Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.116
Filtrar
1.
Sci Adv ; 10(38): eadp2221, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303030

RESUMO

Intracellular accumulation of misfolded proteins causes serious human proteinopathies. The transmembrane emp24 domain 9 (TMED9) cargo receptor promotes a general mechanism of cytotoxicity by entrapping misfolded protein cargos in the early secretory pathway. However, the molecular basis for this TMED9-mediated cargo retention remains elusive. Here, we report cryo-electron microscopy structures of TMED9, which reveal its unexpected self-oligomerization into octamers, dodecamers, and, by extension, even higher-order oligomers. The TMED9 oligomerization is driven by an intrinsic symmetry mismatch between the trimeric coiled coil domain and the tetrameric transmembrane domain. Using frameshifted Mucin 1 as an example of aggregated disease-related protein cargo, we implicate a mode of direct interaction with the TMED9 luminal Golgi-dynamics domain. The structures suggest and we confirm that TMED9 oligomerization favors the recruitment of coat protein I (COPI), but not COPII coatomers, facilitating retrograde transport and explaining the observed cargo entrapment. Our work thus reveals a molecular basis for TMED9-mediated misfolded protein retention in the early secretory pathway.


Assuntos
Proteínas de Membrana , Dobramento de Proteína , Multimerização Proteica , Via Secretória , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Transporte Proteico , Microscopia Crioeletrônica , Complexo de Golgi/metabolismo , Modelos Moleculares , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/química , Domínios Proteicos , Ligação Proteica
2.
J Nanobiotechnology ; 22(1): 548, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39238028

RESUMO

BACKGROUND: Bacterial extracellular vesicles (EVs) are pivotal mediators of intercellular communication and influence host cell biology, thereby contributing to the pathogenesis of infections. Despite their significance, the precise effects of bacterial EVs on the host cells remain poorly understood. This study aimed to elucidate ultrastructural changes in host cells upon infection with EVs derived from a pathogenic bacterium, Staphylococcus aureus (S. aureus). RESULTS: Using super-resolution fluorescence microscopy and high-voltage electron microscopy, we investigated the nanoscale alterations in mitochondria, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, and microtubules of skin cells infected with bacterial EVs. Our results revealed significant mitochondrial fission, loss of cristae, transformation of the ER from tubular to sheet-like structures, and fragmentation of the Golgi apparatus in cells infected with S. aureus EVs, in contrast to the negligible effects observed following S. epidermidis EV infection, probably due to the pathogenic factors in S. aureus EV, including protein A and enterotoxin. These findings indicate that bacterial EVs, particularly those from pathogenic strains, induce profound ultrastructural changes of host cells that can disrupt cellular homeostasis and contribute to infection pathogenesis. CONCLUSIONS: This study advances the understanding of bacterial EV-host cell interactions and contributes to the development of new diagnostic and therapeutic strategies for bacterial infections.


Assuntos
Vesículas Extracelulares , Staphylococcus aureus , Vesículas Extracelulares/metabolismo , Humanos , Complexo de Golgi/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Interações Hospedeiro-Patógeno , Infecções Estafilocócicas/microbiologia , Microscopia de Fluorescência , Staphylococcus epidermidis/fisiologia
3.
Cytokine Growth Factor Rev ; 79: 52-65, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39227243

RESUMO

The activation of immune cells by pro-inflammatory or immunosuppressive stimuli is followed by the secretion of immunoregulatory cytokines which serve as messengers to activate the immune response in target cells. Although the mechanisms that control the secretion of cytokines by immune cells are not yet fully understood, several key aspects of this process have recently emerged. This review focuses on cytokine release via exocytosis and highlights the routes of cytokine trafficking leading to constitutive and regulated secretion as well as the impact of sorting receptors on this process. We discuss the involvement of cytoskeletal rearrangements in vesicular transport, secretion, and formation of immunological synapses. Finally, we describe the non-classical pathways of cytokine release that are independent of vesicular ER-Golgi transport. Instead, these pathways are based on processing by inflammasome or autophagic mechanisms. Ultimately, understanding the molecular mechanisms behind cytokine release may help to identify potential therapeutic targets in diseases associated with altered immune responses.


Assuntos
Citocinas , Exocitose , Humanos , Citocinas/imunologia , Citocinas/metabolismo , Animais , Exocitose/imunologia , Inflamassomos/imunologia , Autofagia/imunologia , Sinapses Imunológicas/imunologia , Transporte Proteico , Complexo de Golgi/metabolismo
4.
Cells ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273021

RESUMO

BACKGROUND: Intracellular tracking is commonly used in trafficking research. Until today, the respective techniques have remained complex, and complicated, mostly transgenic target protein changes are necessary, often requiring expensive equipment and expert knowledge. METHODS: We present a novel method, which we term "cell-sonar", that enables the user to track expression changes of specific protein markers that serve as points of interaction. Our study provides comparable analyses of expression changes of these marker proteins by in-cell Western analyses in two otherwise isogenic cell lines that only differ in the overexpression of the tracked target protein. Using the overexpressed human adult muscle-type nicotinic acetylcholine receptor as an example, we demonstrate that cell-sonar can cover multiple intracellular compartments such as the endoplasmic reticulum, the pathway between it and the Golgi apparatus, and the endocytic pathway. RESULTS: We provide evidence for receptor maturation in the Golgi and storage in recycling endosomes, rather than the fate of increased insertion into the plasma membrane. Additionally, we demonstrate with the implementation of nicotine that the receptor's destiny is exasperated up to secondary degradation. CONCLUSIONS: Cell-sonar is an affordable, easy-to-implement, and cheap method that can be adapted to a broad variety of proteins and cellular pathways of interest to researchers.


Assuntos
Complexo de Golgi , Via Secretória , Humanos , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Receptores Nicotínicos/metabolismo , Transporte Proteico , Endossomos/metabolismo , Linhagem Celular
5.
Results Probl Cell Differ ; 73: 3-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39242372

RESUMO

Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.


Assuntos
Núcleo Celular , Organelas , Humanos , Animais , Núcleo Celular/metabolismo , Organelas/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Complexo de Golgi/metabolismo
6.
Elife ; 132024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269275

RESUMO

Transmembrane channel-like (TMC) proteins are a highly conserved ion channel family consisting of eight members (TMC1-TMC8) in mammals. TMC1/2 are components of the mechanotransduction channel in hair cells, and mutations of TMC1/2 cause deafness in humans and mice. However, the physiological roles of other TMC proteins remain largely unknown. Here, we show that Tmc7 is specifically expressed in the testis and that it is required for acrosome biogenesis during spermatogenesis. Tmc7-/- mice exhibited abnormal sperm head, disorganized mitochondrial sheaths, and reduced number of elongating spermatids, similar to human oligo-astheno-teratozoospermia. We further demonstrate that TMC7 is colocalized with GM130 at the cis-Golgi region in round spermatids. TMC7 deficiency leads to aberrant Golgi morphology and impaired fusion of Golgi-derived vesicles to the developing acrosome. Moreover, upon loss of TMC7 intracellular ion homeostasis is impaired and ROS levels are increased, which in turn causes Golgi and endoplasmic reticulum stress. Taken together, these results suggest that TMC7 is required to maintain pH and ion homeostasis, which is needed for acrosome biogenesis. Our findings unveil a novel role for TMC7 in acrosome biogenesis during spermiogenesis.


Assuntos
Acrossomo , Infertilidade Masculina , Camundongos Knockout , Espermatogênese , Animais , Masculino , Acrossomo/metabolismo , Camundongos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Espermatogênese/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/deficiência , Complexo de Golgi/metabolismo , Testículo/metabolismo
7.
Nat Commun ; 15(1): 7886, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251576

RESUMO

Endoplasmic reticulum quality control is crucial for maintaining cellular homeostasis and adapting to stress conditions. Although several ER-phagy receptors have been identified, the collaboration between cytosolic and ER-resident factors in ER fragmentation and ER-phagy regulation remains unclear. Here, we perform a phenotype-based gain-of-function screen and identify a cytosolic protein, FKBPL, functioning as an ER-phagy regulator. Overexpression of FKBPL triggers ER fragmentation and ER-phagy. FKBPL has multiple protein binding domains, can self-associate and might act as a scaffold connecting CKAP4 and LC3/GABARAPs. CKAP4 serves as a bridge between FKBPL and ER-phagy cargo. ER-phagy-inducing conditions increase FKBPL-CKAP4 interaction followed by FKBPL oligomerization at the ER, leading to ER-phagy. In addition, FKBPL-CKAP4 deficiency leads to Golgi disassembly and lysosome impairment, and an increase in ER-derived secretory vesicles and enhances cytosolic protein secretion via microvesicle shedding. Taken together, FKBPL with the aid of CKAP4 induces ER fragmentation and ER-phagy, and FKBPL-CKAP4 deficiency facilitates protein secretion.


Assuntos
Citosol , Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Humanos , Citosol/metabolismo , Animais , Células HEK293 , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Camundongos , Células HeLa , Ligação Proteica , Estresse do Retículo Endoplasmático
8.
Elife ; 132024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263961

RESUMO

NLRP3 is an inflammasome seeding pattern recognition receptor activated in response to multiple danger signals which perturb intracellular homeostasis. Electrostatic interactions between the NLRP3 polybasic (PB) region and negatively charged lipids on the trans-Golgi network (TGN) have been proposed to recruit NLRP3 to the TGN. In this study, we demonstrate that membrane association of NLRP3 is critically dependant on S-acylation of a highly conserved cysteine residue (Cys-130), which traps NLRP3 in a dynamic S-acylation cycle at the Golgi, and a series of hydrophobic residues preceding Cys-130 which act in conjunction with the PB region to facilitate Cys-130 dependent Golgi enrichment. Due to segregation from Golgi localised thioesterase enzymes caused by a nigericin induced breakdown in Golgi organisation and function, NLRP3 becomes immobilised on the Golgi through reduced de-acylation of its Cys-130 lipid anchor, suggesting that disruptions in Golgi homeostasis are conveyed to NLRP3 through its acylation state. Thus, our work defines a nigericin sensitive S-acylation cycle that gates access of NLRP3 to the Golgi.


Assuntos
Complexo de Golgi , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nigericina , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Complexo de Golgi/metabolismo , Humanos , Acilação , Nigericina/farmacologia , Animais , Inflamassomos/metabolismo , Células HEK293
9.
Virology ; 598: 110187, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094503

RESUMO

Recombinant SARS-CoV-2 S protein expression was examined in Vero cells by imaging using the human monoclonal antibody panel (PD4, PD5, sc23, and sc29). The PD4 and sc29 antibodies recognised conformational specific epitopes in the S2 protein subunit at the Endoplasmic reticulum and Golgi complex. While PD5 and sc23 detected conformationally specific epitopes in the S1 protein subunit at the Golgi complex, only PD5 recognised the receptor binding domain (RBD). A comparison of the staining patterns of PD5 with non-conformationally specific antibodies that recognises the S1 subunit and RBD suggested the PD5 recognised a conformational structure within the S1 protein subunit. Our data suggests the antibody binding epitopes recognised by the human monoclonal antibodies formed at different locations in the secretory pathway during S protein transport, but a conformational change in the S1 protein subunit at the Golgi complex formed antibody binding epitopes that are recognised by virus neutralising antibodies.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Complexo de Golgi , Conformação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Complexo de Golgi/metabolismo , Chlorocebus aethiops , Animais , Células Vero , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Epitopos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/virologia
10.
Mol Biol Cell ; 35(10): ar125, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110530

RESUMO

Type IV P-type ATPases (P4-ATPases) are lipid flippases that generate an asymmetric membrane organization essential for cell viability. The five budding yeast P4-ATPases traffic between the Golgi complex, plasma membrane, and endosomes but how they are recycled from the endolysosomal system to the Golgi complex is poorly understood. In this study, we find that P4-ATPase endosomal recycling is primarily driven by the retromer complex and the F-box protein Rcy1. Defects in P4-ATPase recycling result in their mislocalization to the vacuole and a substantial loss of membrane asymmetry. The P4-ATPases contain multiple predicted retromer sorting signals, and the characterization of these signals in Dnf1 and Dnf2 led to the identification of a novel retromer-dependent signal, IPM[ST] that acts redundantly with predicted motifs. Together, these results emphasize the importance of endosomal recycling for the functional localization of P4-ATPases and membrane organization.


Assuntos
Adenosina Trifosfatases , Membrana Celular , Endossomos , Complexo de Golgi , Transporte Proteico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacúolos , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo de Golgi/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sinais Direcionadores de Proteínas , ATPases do Tipo-P/metabolismo , Transportadores de Cassetes de Ligação de ATP
11.
Medicine (Baltimore) ; 103(33): e39177, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151519

RESUMO

The Golgi apparatus (GA), an organelle that processes, sorts, and transports proteins synthesized by the endoplasmic reticulum, is also involved in many cellular processes associated with cancer, such as angiogenesis, the innate immune response, and tumor invasion and migration. We aimed to construct a breast cancer (BC) prognosis prediction model based on GA-related genetic information to evaluate the prognosis of patients with BC more accurately than existing models and to stratify patients for clinical therapy. In this study, The Cancer Genome Atlas-breast invasive carcinoma was used as the training cohort, and the Molecular Taxonomy of Breast Cancer International Consortium cohort was used as the validation cohort. Using bioinformatics methods, we constructed a GA-related gene risk score (GRS). The GRS was used to divide BC patients into a high-GRS group and a low-GRS group, and functional analysis, survival analysis, mutation analysis, immune landscape analysis, and metabolic analysis were performed to compare the 2 groups. Finally, a nomogram was constructed for clinical application. The genes in the GRS model were mainly related to the glucose metabolism pathway, and the main mutations in the 2 groups of patients were mutations in TP53 and CHD1. The mutation rate in the high-GRS group was greater than that in the low-GRS group. The high GRS group had higher tumor immune activity glycolysis; the pentose phosphate pathway tended to be the dominant metabolic pathways in this group, while fatty acid oxidation and glutamine catabolism tended to be dominant in the low-GRS group. GA-related genes were used to construct a prediction model for BC patients and had high accuracy in predicting prognosis. The mutations associated with the GRS are mainly TP53 and CDH1. Interestingly, the GRS is correlated with glucose metabolism in terms of gene expression and functional enrichment. In summary, the role of GRS-related genes in glucose metabolism is worthy of further study.


Assuntos
Neoplasias da Mama , Complexo de Golgi , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Prognóstico , Complexo de Golgi/metabolismo , Complexo de Golgi/genética , Mutação , Nomogramas , Biologia Computacional/métodos , Pessoa de Meia-Idade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
12.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39101946

RESUMO

Small GTPases are essential in various cellular signaling pathways, and detecting their activation within living cells is crucial for understanding cellular processes. The current methods for detecting GTPase activation using fluorescent proteins rely on the interaction between the GTPase and its effector. Consequently, these methods are not applicable to factors, such as Sar1, where the effector also functions as a GTPase-activating protein. Here, we present a novel method, the Small GTPase ActIvitY ANalyzing (SAIYAN) system, for detecting the activation of endogenous small GTPases via fluorescent signals utilizing a split mNeonGreen system. We demonstrated Sar1 activation at the endoplasmic reticulum (ER) exit site and successfully detected its activation state in various cellular conditions. Utilizing the SAIYAN system in collagen-secreting cells, we discovered activated Sar1 localized both at the ER exit sites and ER-Golgi intermediate compartment (ERGIC) regions. Additionally, impaired collagen secretion confined the activated Sar1 at the ER exit sites, implying the importance of Sar1 activation through the ERGIC in collagen secretion.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Golgi/metabolismo , Complexo de Golgi/enzimologia , Animais , Ativação Enzimática , Colágeno/metabolismo , Células HeLa
13.
J Virol ; 98(9): e0059924, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39136459

RESUMO

Herpes simplex virus 1 (HSV-1) is an alpha herpesvirus that infects a majority of the world population. The mechanisms and cellular host factors involved in the intracellular transport and exocytosis of HSV-1 particles are not fully understood. To elucidate these late steps in the replication cycle, we developed a live-cell fluorescence microscopy assay of HSV-1 virion intracellular trafficking and exocytosis. This method allows us to track individual virus particles and identify the precise moment and location of particle exocytosis using a pH-sensitive reporter. We show that HSV-1 uses the host cell's post-Golgi secretory pathway during egress. The small GTPase, Rab6, binds to nascent secretory vesicles at the trans-Golgi network and plays important, but non-essential, roles in vesicle traffic and exocytosis at the plasma membrane, therefore making it a useful marker of the Golgi and post-Golgi secretory pathway. We show that HSV-1 particles colocalize with Rab6a in the region of the Golgi, cotraffic with Rab6a to the cell periphery, and undergo exocytosis from Rab6a vesicles. Consistent with previous reports, we find that HSV-1 particles accumulate at preferential egress sites in infected cells. The secretory pathway mediates this preferential/polarized egress, since Rab6a vesicles accumulate near the plasma membrane similarly in uninfected cells. These data suggest that, following particle envelopment, HSV-1 egress follows a pre-existing cellular secretory pathway to exit infected cells rather than novel, virus-induced mechanisms. IMPORTANCE: Herpes simplex virus 1 (HSV-1) infects a majority of people. It establishes a life-long latent infection and occasionally reactivates, typically causing characteristic oral or genital lesions. Rarely in healthy natural hosts, but more commonly in zoonotic infections and in elderly, newborn, or immunocompromised patients, HSV-1 can cause severe herpes encephalitis. The precise cellular mechanisms used by HSV-1 remain an important area of research. In particular, the egress pathways that newly assembled virus particles use to exit from infected cells are unclear. In this study, we used fluorescence microscopy to visualize individual virus particles exiting from cells and found that HSV-1 particles use the pre-existing cellular secretory pathway.


Assuntos
Exocitose , Complexo de Golgi , Herpesvirus Humano 1 , Via Secretória , Liberação de Vírus , Proteínas rab de Ligação ao GTP , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Humanos , Animais , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Células Vero , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia , Chlorocebus aethiops , Herpes Simples/virologia , Herpes Simples/metabolismo , Vírion/metabolismo , Células HeLa , Membrana Celular/metabolismo , Membrana Celular/virologia
14.
J Cell Sci ; 137(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39129673

RESUMO

Golgi-resident enzymes remain in place while their substrates flow through from the endoplasmic reticulum to elsewhere in the cell. COPI-coated vesicles bud from the Golgi to recycle Golgi residents to earlier cisternae. Different enzymes are present in different parts of the stack, and one COPI adaptor protein, GOLPH3, acts to recruit enzymes into vesicles in part of the stack. Here, we used proximity biotinylation to identify further components of intra-Golgi vesicles and found FAM114A2, a cytosolic protein. Affinity chromatography with FAM114A2, and its paralogue FAM114A1, showed that they bind to Golgi-resident membrane proteins, with membrane-proximal basic residues in the cytoplasmic tail being sufficient for the interaction. Deletion of both proteins from U2OS cells did not cause substantial defects in Golgi function. However, a Drosophila orthologue of these proteins (CG9590/FAM114A) is also localised to the Golgi and binds directly to COPI. Drosophila mutants lacking FAM114A have defects in glycosylation of glue proteins in the salivary gland. Thus, the FAM114A proteins bind Golgi enzymes and are candidate adaptors to contribute specificity to COPI vesicle recycling in the Golgi stack.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Complexo de Golgi/metabolismo , Humanos , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ligação Proteica , Transporte Proteico , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/genética , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação
15.
Elife ; 122024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106189

RESUMO

Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.


Assuntos
Retículo Endoplasmático , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielinas/biossíntese , Humanos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Multimerização Proteica , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Técnicas de Inativação de Genes , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese
16.
Proc Natl Acad Sci U S A ; 121(33): e2405209121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106308

RESUMO

The obligatory intracellular bacterium Anaplasma phagocytophilum causes human granulocytic anaplasmosis, an emerging zoonosis. Anaplasma has limited biosynthetic and metabolic capacities, yet it effectively replicates inside of inclusions/vacuoles of eukaryotic host cells. Here, we describe a unique Type IV secretion system (T4SS) effector, ER-Golgi exit site protein of Anaplasma (EgeA). In cells infected by Anaplasma, secreted native EgeA, EgeA-GFP, and the C-terminal half of EgeA (EgeA-C)-GFP localized to Anaplasma-containing inclusions. In uninfected cells, EgeA-C-GFP localized to cis-Golgi, whereas the N-terminal half of EgeA-GFP localized to the ER. Pull-down assays identified EgeA-GFP binding to a transmembrane protein in the ER, Transport and Golgi organization protein 1 (TANGO1). By yeast two-hybrid analysis, EgeA-C directly bound Sec1 family domain-containing protein 1 (SCFD1), a host protein of the cis-Golgi network that binds TANGO1 at ER-Golgi exit sites (ERES). Both TANGO1 and SCFD1 localized to the Anaplasma inclusion surface. Furthermore, knockdown of Anaplasma EgeA or either host TANGO1 or SCFD1 significantly reduced Anaplasma infection. TANGO1 and SCFD1 prevent ER congestion and stress by facilitating transport of bulky or unfolded proteins at ERES. A bulky cargo collagen and the ER-resident chaperon BiP were transported into Anaplasma inclusions, and several ER stress marker genes were not up-regulated in Anaplasma-infected cells. Furthermore, EgeA transfection reduced collagen overexpression-induced BiP upregulation. These results suggest that by binding to the two ERES proteins, EgeA redirects the cargo-adapted ERES to pathogen-occupied inclusions and reduces ERES congestion, which facilitates Anaplasma nutrient acquisition and reduces ER stress for Anaplasma survival and proliferation.


Assuntos
Anaplasma phagocytophilum , Proteínas de Bactérias , Retículo Endoplasmático , Complexo de Golgi , Anaplasma phagocytophilum/metabolismo , Anaplasma phagocytophilum/patogenicidade , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Golgi/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/microbiologia , Animais , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Interações Hospedeiro-Patógeno
17.
Nat Commun ; 15(1): 6845, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39122737

RESUMO

Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Retículo Endoplasmático , Peptídeo 1 Semelhante ao Glucagon , Proteínas Nogo , Proglucagon , Pró-Proteína Convertase 1 , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Retículo Endoplasmático/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Insulina/metabolismo , Resistência à Insulina , Intestinos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nogo/metabolismo , Proteínas Nogo/genética , Proglucagon/metabolismo , Proglucagon/genética , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 1/genética , Ligação Proteica , Proteólise
18.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136544

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Diferenciação Celular , Mitose , Osteoblastos/citologia , Osteoblastos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Divisão Celular Assimétrica , Lisossomos/metabolismo , Centrossomo/metabolismo , Antígenos CD34/metabolismo , Complexo de Golgi/metabolismo , Divisão Celular
19.
Elife ; 122024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196607

RESUMO

Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.


Assuntos
Retículo Endoplasmático , Neurônios , Transporte Proteico , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/toxicidade , Toxinas Botulínicas Tipo A/genética , Ratos , Complexo de Golgi/metabolismo , Linhagem Celular , Citosol/metabolismo
20.
J Morphol ; 285(9): e21765, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39152664

RESUMO

Rotifers possess complex morphologies despite their microscopic size and simple appearance. Part of this complexity is hidden in the structure of their organs, which may be cellular or syncytial. Surprisingly, organs that are cellular in one taxon can be syncytial in another. Pedal glands are widespread across Rotifera and function in substrate attachment and/or egg brooding. These glands are normally absent in Asplanchna, which lack feet and toes that function as outlets for pedal glandular secretions in other rotifers. Here, we describe the ultrastructure of a pedal gland that is singular and syncytial in Asplanchna aff. herricki, but is normally paired and cellular in all other rotifers. Asplanchna aff. herricki has a single large pedal gland that is active and secretory; it has a bipartite, binucleate, syncytial body and a cytosol filled with rough endoplasmic reticulum, Golgi, and several types of secretory vesicles. The most abundant vesicle type is large and contains a spherical electron-dense secretion that appears to be produced through homotypic fusion of condensing vesicles produced by the Golgi. The vesicles appear to undergo a phase transition from condensed to decondensed along their pathway toward the gland lumen. Decondensation changes the contents to a mucin-like matrix that is eventually exocytosed in a "kiss-and-run" fashion with the plasma membrane of the gland lumen. Exocytosed mucus enters the gland lumen and exits through an epithelial duct that is an extension of the syncytial integument. This results in mucus that extends from the rotifer as a long string as the animal swims through the water. The function of this mucus is unknown, but we speculate it may function in temporary attachment, prey capture, or floatation.


Assuntos
Rotíferos , Animais , Rotíferos/ultraestrutura , Rotíferos/anatomia & histologia , Glândulas Exócrinas/ultraestrutura , Glândulas Exócrinas/anatomia & histologia , Vesículas Secretórias/ultraestrutura , Complexo de Golgi/ultraestrutura , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA