Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 278: 126427, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955101

RESUMO

Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.


Assuntos
Corantes Fluorescentes , Formaldeído , Complexo de Golgi , Malondialdeído , Formaldeído/química , Formaldeído/análise , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Corantes Fluorescentes/química , Humanos , Malondialdeído/análise , Malondialdeído/química , Limite de Detecção , Análise de Alimentos/métodos , Células HeLa , Imagem Óptica , Hidrazinas/química , Hidrazinas/análise , Contaminação de Alimentos/análise
2.
Talanta ; 278: 126497, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955104

RESUMO

Unveiling the intricate relationship between cancer and Golgi viscosity remains an arduous endeavor, primarily due to the lack of Golgi-specific fluorescent probes tailored for viscosity measurement. Considering this formidable obstacle, we have triumphed over the challenge by devising a bespoke Golgi-specific viscosity probe, aptly named GOL-V. This ingenious innovation comprises the viscosity rotor BODIPY intricately tethered to the Golgi-targeting moiety benzsulfamide. GOL-V exhibits remarkable sensitivity to fluctuations in viscosity, the fluorescence intensity of GOL-V increased 114-fold when the viscosity value was increased from 2.63 to 937.28 cP. Owing to its remarkable capacity to suppress the TICT state under conditions of heightened viscosity. Moreover, its efficacy in sensitively monitoring Golgi viscosity alterations within living cells is also very significant. Astonishingly, our endeavors have culminated in not only the visualization of Golgi viscosity at the cellular and tissue levels but also in the clinical tissue samples procured from cancer patients. Harnessing the prowess of GOL-V, we have successfully demonstrated that Golgi viscosity could serve as a discerning marker for detecting the presence of cancer. The convergence of these exceptional attributes firmly establishes GOL-V as an immensely potent instrument, holding immense potential in the realm of cancer diagnosis.


Assuntos
Corantes Fluorescentes , Complexo de Golgi , Neoplasias , Humanos , Complexo de Golgi/metabolismo , Complexo de Golgi/química , Viscosidade , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Neoplasias/diagnóstico , Compostos de Boro/química , Compostos de Boro/síntese química , Imagem Óptica
3.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110034

RESUMO

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Assuntos
Proteínas do Envelope de Coronavírus , Citoplasma , SARS-CoV-2 , Humanos , Motivos de Aminoácidos , Proteínas do Envelope de Coronavírus/química , Proteínas do Envelope de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Guanilato Quinases/metabolismo , Domínios PDZ , Ligação Proteica , Conformação Proteica , Transporte Proteico , SARS-CoV-2/química , SARS-CoV-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA