Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Elife ; 122024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994733

RESUMO

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ATPases Vacuolares Próton-Translocadoras , Caenorhabditis elegans/genética , Animais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Divisão Celular Assimétrica , Apoptose , Epigênese Genética , Nucleossomos/metabolismo
2.
EMBO J ; 43(12): 2453-2485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719994

RESUMO

Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Cromatina/metabolismo , Cromatina/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , RNA/metabolismo , RNA/genética , Dano ao DNA , DNA/metabolismo , DNA/genética , Animais , Humanos , Transcrição Gênica , Reparo do DNA , Camundongos
3.
Genes (Basel) ; 15(5)2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790189

RESUMO

BACKGROUND: Cervical cancer is among the highest-ranking types of cancer worldwide, with human papillomavirus (HPV) as the agent driving the malignant process. One aspect of the infection's evolution is given by epigenetic modifications, mainly DNA methylation and chromatin alteration. These processes are guided by several chromatin remodeling complexes, including NuRD. The purpose of this study was to evaluate the genome-wide binding patterns of the NuRD complex components (MBD2 and MBD3) in the presence of active HPV16 E6 and E7 oncogenes and to determine the potential of identified genes through an experimental model to differentiate between cervical precursor lesions, with the aim of establishing their utility as biomarkers. METHODS: The experimental model was built using the CaSki cell line and shRNA for E6 and E7 HPV16 silencing, ChIP-seq, qRT-PCR, and Western blot analyses. Selected genes' expression was also assessed in patients. RESULTS: Several genes have been identified to exhibit altered transcriptional activity due to the influence of HPV16 E6/E7 viral oncogenes acting through the MBD2/MBD3 NuRD complex, linking them to viral infection and cervical oncogenesis. CONCLUSIONS: The impacted genes primarily play roles in governing gene transcription, mRNA processing, and regulation of translation. Understanding these mechanisms offers valuable insights into the process of HPV-induced oncogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA , Papillomavirus Humano 16 , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
4.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649186

RESUMO

Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.


Assuntos
Diferenciação Celular , Epiderme , Histona Desacetilases , Queratinócitos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , RNA Longo não Codificante , Proteínas Repressoras , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Queratinócitos/metabolismo , Queratinócitos/citologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Epiderme/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Proteína 3 de Resposta de Crescimento Precoce/genética , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética , Células Epidérmicas/metabolismo , Células Epidérmicas/citologia , Cromatina/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Células Cultivadas
5.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619323

RESUMO

Regulation of chromatin states is essential for proper temporal and spatial gene expression. Chromatin states are modulated by remodeling complexes composed of components that have enzymatic activities. CHD4 is the catalytic core of the nucleosome remodeling and deacetylase (NuRD) complex, which represses gene transcription. However, it remains to be determined how CHD4, a ubiquitous enzyme that remodels chromatin structure, functions in cardiomyocytes to maintain heart development. In particular, whether other proteins besides the NuRD components interact with CHD4 in the heart is controversial. Using quantitative proteomics, we identified that CHD4 interacts with SMYD1, a striated muscle-restricted histone methyltransferase that is essential for cardiomyocyte differentiation and cardiac morphogenesis. Comprehensive transcriptomic and chromatin accessibility studies of Smyd1 and Chd4 null embryonic mouse hearts revealed that SMYD1 and CHD4 repress a group of common genes and pathways involved in glycolysis, response to hypoxia, and angiogenesis. Our study reveals a mechanism by which CHD4 functions during heart development, and a previously uncharacterized mechanism regarding how SMYD1 represses cardiac transcription in the developing heart.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Coração , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos , Fatores de Transcrição , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Cromatina/metabolismo , Glicólise/genética , Coração/embriologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos Knockout , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteômica , Transcrição Gênica
6.
Nucleic Acids Res ; 52(12): 6811-6829, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676947

RESUMO

Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.


Assuntos
Neoplasias da Mama , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteína-Arginina N-Metiltransferases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Ciclo Celular/genética , Camundongos , Metilação , Arginina/metabolismo , Carcinogênese/genética , Ativação Transcricional
7.
Biochem Biophys Res Commun ; 701: 149555, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325179

RESUMO

Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of ß-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2ß2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six ß-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.


Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Regulação da Expressão Gênica , Anemia Falciforme/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo
8.
Nucleic Acids Res ; 52(7): 3607-3622, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281186

RESUMO

Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.


Assuntos
Cromatina , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Feminino , Humanos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Reprogramação Celular/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Nucleossomos/metabolismo , Nucleossomos/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
9.
Cancer Res ; 84(2): 241-257, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37963210

RESUMO

Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE: CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Sarcoma de Ewing , Humanos , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/genética , DNA , Regulação Neoplásica da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
10.
Mol Biol Cell ; 35(1): ar13, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938928

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is essential for gene expression and cell fate determination, and missense mutations of NuRD caused neurodevelopmental diseases. However, the molecular pathogenesis of clinic NuRD variants is unknown. Here, we introduced a clinic CHD3 (L915F) variant into Caenorhabditis elegans homologue LET-418, impairing germline and vulva development and ultimately causing animal sterility. Our ATAC-seq and RNA-seq analyses revealed that this variant generated an abnormal open chromatin structure and disrupted the expression of developmental genes. Through genetic suppressor screens, we uncovered that intragenic mutations, likely renovating NuRD activity, restored animal viability. We also found that intergenic mutations in nucleosome remodeling factor NURF that counteracts NuRD rescued abnormal chromatin structure, gene expression, and animal sterility. We propose that two antagonistic chromatin-remodeling factors coordinate to establish the proper chromatin status and transcriptome and that inhibiting NURF may provide insights for treatment of NuRD mutation-related diseases.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Feminino , Nucleossomos , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Drosophila/metabolismo , Caenorhabditis elegans/metabolismo
11.
Am J Med Genet A ; 194(4): e63503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116750

RESUMO

CHD3 heterozygous variants are associated with Snijders Blok-Campeau syndrome (SBCS) which consists of intellectual disability (ID), macrocephaly, and dysmorphic facies. Most reported variants are missense or loss of function clustered within the ATPase/helicase domain of the protein. We report a severe neurocognitive phenotype caused by biallelic CHD3 variants in two siblings, each inherited from a mildly affected parent. Male and female siblings were referred to the Genetics Clinic due to severe ID and profound dysmorphism. The parents are first cousins of Iranian descent with borderline intellectual abilities. Exome sequencing was performed for the affected female and her parents. A single homozygous candidate variant in the CHD3 gene was detected in the proband: c.5384_5389dup. p.Arg1796_Phe1797insTrpArg, resulting in an in-frame insertion of 2 amino acids located outside the ATPase/helicase domain at the C-terminal region of CHD3-encoding residues. This variant is classified as likely pathogenic according to ACMG guidelines. The variant was detected in a heterozygous state in each parent. Both affected siblings were homozygous, while their unaffected brother did not carry the variant. Biallelic CHD3 variants cause a severe neurodevelopmental syndrome that is distinguishable from SBCS. We assume that the variant type (in-frame insertion) and location may enable CHD3 biallelic variants.


Assuntos
Deficiências do Desenvolvimento , Fácies , Hipertelorismo , Deficiência Intelectual , Irmãos , Humanos , Masculino , Feminino , Irã (Geográfico) , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , DNA Helicases/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética
12.
Biol Open ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149716

RESUMO

As cells exit the pluripotent state and begin to commit to a specific lineage they must activate genes appropriate for that lineage while silencing genes associated with pluripotency and preventing activation of lineage-inappropriate genes. The Nucleosome Remodelling and Deacetylation (NuRD) complex is essential for pluripotent cells to successfully undergo lineage commitment. NuRD controls nucleosome density at regulatory sequences to facilitate transcriptional responses, and also has been shown to prevent unscheduled transcription (transcriptional noise) in undifferentiated pluripotent cells. How these activities combine to ensure cells engage a gene expression program suitable for successful lineage commitment has not been determined. Here, we show that NuRD is not required to silence all genes. Rather, it restricts expression of genes primed for activation upon exit from the pluripotent state, but maintains them in a transcriptionally permissive state in self-renewing conditions, which facilitates their subsequent activation upon exit from naïve pluripotency. We further show that NuRD coordinates gene expression changes, which acts to maintain a barrier between different stable states. Thus NuRD-mediated chromatin remodelling serves multiple functions, including reducing transcriptional noise, priming genes for activation and coordinating the transcriptional response to facilitate lineage commitment.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos , Diferenciação Celular/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética
13.
Cell Rep ; 42(11): 113322, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37883227

RESUMO

Fibrosis, characterized by sustained activation of myofibroblasts and excessive extracellular matrix (ECM) deposition, is known to be associated with chronic inflammation. Receptor-interacting protein kinase 3 (RIPK3), the central kinase of necroptosis signaling, is upregulated in fibrosis and contributes to tumor necrosis factor (TNF)-mediated inflammation. In bile-duct-ligation-induced liver fibrosis, we found that myofibroblasts are the major cell type expressing RIPK3. Genetic ablation of ß1 integrin, the major profibrotic ECM receptor in fibroblasts, not only abolished ECM fibrillogenesis but also blunted RIPK3 expression via a mechanism mediated by the chromatin-remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4). While the function of CHD4 has been conventionally linked to the nucleosome-remodeling deacetylase (NuRD) and CHD4-ADNP-HP1(ChAHP) complexes, we found that CHD4 potently repressed a set of genes, including Ripk3, with high locus specificity but independent of either the NuRD or the ChAHP complex. Thus, our data uncover that ß1 integrin intrinsically links fibrotic signaling to RIPK3-driven inflammation via a novel mode of action of CHD4.


Assuntos
Integrina beta1 , Necroptose , Humanos , Integrina beta1/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Fatores de Transcrição/genética , Nucleossomos , Fibrose , Inflamação
14.
EMBO J ; 42(21): e113448, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37737560

RESUMO

The nucleosome remodeling and histone deacetylase (NuRD) complex physically associates with BCL11B to regulate murine T-cell development. However, the function of NuRD complex in mature T cells remains unclear. Here, we characterize the fate and metabolism of human T cells in which key subunits of the NuRD complex or BCL11B are ablated. BCL11B and the NuRD complex bind to each other and repress natural killer (NK)-cell fate in T cells. In addition, T cells upregulate the NK cell-associated receptors and transcription factors, lyse NK-cell targets, and are reprogrammed into NK-like cells (ITNKs) upon deletion of MTA2, MBD2, CHD4, or BCL11B. ITNKs increase OPA1 expression and exhibit characteristically elongated mitochondria with augmented oxidative phosphorylation (OXPHOS) activity. OPA1-mediated elevated OXPHOS enhances cellular acetyl-CoA levels, thereby promoting the reprogramming efficiency and antitumor effects of ITNKs via regulating H3K27 acetylation at specific targets. In conclusion, our findings demonstrate that the NuRD complex and BCL11B cooperatively maintain T-cell fate directly by repressing NK cell-associated transcription and indirectly through a metabolic-epigenetic axis, providing strategies to improve the reprogramming efficiency and antitumor effects of ITNKs.


Assuntos
Histonas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Dinâmica Mitocondrial , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
15.
Genes (Basel) ; 14(9)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37761804

RESUMO

Snijders Blok-Campeau syndrome (SNIBCPS, OMIM# 618205) is an extremely infrequent disease with only approximately 60 cases reported so far. SNIBCPS belongs to the group of neurodevelopmental disorders (NDDs). Clinical features of patients with SNIBCPS include global developmental delay, intellectual disability, speech and language difficulties and behavioral disorders like autism spectrum disorder. In addition, patients with SNIBCPS exhibit typical dysmorphic features including macrocephaly, hypertelorism, sparse eyebrows, broad forehead, prominent nose and pointed chin. The severity of the neurological effects as well as the presence of other features is variable among subjects. SNIBCPS is caused likely by pathogenic and pathogenic variants in CHD3 (Chromodomain Helicase DNA Binding Protein 3), which seems to be involved in chromatin remodeling by deacetylating histones. Here, we report 20 additional patients with clinical features compatible with SNIBCPS from 17 unrelated families with confirmed likely pathogenic/pathogenic variants in CHD3. Patients were analyzed by whole exome sequencing and segregation studies were performed by Sanger sequencing. Patients in this study showed different pathogenic variants affecting several functional domains of the protein. Additionally, none of the variants described here were reported in control population databases, and most computational predictors suggest that they are deleterious. The most common clinical features of the whole cohort of patients are global developmental delay (98%) and speech disorder/delay (92%). Other frequent features (51-74%) include intellectual disability, hypotonia, hypertelorism, abnormality of vision, macrocephaly and prominent forehead, among others. This study expands the number of individuals with confirmed SNIBCPS due to pathogenic or likely pathogenic variants in CHD3. Furthermore, we add evidence of the importance of the application of massive parallel sequencing for NDD patients for whom the clinical diagnosis might be challenging and where deep phenotyping is extremely useful to accurately manage and follow up the patients.


Assuntos
Deficiências do Desenvolvimento , Hipertelorismo , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Megalencefalia , Humanos , DNA Helicases/genética , Histonas , Deficiência Intelectual/genética , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Deficiências do Desenvolvimento/genética
16.
Proc Natl Acad Sci U S A ; 120(33): e2307287120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552759

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex modifies nucleosome positioning and chromatin compaction to regulate gene expression. The methyl-CpG-binding domain proteins 2 and 3 (MBD2 and MBD3) play a critical role in complex formation; however, the molecular details of how they interact with other NuRD components have yet to be fully elucidated. We previously showed that an intrinsically disordered region (IDR) of MBD2 is necessary and sufficient to bind to the histone deacetylase core of NuRD. Building on that work, we have measured the inherent structural propensity of the MBD2-IDR using solvent and site-specific paramagnetic relaxation enhancement measurements. We then used the AlphaFold2 machine learning software to generate a model of the complex between MBD2 and the histone deacetylase core of NuRD. This model is remarkably consistent with our previous studies, including the current paramagnetic relaxation enhancement data. The latter suggests that the free MBD2-IDR samples conformations similar to the bound structure. We tested this model of the complex extensively by mutating key contact residues and measuring binding using an intracellular bioluminescent resonance energy transfer assay. Furthermore, we identified protein contacts that, when mutated, disrupted gene silencing by NuRD in a cell model of fetal hemoglobin regulation. Hence, this work provides insights into the formation of NuRD and highlights critical binding pockets that may be targeted to block gene silencing for therapy. Importantly, we show that AlphaFold2 can generate a credible model of a large complex that involves an IDR that folds upon binding.


Assuntos
Histona Desacetilases , Nucleossomos , Histona Desacetilases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Inativação Gênica , Cromatina , Histona Desacetilase 1/genética
17.
Nat Struct Mol Biol ; 30(8): 1160-1171, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488358

RESUMO

Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.


Assuntos
Mieloma Múltiplo , Neuroblastoma , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Mieloma Múltiplo/genética , Regulação da Expressão Gênica , Nucleossomos , Neuroblastoma/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo
18.
Nat Commun ; 14(1): 3848, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385984

RESUMO

The Nucleosome Remodeling and Deacetylation (NuRD) complex is a crucial regulator of cellular differentiation. Two members of the Methyl-CpG-binding domain (MBD) protein family, MBD2 and MBD3, are known to be integral, but mutually exclusive subunits of the NuRD complex. Several MBD2 and MBD3 isoforms are present in mammalian cells, resulting in distinct MBD-NuRD complexes. Whether these different complexes serve distinct functional activities during differentiation is not fully explored. Based on the essential role of MBD3 in lineage commitment, we systematically investigated a diverse set of MBD2 and MBD3 variants for their potential to rescue the differentiation block observed for mouse embryonic stem cells (ESCs) lacking MBD3. While MBD3 is indeed crucial for ESC differentiation to neuronal cells, it functions independently of its MBD domain. We further identify that MBD2 isoforms can replace MBD3 during lineage commitment, however with different potential. Full-length MBD2a only partially rescues the differentiation block, while MBD2b, an isoform lacking an N-terminal GR-rich repeat, fully rescues the Mbd3 KO phenotype. In case of MBD2a, we further show that removing the methylated DNA binding capacity or the GR-rich repeat enables full redundancy to MBD3, highlighting the synergistic requirements for these domains in diversifying NuRD complex function.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Nucleossomos , Animais , Camundongos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Isoformas de Proteínas/genética , Diferenciação Celular , Células-Tronco Embrionárias Murinas , Mamíferos
19.
Ann Rheum Dis ; 82(8): 1091-1097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37130727

RESUMO

OBJECTIVES: Myositis is a heterogeneous family of diseases including dermatomyositis (DM), immune-mediated necrotising myopathy (IMNM), antisynthetase syndrome (AS) and inclusion body myositis (IBM). Myositis-specific autoantibodies define different subtypes of myositis. For example, patients with anti-Mi2 autoantibodies targeting the chromodomain helicase DNA-binding protein 4 (CHD4)/NuRD complex (a transcriptional repressor) have more severe muscle disease than other DM patients. This study aimed to define the transcriptional profile of muscle biopsies from anti-Mi2-positive DM patients. METHODS: RNA sequencing was performed on muscle biopsies (n=171) from patients with anti-Mi2-positive DM (n=18), DM without anti-Mi2 autoantibodies (n=32), AS (n=18), IMNM (n=54) and IBM (n=16) as well as 33 normal muscle biopsies. Genes specifically upregulated in anti-Mi2-positive DM were identified. Muscle biopsies were stained for human immunoglobulin and protein products corresponding to genes specifically upregulated in anti-Mi2-positive muscle biopsies. RESULTS: A set of 135 genes, including SCRT1 and MADCAM1, was specifically overexpressed in anti-Mi2-positive DM muscle. This set was enriched for CHD4/NuRD-regulated genes and included genes that are not otherwise expressed in skeletal muscle. The expression levels of these genes correlated with anti-Mi2 autoantibody titres, markers of disease activity and with the other members of the gene set. In anti-Mi2-positive muscle biopsies, immunoglobulin was localised to the myonuclei, MAdCAM-1 protein was present in the cytoplasm of perifascicular fibres, and SCRT1 protein was localised to myofibre nuclei. CONCLUSIONS: Based on these findings, we hypothesise that anti-Mi2 autoantibodies could exert a pathogenic effect by entering damaged myofibres, inhibiting the CHD4/NuRD complex, and subsequently derepressing the unique set of genes defined in this study.


Assuntos
Doenças Autoimunes , Dermatomiosite , Miosite de Corpos de Inclusão , Miosite , Humanos , Autoanticorpos , Dermatomiosite/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Músculo Esquelético/patologia
20.
HGG Adv ; 4(3): 100198, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37181331

RESUMO

GATA zinc finger domain containing 2A (GATAD2A) is a subunit of the nucleosome remodeling and deacetylase (NuRD) complex. NuRD is known to regulate gene expression during neural development and other processes. The NuRD complex modulates chromatin status through histone deacetylation and ATP-dependent chromatin remodeling activities. Several neurodevelopmental disorders (NDDs) have been previously linked to variants in other components of NuRD's chromatin remodeling subcomplex (NuRDopathies). We identified five individuals with features of an NDD that possessed de novo autosomal dominant variants in GATAD2A. Core features in affected individuals include global developmental delay, structural brain defects, and craniofacial dysmorphology. These GATAD2A variants are predicted to affect protein dosage and/or interactions with other NuRD chromatin remodeling subunits. We provide evidence that a GATAD2A missense variant disrupts interactions of GATAD2A with CHD3, CHD4, and CHD5. Our findings expand the list of NuRDopathies and provide evidence that GATAD2A variants are the genetic basis of a previously uncharacterized developmental disorder.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Transtornos do Neurodesenvolvimento , Proteínas Repressoras , Humanos , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas do Tecido Nervoso , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA