ; 89(12): 6840-6845, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28504877

RESUMO

Mitochondrial morphology regulated by fusion and fission processes determines mitochondrial function and cell fate. Some studies showed hyperfused mitochondria could induce apoptosis in cancer cells, but the relevant molecular mechanisms remain elusive. Superoxide (O2•-) and pH play vital roles in mitochondrial dysfunction and apoptosis. Therefore, it is worthwhile to explore if there is an intimate relationship between mitochondrial hyperfusion and simultaneous changes in O2•- and pH levels, which will be helpful to uncover relevant detailed mechanism. For this purpose, we have developed a new reversible two-photon fluorescent probe (CFT) to simultaneously monitor O2•- and pH in 4T1 cells and mice using dual-color imaging. With the assistance of probe, we found that inhibition of Dynamin-related protein 1 (Drp1) could transduce a signal through mitochondrial complexes I and II to enhance the O2•- and pH levels and eventually induced mitohyperfusion and apoptosis in breast cancer cells. Together, these data indicate that CFT provides a robust tool for unveiling the roles of O2•- and pH in signals associated with mitochondrial dysfunction in cells and in vivo.


Assuntos
Apoptose , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Feminino , Glutationa/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Dinâmica Mitocondrial , Superóxidos/química , Imagem com Lapso de Tempo , Transplante Heterólogo
12.
J Biol Chem ; 292(24): 9896-9905, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28450394

RESUMO

Succinate-driven reverse electron transport (RET) through complex I is hypothesized to be a major source of reactive oxygen species (ROS) that induces permeability transition pore (PTP) opening and damages the heart during ischemia/reperfusion. Because RET can only generate ROS when mitochondria are fully polarized, this mechanism is self-limiting once PTP opens during reperfusion. In the accompanying article (Korge, P., Calmettes, G., John, S. A., and Weiss, J. N. (2017) J. Biol. Chem. 292, 9882-9895), we showed that ROS production after PTP opening can be sustained when complex III is damaged (simulated by antimycin). Here we show that complex II can also contribute to sustained ROS production in isolated rabbit cardiac mitochondria following inner membrane pore formation induced by either alamethicin or calcium-induced PTP opening. Two conditions are required to maximize malonate-sensitive ROS production by complex II in isolated mitochondria: (a) complex II inhibition by atpenin A5 or complex III inhibition by stigmatellin that results in succinate-dependent reduction of the dicarboxylate-binding site of complex II (site IIf); (b) pore opening in the inner membrane resulting in rapid efflux of succinate/fumarate and other dicarboxylates capable of competitively binding to site IIf The decrease in matrix [dicarboxylate] allows O2 access to reduced site IIf, thereby making electron donation to O2 possible, explaining the rapid increase in ROS production provided that site IIf is reduced. Because ischemia is known to inhibit complexes II and III and increase matrix succinate/fumarate levels, we hypothesize that by allowing dicarboxylate efflux from the matrix, PTP opening during reperfusion may activate sustained ROS production by this mechanism after RET-driven ROS production has ceased.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Modelos Moleculares , Espécies Reativas de Oxigênio/agonistas , Alameticina/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/química , Inibidores Enzimáticos/farmacologia , Fumaratos/metabolismo , Ionóforos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/química , Mitocôndrias Cardíacas/efeitos dos fármacos , Oxirredução , Permeabilidade/efeitos dos fármacos , Polienos/farmacologia , Porosidade , Piridonas/farmacologia , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo
13.
J Agric Food Chem ; 65(5): 1021-1029, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28110534

RESUMO

A series of diphenyl ether-containing pyrazole-carboxamide derivatives was designed and synthesized as new succinate ubiquinone oxidoreductase (SQR) inhibitors. This highly potent molecular scaffold was developed from a moderately activie hit 3, obtained from our previous pharmacophore-linked fragment virtual screening (PFVS) method. The results of greenhouse tests indicated that some analogues showed good SQR inhibitory activity, with promising fungicidal activity against Rhizoctonia solani and Sphaerotheca fuliginea at a dosage of 200 mg/L. Most surprisingly, compound 62 showed the highest SQR inhibitory activity with a Ki value of 0.081 µM, about 4-fold more potent than penthiopyrad (Ki = 0.307 µM). In addition, compounds 43 and 62 displayed excellent fungicidal activity even at a dosage as low as 6.25 mg/L, which was superior to thifluzamide. Moreover, compound 62 exhibited excellent protection effect against R. solani and provided about 81.2% protective control efficancy after 21 days with two sprayings. The present work indicated that these two compounds could be used as potential agricultural fungicides targeting SQR.


Assuntos
Ascomicetos/enzimologia , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inibidores , Fungicidas Industriais/química , Rhizoctonia/enzimologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Cinética , Pirazóis/química , Pirazóis/farmacologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/genética , Relação Estrutura-Atividade
14.
J Agric Food Chem ; 64(24): 4830-7, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27225833

RESUMO

Succinate-ubiquinone oxidoreductase (SQR) is an attractive target for fungicide discovery. Herein, we report the discovery of novel SQR inhibitors using a pharmacophore-linked fragment virtual screening approach, a new drug design method developed in our laboratory. Among newly designed compounds, compound 9s was identified as the most potent inhibitor with a Ki value of 34 nM against porcine SQR, displaying approximately 10-fold higher potency than that of the commercial control penthiopyrad. Further inhibitory kinetics studies revealed that compound 9s is a noncompetitive inhibitor with respect to the substrate cytochrome c and DCIP. Interestingly, compounds 8a, 9h, 9j, and 9k exhibited good in vivo preventive effects against Rhizoctonia solani. The results obtained from molecular modeling showed that the orientation of the R(2) group had a significant effect on binding with the protein.


Assuntos
Complexo II de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/química , Descoberta de Drogas , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Fungos/efeitos dos fármacos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Cinética , Modelos Moleculares , Ácido Succínico
15.
Cell Death Dis ; 6: e1749, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950479

RESUMO

Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.


Assuntos
Complexo II de Transporte de Elétrons/fisiologia , Ubiquinona/genética , Ubiquinona/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Morte Celular/fisiologia , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Ubiquinona/química
16.
Elife ; 42015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25918844

RESUMO

The conserved MICOS complex functions as a primary determinant of mitochondrial inner membrane structure. We address the organization and functional roles of MICOS and identify two independent MICOS subcomplexes: Mic27/Mic10/Mic12, whose assembly is dependent on respiratory complexes and the mitochondrial lipid cardiolipin, and Mic60/Mic19, which assembles independent of these factors. Our data suggest that MICOS subcomplexes independently localize to cristae junctions and are connected via Mic19, which functions to regulate subcomplex distribution, and thus, potentially also cristae junction copy number. MICOS subunits have non-redundant functions as the absence of both MICOS subcomplexes results in more severe morphological and respiratory growth defects than deletion of single MICOS subunits or subcomplexes. Mitochondrial defects resulting from MICOS loss are caused by misdistribution of respiratory complexes in the inner membrane. Together, our data are consistent with a model where MICOS, mitochondrial lipids and respiratory complexes coordinately build a functional and correctly shaped mitochondrial inner membrane.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Membrana/química , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/química , Saccharomyces cerevisiae/ultraestrutura , Cardiolipinas/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/genética , Complexo II de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Eur J Med Chem ; 95: 424-34, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25841198

RESUMO

Succinate-ubiquinone oxidoreductase (SQR, EC 1.3.5.1, complex II), an essential component of cellular respiratory chain and tricarboxylic acid (or Krebs) cycle, has been identified as one of the most significant targets for pharmaceutical and agrochemical. Herein, with the aim of discovery of new antibacterial lead structure, a series of N-benzoxazol-5-yl-pyrazole-4-carboxamides were designed, synthesized, and evaluated for their SQR inhibitory effects. Very promisingly, one candidate (Ki = 11 nM, porcine SQR) was successfully identified as the most potent synthetic SQR inhibitor so far. The further inhibitory kinetics studies revealed that the candidate is non-competitive with respect to the substrate cytochrome c and DCIP. Computational simulations revealed that the titled compounds have formed hydrogen bond with D_Y91 and B_W173 and the pyrazole ring formed cation-π interaction with C_R46. In addition, in R(1) position, -CHF2 group has increased the binding affinity and decreased the entropy contribution, while -CF3 group displayed completely opposite effect when bound with SQR. The results of the present work showed that N-benzoxazol-5-yl-pyrazole-4-carboxamide is a new scaffold for discovery of SQR inhibitors and worth further study.


Assuntos
Descoberta de Drogas , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Pirazóis/química , Pirazóis/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Pirazóis/metabolismo , Termodinâmica
18.
Appl Microbiol Biotechnol ; 99(5): 2155-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25193421

RESUMO

In previous studies, 30Kc19, a lipoprotein in silkworm hemolymph, enhanced productivity and glycosylation by expression of a 30Kc19 gene or supplementation with a recombinant 30Kc19 protein. Additionally, 30Kc19 exhibited enzyme-stabilizing and cell-penetrating abilities in vitro. In this study, we hypothesized that supplemented 30Kc19 penetrated into the cell and enhanced the stability of the cellular enzyme. We investigated this using in vitro and cellular assessments. The activity of sialyltransferase (ST) and isolated mitochondrial complex I/III was enhanced with 30Kc19 in dose-dependent manner while initial reaction rate was unchanged, suggesting that 30Kc19 enhanced enzyme stability rather than specific activity. For intracellular enzyme activity assessment, ST activity inside erythropoietin (EPO)-producing Chinese hamster ovary (CHO) cells increased more than 25 % and mitochondrial complex II activity in HeLa cells increased more than 50 % with 30Kc19. The increase in intracellular ST activity resulted in an increase in sialic acid content of glycoproteins produced in CHO cells supplemented with 30Kc19. Similarly, enhanced mitochondrial complex activity increased mitochondrial membrane potential and ATP production in HeLa cells with 30Kc19 by over 50 %. Because 30Kc19 stabilized intracellular enzymes for glycosylation and enhanced protein productivity with supplementation in the culture medium, we expect that 30Kc19 can be a valuable tool for effective industrial recombinant protein production.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Lipoproteínas/metabolismo , Mitocôndrias/enzimologia , Sialiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bombyx , Células CHO , Cricetulus , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo II de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Estabilidade Enzimática , Células HeLa , Humanos
19.
FASEB J ; 29(1): 346-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351989

RESUMO

Melanogenesis is a highly conserved process of cytophotoprotection from UV radiation present in many species. Although both mitochondrial function and UV radiation insults are well-documented promoters of increased cellular stress, their individual molecular relationships with skin pigmentation have not been clearly resolved. This study provides evidence for a direct relationship between cellular melanin content, superoxide flux, and mitochondrial function at complex II. Direct and significant correlation between increased pigmentation and complex II turnover was observed in genetically different melanoma cell lines of varied basal pigmentation states (P < 0.01). The same trend was also observed when comparing genetically identical cell cultures with increasing levels of induced pigmentation (P < 0.005). The observation of increased steady-state levels of the catalytic complex II succinate dehydrogenase subunit A alongside hyperpigmentation suggested coregulation of activity and pigment production (P < 0.01). The study also presents novel evidence for a relationship between hyperpigmentation and increased superoxide-generating capacity at complex II. By amperometrically monitoring superoxide flux from differently pigmented FM55 melanocytes and their isolated mitochondria, a dynamic and responsive relationship between pigmentation, complex II function, and intracellular superoxide generation was observed (P < 0.005). The data support hyperpigmentation as a protective antioxidant mechanism in response to complex II-mediated reactive oxygen species generation.


Assuntos
Complexo II de Transporte de Elétrons/metabolismo , Hiperpigmentação/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/química , Humanos , Melaninas/metabolismo , Melanócitos/metabolismo , Mitocôndrias/metabolismo , Nitrocompostos/farmacologia , Propionatos/farmacologia , Subunidades Proteicas , Pigmentação da Pele/fisiologia , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Superóxidos/metabolismo , Tenoiltrifluoracetona/farmacologia
20.
Eur J Hum Genet ; 23(2): 202-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24781757

RESUMO

Defects in complex II of the mitochondrial respiratory chain are a rare cause of mitochondrial disorders. Underlying autosomal-recessive genetic defects are found in most of the 'SDHx' genes encoding complex II (SDHA, SDHB, SDHC, and SDHD) and its assembly factors. Interestingly, SDHx genes also function as tumor suppressor genes in hereditary paragangliomas, pheochromocytomas, and gastrointestinal stromal tumors. In these cases, the affected patients are carrier of a heterozygeous SDHx germline mutation. Until now, mutations in SDHx associated with mitochondrial disease have not been reported in association with hereditary tumors and vice versa. Here, we characterize four patients with isolated complex II deficiency caused by mutations in SDHA presenting with multisystem mitochondrial disease including Leigh syndrome (LS) and/or leukodystrophy. Molecular genetic analysis revealed three novel mutations in SDHA. Two mutations (c.64-2A>G and c.1065-3C>A) affect mRNA splicing and result in loss of protein expression. These are the first mutations described affecting SDHA splicing. For the third new mutation, c.565T>G, we show that it severely affects enzyme activity. Its pathogenicity was confirmed by lentiviral complementation experiments on the fibroblasts of patients carrying this mutation. It is of special interest that one of our LS patients harbored the c.91C>T (p.Arg31*) mutation that was previously only reported in association with paragangliomas and pheochromocytomas, tightening the gap between these two rare disorders. As tumor screening is recommended for SDHx mutation carriers, this should also be considered for patients with mitochondrial disorders and their family members.


Assuntos
Complexo II de Transporte de Elétrons/genética , Doença de Leigh/genética , Leucoencefalopatias/genética , Neoplasias/genética , Sequência de Aminoácidos , Células Cultivadas , Criança , Pré-Escolar , Complexo II de Transporte de Elétrons/química , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/diagnóstico , Leucoencefalopatias/diagnóstico , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA