Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 75: 102401, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700576

RESUMO

Deployed by both pathogenic bacteria and host immune systems, pore-forming proteins rupture target membranes and can serve as conduits for effector proteins. Understanding how these proteins work relies on capturing assembly intermediates. Advances in cryoEM allowing in silico purification of heterogeneous assemblies has led to new insights into two main classes of pore-forming proteins: membrane attack complex perforin (MACPF) proteins and binary toxins. The structure of an immune activation complex, sMAC, shows how pores form by sequential templating and insertion of ß-hairpins. CryoEM structures of bacterial binary toxins present a series of transitions along the pore formation pathway and reveal a general mechanism of effector protein translocation. Future developments in time-resolved cryoEM could capture and place short-lived states along the trajectory of pore-formation.


Assuntos
Toxinas Bacterianas , Complexo de Ataque à Membrana do Sistema Complemento , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Microscopia Crioeletrônica , Perforina/química , Perforina/metabolismo
2.
Nat Commun ; 12(1): 6086, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667172

RESUMO

Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane ß-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Complemento C8/química , Complemento C8/metabolismo , Complemento C9/química , Complemento C9/imunologia , Microscopia Crioeletrônica , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
3.
Subcell Biochem ; 96: 273-295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252733

RESUMO

The complement system is essential for immune defence against infection and modulation of proinflammatory responses. Activation of the terminal pathway of complement triggers formation of the membrane attack complex (MAC), a multi-protein pore that punctures membranes. Recent advances in structural biology, specifically cryo-electron microscopy (cryoEM), have provided atomic resolution snapshots along the pore formation pathway. These structures have revealed dramatic conformational rearrangements that enable assembly and membrane rupture. Here we review the structural basis for MAC formation and show how soluble proteins transition into a giant ß-barrel pore. We also discuss regulatory complexes of the terminal pathway and their impact on structure-guided drug discovery of complement therapeutics.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Desenho de Fármacos , Microscopia Crioeletrônica , Humanos
4.
J Toxicol Sci ; 45(9): 581-587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879257

RESUMO

Complement component 8 γ (C8γ) is a subunit of complement protein 8 (C8), which itself is a subunit of the complement cytolytic membrane attack complex. However, C8γ is also suggested to be a carrier protein for the general clearance of endogenous and exogenous compounds because it belongs to the lipocalin family of small secreted proteins that have the common ability to bind small hydrophobic ligands. Although retinoic acid, a metabolite of vitamin A, has been suggested as a potential ligand of C8γ, it remains unclear which other substances are able to bind to C8γ as ligands. Here, we evaluated the binding affinity of several organotin compounds that are ligands of a receptor of retinoic acid, retinoid X receptor, by using radioligand binding assays. The amount of [14C]triphenyltin (TPT), a tri-substituted organotin, that bound to purified recombinant C8γ was increased with increasing protein concentration, whereas that of [3H]all-trans retinoic acid and [3H]9-cis retinoic acid was unchanged. Scatchard analysis revealed that [14C]TPT bound to C8γ with an equilibrium dissociation constant (Kd) of 56.2 ± 16.2 nM. Non-radiolabeled tributyltin (TBT), another tri-substituted organotin, blocked the binding of [14C]TPT to C8γ in a competitive manner, but non-radiolabeled mono- or di-substituted organotin compounds did not. Together, our present observations indicate that TBT and TPT, but not retinoic acid or mono- or di-substituted organotin compounds, are potent ligands of C8γ, suggesting that C8γ may be involved in the toxicities of these organotin compounds.


Assuntos
Proteínas de Transporte , Complemento C8 , Ligantes , Compostos Orgânicos de Estanho/toxicidade , Compostos de Trialquitina/toxicidade , Ligação Competitiva , Complexo de Ataque à Membrana do Sistema Complemento/química , Ligação Proteica , Receptores X de Retinoides/metabolismo , Tretinoína
5.
J Struct Biol ; 211(2): 107531, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446810

RESUMO

The Membrane Attack Complex-Perforin (MACPF) family is ubiquitously found in all kingdoms. They have diverse cellular roles, however MACPFs with pore-forming toxic function in venoms and poisons are very rare in animals. Here we present the structure of PmPV2, a MACPF toxin from the poisonous apple snail eggs, that can affect the digestive and nervous systems of potential predators. We report the three-dimensional structure of PmPV2, at 17.2 Å resolution determined by negative-stain electron microscopy and its solution structure by small angle X-ray scattering (SAXS). We found that PV2s differ from nearly all MACPFs in two respects: it is a dimer in solution and protomers combine two immune proteins into an AB toxin. The MACPF chain is linked by a single disulfide bond to a tachylectin chain, and two heterodimers are arranged head-to-tail by non-covalent forces in the native protein. MACPF domain is fused with a putative new Ct-accessory domain exclusive to invertebrates. The tachylectin is a six-bladed ß-propeller, similar to animal tectonins. We experimentally validated the predicted functions of both subunits and demonstrated for the first time that PV2s are true pore-forming toxins. The tachylectin "B" delivery subunit would bind to target membranes, and then the MACPF "A" toxic subunit would disrupt lipid bilayers forming large pores altering the plasma membrane conductance. These results indicate that PV2s toxicity evolved by linking two immune proteins where their combined preexisting functions gave rise to a new toxic entity with a novel role in defense against predation. This structure is an unparalleled example of protein exaptation.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Lectinas/ultraestrutura , Perforina/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Animais , Membrana Celular/química , Membrana Celular/ultraestrutura , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Cristalografia por Raios X , Dimerização , Lectinas/química , Lectinas/imunologia , Modelos Moleculares , Perforina/química , Perforina/imunologia , Subunidades Proteicas/genética , Espalhamento a Baixo Ângulo , Caramujos/ultraestrutura , Difração de Raios X
6.
Parasite Immunol ; 42(2): e12686, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31745990

RESUMO

The current study aimed to detect the complement-binding proteins in the excretory-secretory (ES) products of adult filarial parasite Setaria equina (SeqES). Tests for complement activation pathways (CH50 and APH50 ) in normal human serum (NHS) after incubation with SeqES were performed. Quantitative detection of complement activation products like C3d and sC5b-9 by ELISA in inulin-activated NHS before and after addition of SeqES was estimated. Immunoblotting for 1D and 2D electrophoresed SeqES were performed for detection of C9-binding protein. MALDI mass sequencing and multiple sequence alignment were performed for identification of the protein. The results showed an inhibitory effect of SeqES for complement activation pathways. This was confirmed by an obvious reduction in C3d and sC5b-9 in inulin-activated NHS. Immunoblotting showed the reaction of a protein at 21 kDa with human C9. The latter protein was identified as OV-16 based on MALDI mass sequencing and multiple sequence alignment. In conclusion, S equina OV-16 is the complement regulatory protein by its ability to bind C9 and inhibit the classical and alternative pathways of complement activation. This protein can be used as a target for therapeutic treatment or as an anti-inflammatory agent in human diseases.


Assuntos
Antígenos de Helmintos/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Setaria (Nematoide)/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte , Ativação do Complemento , Complemento C9 , Complexo de Ataque à Membrana do Sistema Complemento/química , Proteínas do Sistema Complemento , Descoberta de Drogas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Alinhamento de Sequência
7.
Proc Natl Acad Sci U S A ; 116(8): 2897-2906, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728296

RESUMO

The crystal structure of the Gram-negative insecticidal protein, GNIP1Aa, has been solved at 2.5-Å resolution. The protein consists of two structurally distinct domains, a MACPF (membrane attack complex/PerForin) and a previously uncharacterized type of domain. GNIP1Aa is unique in being a prokaryotic MACPF member to have both its structure and function identified. It was isolated from a Chromobacterium piscinae strain and is specifically toxic to Diabrotica virgifera virgifera larvae upon feeding. In members of the MACPF family, the MACPF domain has been shown to be important for protein oligomerization and formation of transmembrane pores, while accompanying domains define the specificity of the target of the toxicity. In GNIP1Aa the accompanying C-terminal domain has a unique fold composed of three pseudosymmetric subdomains with shared sequence similarity, a feature not obvious from the initial sequence examination. Our analysis places this domain into a protein family, named here ß-tripod. Using mutagenesis, we identified functionally important regions in the ß-tripod domain, which may be involved in target recognition.


Assuntos
Proteínas de Bactérias/química , Chromobacterium/química , Besouros/genética , Perforina/química , Sequência de Aminoácidos/genética , Animais , Proteínas de Bactérias/genética , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/genética , Cristalografia por Raios X , Inseticidas/química , Modelos Moleculares , Perforina/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Domínios Proteicos , Estrutura Terciária de Proteína
8.
Nat Commun ; 9(1): 5316, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552328

RESUMO

The membrane attack complex (MAC) is one of the immune system's first responders. Complement proteins assemble on target membranes to form pores that lyse pathogens and impact tissue homeostasis of self-cells. How MAC disrupts the membrane barrier remains unclear. Here we use electron cryo-microscopy and flicker spectroscopy to show that MAC interacts with lipid bilayers in two distinct ways. Whereas C6 and C7 associate with the outer leaflet and reduce the energy for membrane bending, C8 and C9 traverse the bilayer increasing membrane rigidity. CryoEM reconstructions reveal plasticity of the MAC pore and demonstrate how C5b6 acts as a platform, directing assembly of a giant ß-barrel whose structure is supported by a glycan scaffold. Our work provides a structural basis for understanding how ß-pore forming proteins breach the membrane and reveals a mechanism for how MAC kills pathogens and regulates cell functions.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Microscopia Crioeletrônica/métodos , Bicamadas Lipídicas/química , Complemento C6/química , Complemento C6/metabolismo , Complemento C6/ultraestrutura , Complemento C7/química , Complemento C7/metabolismo , Complemento C7/ultraestrutura , Complemento C8/química , Complemento C8/metabolismo , Complemento C8/ultraestrutura , Complemento C9/química , Complemento C9/metabolismo , Complemento C9/ultraestrutura , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Bicamadas Lipídicas/metabolismo , Lipossomos , Modelos Moleculares , Polissacarídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Análise Espectral/métodos
9.
Nat Commun ; 9(1): 3266, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111885

RESUMO

Complement component 9 (C9) functions as the pore-forming component of the Membrane Attack Complex (MAC). During MAC assembly, multiple copies of C9 are sequentially recruited to membrane associated C5b8 to form a pore. Here we determined the 2.2 Å crystal structure of monomeric murine C9 and the 3.9 Å resolution cryo EM structure of C9 in a polymeric assembly. Comparison with other MAC proteins reveals that the first transmembrane region (TMH1) in monomeric C9 is uniquely positioned and functions to inhibit its self-assembly in the absence of C5b8. We further show that following C9 recruitment to C5b8, a conformational change in TMH1 permits unidirectional and sequential binding of additional C9 monomers to the growing MAC. This mechanism of pore formation contrasts with related proteins, such as perforin and the cholesterol dependent cytolysins, where it is believed that pre-pore assembly occurs prior to the simultaneous release of the transmembrane regions.


Assuntos
Complemento C9/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Proteínas de Membrana/química , Domínios Proteicos , Animais , Complemento C9/genética , Complemento C9/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Proteínas do Sistema Complemento/química , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica
10.
Acta Neuropathol Commun ; 6(1): 36, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724241

RESUMO

The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Complexo de Ataque à Membrana do Sistema Complemento/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalomielite Autoimune Experimental/complicações , Animais , Anti-Inflamatórios/química , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/química , Modelos Animais de Doenças , Exorribonucleases/uso terapêutico , Masculino , Camundongos , Microscopia Eletrônica , Modelos Biológicos , Peptídeos Cíclicos/uso terapêutico , RNA Mensageiro/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/ultraestrutura
11.
J Mol Microbiol Biotechnol ; 27(4): 252-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145176

RESUMO

The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.


Assuntos
Bactérias/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/classificação , Perforina/química , Perforina/classificação , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas Fúngicas , Proteínas Hemolisinas , Modelos Moleculares , Perforina/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1726)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28630159

RESUMO

The membrane attack complex (MAC) is an important innate immune effector of the complement terminal pathway that forms cytotoxic pores on the surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique 'split-washer' shape, coupled with an irregular giant ß-barrel architecture, enable an atypical mechanism of hole punching and represent a novel system for which to study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC. Moreover, it will discuss how structures of the pore and component proteins underpin a mechanism for MAC function, modulation and inhibition.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.


Assuntos
Membrana Celular/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Microscopia Crioeletrônica , Modelos Moleculares
13.
Sci Rep ; 6: 30239, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444648

RESUMO

Terminal complement membrane attack complex (MAC) formation is induced initially by C5b, followed by the sequential condensation of the C6, C7, C8. Polymerization of C9 to the C5b-8 complex forms the C5b-9 (or MAC). The C5b-9 forms lytic or non lytic pores in the cell membrane destroys membrane integrity. The biological functionalities of MAC has been previously investigated by using either the mice deficient in C5 and C6, or MAC's regulator CD59. However, there is no available C9 deficient mice (mC9(-/-)) for directly dissecting the role of C5b-9 in the pathogenesis of human diseases. Further, since C5b-7 and C5b-8 complexes form non lytic pore, it may also plays biological functionality. To better understand the role of terminal complement cascades, here we report a successful generation of mC9(-/-). We demonstrated that lack of C9 attenuates anti-erythrocyte antibody-mediated hemolysis or LPS-induced acute shock. Further, the rescuing effect on the acute shock correlates with the less release of IL-1ß in mC9(-/-), which is associated with suppression of MAC-mediated inflammasome activation in mC9(-/-). Taken together, these results not only confirm the critical role of C5b-9 in complement-mediated hemolysis and but also highlight the critical role of C5b-9 in inflammasome activation.


Assuntos
Complemento C5b/genética , Complemento C9/genética , Complexo de Ataque à Membrana do Sistema Complemento/genética , Inflamação/genética , Choque/genética , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Complemento C5b/imunologia , Complemento C9/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Hemólise/imunologia , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Choque/induzido quimicamente , Choque/imunologia , Choque/fisiopatologia
14.
J Cell Sci ; 129(11): 2125-33, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27179071

RESUMO

The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane ß-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation.


Assuntos
Colesterol/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Citotoxinas/metabolismo , Perforina/metabolismo , Animais , Complexo de Ataque à Membrana do Sistema Complemento/química , Citotoxinas/química , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Perforina/química
15.
Cell Rep ; 15(1): 1-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052168

RESUMO

Pore formation in membranes is important for mammalian immune defense against invading bacteria. Induced by complement activation, the membrane attack complex (MAC) forms through sequential binding and membrane insertion of C5b6, C7, C8, and C9. Using cryo-electron tomography with a Volta phase plate and subtomogram averaging, we imaged C5b-7, C5b-8, and C5b-9 complexes and determined the C5b-9 pore structure in lipid bilayers. The in situ C5b-9 pore structure at 2.3-nm resolution reveals a 10- to 11.5-nm cone-shaped pore starting with C5b678 and multiple copies of C9 that is poorly closed, yielding a seam between C9 and C6 substituting for the shorter ß strands in C6 and C7. However, large variations of composite pore complexes are apparent in subtomograms. Oligomerized initiator complexes C5b-7 and C5b-8 show stages of membrane binding, deformation, and perforation that yield ∼3.5-nm-wide pores. These data indicate a dynamic process of pore formation that likely adapts to biological membranes under attack.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/química , Bicamadas Lipídicas/química , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Tomografia com Microscopia Eletrônica , Humanos , Bicamadas Lipídicas/metabolismo , Ligação Proteica
16.
Blood ; 127(22): 2701-10, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27006390

RESUMO

Uncontrolled activation of the complement system against endothelial and blood cells is central to the pathogenesis of atypical hemolytic uremic syndrome (aHUS). aHUS patients frequently carry mutations in the inhibitory complement regulator factor H (FH). Mutations cluster in domains 19 and 20 (FH19-20), which are critical for recognizing self surfaces. On endothelial cells, binding of FH is generally attributed to heparan sulfate. This theory, however, is questioned by the puzzling observation that some aHUS-associated mutations markedly enhance FH binding to heparin and endothelial cells. In this article, we show that, instead of disturbed heparin interactions, the impaired ability of C-terminal mutant FH molecules to recognize sialic acid in the context of surface-bound C3b explains their pathogenicity. By using recombinant FH19-20 as a competitor for FH and measuring erythrocyte lysis and deposition of complement C3b and C5b-9 on endothelial cells and platelets, we now show that several aHUS-associated mutations, which have been predicted to impair FH19-20 binding to sialic acid, prevent FH19-20 from antagonizing FH function on cells. When sialic acid was removed, the wild-type FH19-20 also lost its ability to interfere with FH function on cells. These results indicate that sialic acid is critical for FH-mediated complement regulation on erythrocytes, endothelial cells, and platelets. The inability of C-terminal mutant FH molecules to simultaneously bind sialic acid and C3b on cells provides a unifying explanation for their association with aHUS. Proper formation of FH-sialic acid-C3b complexes on surfaces exposed to plasma is essential for preventing cell damage and thrombogenesis characteristic of aHUS.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/metabolismo , Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Mutação de Sentido Incorreto , Ácido N-Acetilneuramínico/metabolismo , Substituição de Aminoácidos , Síndrome Hemolítico-Urêmica Atípica/genética , Sítios de Ligação , Plaquetas , Complemento C3b/química , Fator H do Complemento/química , Fator H do Complemento/genética , Complexo de Ataque à Membrana do Sistema Complemento/química , Células Endoteliais , Humanos , Ácido N-Acetilneuramínico/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
PLoS One ; 11(1): e0145945, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26741681

RESUMO

Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.


Assuntos
Anticorpos Antibacterianos/farmacologia , Fagócitos/efeitos dos fármacos , Salmonella typhi/imunologia , Salmonella typhimurium/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/administração & dosagem , Anticorpos Antibacterianos/biossíntese , Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/imunologia , Complemento C3/química , Complemento C3/farmacologia , Complexo de Ataque à Membrana do Sistema Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/farmacologia , Humanos , Soros Imunes/química , Imunidade Humoral , Imunização , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/sangue , Lipopolissacarídeos/imunologia , Fagócitos/imunologia , Fagócitos/microbiologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Polissacarídeos Bacterianos/antagonistas & inibidores , Polissacarídeos Bacterianos/sangue , Polissacarídeos Bacterianos/imunologia , Cultura Primária de Células , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/prevenção & controle , Especificidade da Espécie , Febre Tifoide/imunologia , Febre Tifoide/microbiologia , Vacinas Tíficas-Paratíficas/antagonistas & inibidores , Vacinas Tíficas-Paratíficas/sangue , Vacinas Tíficas-Paratíficas/imunologia
18.
Acta Biomater ; 31: 252-263, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26593783

RESUMO

Cell surface engineering using polymers is a promising approach to address unmet needs and adverse immune reactions in the fields of transfusion, transplantation, and cell-based therapies. Furthermore, cell surface modification may minimize or prevent adverse immune reactions to homologous incompatible cells as the interface between the host immune system and the cell surface is modified. In this report, we investigate the immune system reaction, precisely the complement binding and activation on cell surfaces modified with a functional polymer, hyperbranched polyglycerol (HPG). We used red blood cells (RBCs) as a model system to investigate the mechanism of complement activation on cell surfaces modified with various forms of HPG. Using a battery of in vitro assays including: traditional diagnostic hemolytic assays involving sheep and rabbit erythrocytes, ELISAs and flow cytometry, we show that HPG modified RBCs at certain concentrations and molecular weights activate complement via the alternative pathway. We show that by varying the grafting concentration, molecular weight and the number of cell surface reactive groups of HPG, the complement activity on the cell surface can be modulated. HPGs with molecular weights greater than 28kDa and grafting concentrations greater than 1.0mM, as well as a high degree of HPG functionalization with cell surface reactive groups result in the activation of the complement system via the alternative pathway. No complement activation observed when these threshold levels are not exceeded. These insights may have an impact on devising key strategies in developing novel next generation cell-surface engineered therapeutic products for applications in the fields of cell therapy, transfusion and drug delivery. STATEMENT OF SIGNIFICANCE: Cell-surface engineering using functional polymers is a fast emerging area of research. Importantly modified cells are used in many experimental therapeutics, transplantation and in transfusion. The success of such therapies depend on the ability of modified products to avoid immune detection and subsequent rejection or removal. Polymer grafting has been shown to modulate immune response, however, there is limited knowledge available. Thus in this manuscript, we investigated the interaction of human complement, part of our innate immune system, by polymer modified cells. Our results provide important evidences on the mechanism of complement activation by the modified cells and also found ways to modulate the innate immune response. These results will have implications in development of next generation cell-based therapies.


Assuntos
Ativação do Complemento , Polímeros/química , Sistema ABO de Grupos Sanguíneos , Animais , Materiais Biocompatíveis/química , Membrana Celular/metabolismo , Complemento C3/química , Complemento C4a/química , Fator B do Complemento/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Ensaio de Imunoadsorção Enzimática , Eritrócitos/citologia , Citometria de Fluxo , Glicerol/química , Hemólise , Humanos , Imunidade Inata , Peso Molecular , Coelhos , Ovinos , Temperatura
19.
Proc Natl Acad Sci U S A ; 112(50): 15360-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26627714

RESUMO

The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and ß), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom.


Assuntos
Venenos de Peixe/química , Perforina/química , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Colesterol/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Cristalografia por Raios X , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Solubilidade , Homologia Estrutural de Proteína
20.
Biomater Sci ; 3(8): 1208-17, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26222036

RESUMO

Heparin-imprinted synthetic polymer surfaces with the ability to attenuate activation of both the complement and the coagulation system in whole blood were successfully produced. Imprinting was achieved using a template coated with heparin, a highly sulfated glycosaminoglycan known for its anticoagulant properties. The N,N'-diacryloylpiperazine-methacrylic acid copolymers were characterized using goniometry, AFM and XPS. The influence of the molecular imprinting process on morphology and template rebinding was demonstrated by radioligand binding assays. Surface hemocompatibility was evaluated using human whole blood without anticoagulants followed by measurement of complement activation markers C3a and sC5b-9 and platelet consumption as a surrogate coagulation activation marker. The observed low thrombogenicity of this copolymer combined with the attenuation of complement activation induced by the molecular imprint offer potential for the development of self-regulating surfaces with important potential clinical applications. We propose a mechanism for the observed phenomena based upon the recruitment of endogenous sulfated glycosaminoglycans with heparin-like activities.


Assuntos
Anticoagulantes/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Glicosaminoglicanos/química , Heparina/química , Metacrilatos/química , Piperazinas/química , Polímeros/química , Anticoagulantes/metabolismo , Coagulação Sanguínea , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Contagem de Plaquetas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA