Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.312
Filtrar
1.
Biochemistry ; 63(9): 1206-1213, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38587893

RESUMO

Quinone analogue molecules, functioning as herbicides, bind to the secondary quinone site, QB, in type-II photosynthetic reaction centers, including those from purple bacteria (PbRC). Here, we investigated the impact of herbicide binding on electron transfer branches, using herbicide-bound PbRC crystal structures and employing the linear Poisson-Boltzmann equation. In contrast to urea and phenolic herbicides [Fufezan, C. Biochemistry 2005, 44, 12780-12789], binding of atrazine and triazine did not cause significant changes in the redox-potential (Em) values of the primary quinone (QA) in these crystal structures. However, a slight Em difference at the bacteriopheophytin in the electron transfer inactive branch (HM) was observed between the S(-)- and R(+)-triazine-bound PbRC structures. This discrepancy is linked to variations in the protonation pattern of the tightly coupled Glu-L212 and Glu-H177 pairs, crucial components of the proton uptake pathway in native PbRC. These findings suggest the existence of a QB-mediated link between the electron transfer inactive HM and the proton uptake pathway in PbRCs.


Assuntos
Atrazina , Herbicidas , Complexo de Proteínas do Centro de Reação Fotossintética , Triazinas , Herbicidas/química , Herbicidas/metabolismo , Atrazina/química , Atrazina/metabolismo , Transporte de Elétrons , Triazinas/química , Triazinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Oxirredução , Modelos Moleculares , Rhodobacter sphaeroides/metabolismo , Cristalografia por Raios X
2.
J Phys Chem B ; 128(18): 4315-4324, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38687467

RESUMO

Excess energy absorbed by photosystems (PSs) can result in photoinduced oxidative damage. Transfer of such energy within the core pigments of the reaction center in the form of triplet excitation is important in regulating and preserving the functionality of PSs. In the bacterial reaction center (BRC), the special pair (P) is understood to act as the electron donor in a photoinduced charge transfer process, triggering the charge separation process through the photoactive branch A pigments that experience a higher polarizing environment. At this work, triplet excitation energy transfer (TEET) in BRC is studied using a computational perspective to gain insights into the roles of the dielectric environment and interpigment orientations. We find in agreement with experimental observations that TEET proceeds through branch B. The TEET process toward branch B pigment is found to be significantly faster than the hypothetical process proceeding through branch A pigments with ps and ms time scales, respectively. Our calculations find that conformational differences play a major role in this branch asymmetry in TEET, where the dielectric environment asymmetry plays only a secondary role in directing the TEET to proceed through branch B. We also address TEET processes asserting the role of carotenoid as the final triplet energy acceptor and in a mutant form, where the branch pigments adjacent to P are replaced by bacteriopheophytins. The necessary electronic excitation energies and electronic state couplings are calculated by the recently developed polarization-consistent framework combining a screened range-separated hybrid functional and a polarizable continuum mode. The polarization-consistent potential energy surfaces are used to parametrize the quantum mechanical approach, implementing Fermi's golden rule expression of the TEET rate calculations.


Assuntos
Transferência de Energia , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Teoria da Densidade Funcional
3.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540731

RESUMO

A Type I reaction center (RC) (Fe-S type, ferredoxin reducing) is found in several phyla containing anoxygenic phototrophic bacteria. These include the heliobacteria (HB), the green sulfur bacteria (GSB), and the chloracidobacteria (CB), for which high-resolution homodimeric RC-photosystem (PS) structures have recently appeared. The 2.2-Å X-ray structure of the RC-PS of Heliomicrobium modesticaldum revealed that the core PshA apoprotein (PshA-1 and PshA-2 homodimeric pair) exhibits a structurally conserved PSI arrangement comprising five C-terminal transmembrane α-helices (TMHs) forming the RC domain and six N-terminal TMHs coordinating the light-harvesting (LH) pigments. The Hmi. modesticaldum structure lacked quinone molecules, indicating that electrons were transferred directly from the A0 (81-OH-chlorophyll (Chl) a) acceptor to the FX [4Fe-4S] component, serving as the terminal RC acceptor. A pair of additional TMHs designated as Psh X were also found that function as a low-energy antenna. The 2.5-Å resolution cryo-electron microscopy (cryo-EM) structure for the RC-PS of the green sulfur bacterium Chlorobaculum tepidum included a pair of Fenna-Matthews-Olson protein (FMO) antennae, which transfer excitations from the chlorosomes to the RC-PS (PscA-1 and PscA-2) core. A pair of cytochromes cZ (PscC) molecules was also revealed, acting as electron donors to the RC bacteriochlorophyll (BChl) a' special pair, as well as PscB, housing the [4Fe-4S] cluster FA and FB, and the associated PscD protein. While the FMO components were missing from the 2.6-Å cryo-EM structure of the Zn- (BChl) a' special pair containing RC-PS of Chloracidobacterium thermophilum, a unique architecture was revealed that besides the (PscA)2 core, consisted of seven additional subunits including PscZ in place of PscD, the PscX and PscY cytochrome c serial electron donors and four low mol. wt. subunits of unknown function. Overall, these diverse structures have revealed that (i) the HB RC-PS is the simplest light-energy transducing complex yet isolated and represents the closest known homolog to a common homodimeric RC-PS ancestor; (ii) the symmetrically localized Ca2+-binding sites found in each of the Type I homodimeric RC-PS structures likely gave rise to the analogously positioned Mn4CaO5 cluster of the PSII RC and the TyrZ RC donor site; (iii) a close relationship between the GSB RC-PS and the PSII Chl proteins (CP)43 and CP47 was demonstrated by their strongly conserved LH-(B)Chl localizations; (iv) LH-BChls of the GSB-RC-PS are also localized in the conserved RC-associated positions of the PSII ChlZ-D1 and ChlZ-D2 sites; (v) glycosylated carotenoids of the GSB RC-PS are located in the homologous carotenoid-containing positions of PSII, reflecting an O2-tolerance mechanism capable of sustaining early stages in the evolution of oxygenic photosynthesis. In addition to the close relationships found between the homodimeric RC-PS and PSII, duplication of the gene encoding the ancestral Type I RC apoprotein, followed by genetic divergence, may well account for the appearance of the heterodimeric Type I and Type II RCs of the extant oxygenic phototrophs. Accordingly, the long-held view that PSII arose from the anoxygenic Type II RC is now found to be contrary to the new evidence provided by Type I RC-PS homodimer structures, indicating that the evolutionary origins of anoxygenic Type II RCs, along with their distinct antenna rings are likely to have been preceded by the events that gave rise to their oxygenic counterparts.


Assuntos
Chlorobi , Complexo de Proteínas do Centro de Reação Fotossintética , Chlorobi/química , Chlorobi/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Microscopia Crioeletrônica , Bactérias/metabolismo , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo
4.
Nat Microbiol ; 9(3): 712-726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443574

RESUMO

Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.


Assuntos
Haloferax volcanii , Complexo de Proteínas do Centro de Reação Fotossintética , Filogenia , Divisão Celular , Haloferax volcanii/genética , Fotossíntese
5.
Nat Microbiol ; 9(3): 698-711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443575

RESUMO

Cell division in all domains of life requires the orchestration of many proteins, but in Archaea most of the machinery remains poorly characterized. Here we investigate the FtsZ-based cell division mechanism in Haloferax volcanii and find proteins containing photosynthetic reaction centre (PRC) barrel domains that play an essential role in archaeal cell division. We rename these proteins cell division protein B 1 (CdpB1) and CdpB2. Depletions and deletions in their respective genes cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1 and CdpB2 mutant strains revealed an unusually disordered divisome that is not organized into a distinct ring-like structure. Biochemical analysis shows that SepF forms a tripartite complex with CdpB1/2 and crystal structures suggest that these two proteins might form filaments, possibly aligning SepF and the FtsZ2 ring during cell division. Overall our results indicate that PRC-domain proteins play essential roles in FtsZ-based cell division in Archaea.


Assuntos
Haloferax volcanii , Complexo de Proteínas do Centro de Reação Fotossintética , Divisão Celular , Citoesqueleto , Haloferax volcanii/genética , Microscopia de Fluorescência
6.
Plant Cell Environ ; 47(6): 2240-2257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482712

RESUMO

Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Proteínas de Membrana , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ferredoxinas/metabolismo , Mutação , Oxirredução , Plastocianina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética
7.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473924

RESUMO

The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/metabolismo , Transporte de Elétrons , Elétrons , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Oxirredução , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
8.
Photosynth Res ; 160(1): 17-29, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407779

RESUMO

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Synechocystis , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Bactérias/metabolismo , Espectrometria de Fluorescência
9.
mSystems ; 9(3): e0131123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376261

RESUMO

During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.


Assuntos
Bacterioclorofilas , Complexo de Proteínas do Centro de Reação Fotossintética , Bacterioclorofilas/metabolismo , Espécies Reativas de Oxigênio , Islândia , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Bactérias/metabolismo , Oxigênio/metabolismo
10.
J Phys Chem B ; 128(3): 731-743, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198639

RESUMO

The exciton states on the smallest type-I photosynthetic reaction center complex of a green sulfur bacterium Chlorobaculum tepidum (GsbRC) consisting of 26 bacteriochlorophylls a (BChl a) and four chlorophylls a (Chl a) located on the homodimer of two PscA reaction center polypeptides were investigated. This analysis involved the study of exciton states through a combination of theoretical modeling and the genetic removal of BChl a pigments at eight sites. (1) A theoretical model of the pigment assembly exciton state on GsbRC was constructed using Poisson TrESP (P-TrESP) and charge density coupling (CDC) methods based on structural information. The model reproduced the experimentally obtained absorption spectrum, circular dichroism spectrum, and excitation transfer dynamics, as well as explained the effects of mutation. (2) Eight BChl a molecules at different locations on the GsbRC were selectively removed by genetic exchange of the His residue, which ligates the central Mg atom of BChl a, with the Leu residue on either one or two PscAs in the RC. His locations are conserved among all type-I RC plant polypeptide, cyanobacteria, and bacteria amino acid sequences. (3) Purified mutant-GsbRCs demonstrated distinct absorption and fluorescence spectra at 77 K, which were different from each other, suggesting successful pigment removal. (4) The same mutations were applied to the constructed theoretical model to analyze the outcomes of these mutations. (5) The combination of theoretical predictions and experimental mutations based on structural information is a new tool for studying the function and evolution of photosynthetic reaction centers.


Assuntos
Chlorobi , Cianobactérias , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Chlorobi/química , Mutação , Cianobactérias/metabolismo , Enxofre/metabolismo , Bacterioclorofilas/química , Proteínas de Bactérias/química
11.
Trends Microbiol ; 32(1): 38-52, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37380557

RESUMO

Bacterial photosynthesis is essential for sustaining life on Earth as it aids in carbon assimilation, atmospheric composition, and ecosystem maintenance. Many bacteria utilize anoxygenic photosynthesis to convert sunlight into chemical energy while producing organic matter. The core machinery of anoxygenic photosynthesis performed by purple photosynthetic bacteria and Chloroflexales is the reaction center-light-harvesting 1 (RC-LH1) pigment-protein supercomplex. In this review, we discuss recent structural studies of RC-LH1 core complexes based on the advancement in structural biology techniques. These studies have provided fundamental insights into the assembly mechanisms, structural variations, and modularity of RC-LH1 complexes across different bacterial species, highlighting their functional adaptability. Understanding the natural architectures of RC-LH1 complexes will facilitate the design and engineering of artificial photosynthetic systems, which can enhance photosynthetic efficiency and potentially find applications in sustainable energy production and carbon capture.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Ecossistema , Fotossíntese , Carbono , Proteínas de Bactérias/metabolismo
12.
Plant Physiol ; 194(2): 1059-1074, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787609

RESUMO

Plants have evolved photosynthetic regulatory mechanisms to maintain homeostasis in response to light changes during diurnal transitions and those caused by passing clouds or by wind. One such adaptation directs photosynthetic electron flow to a cyclic pathway to alleviate excess energy surges. Here, we assign a function to regulatory cysteines of PGR5-like protein 1A (PGRL1A), a constituent of the PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow (CEF) pathway. During step increases from darkness to low light intensity in Arabidopsis (Arabidopsis thaliana), the intermolecular disulfide of the PGRL1A 59-kDa complex was reduced transiently within seconds to the 28-kDa form. In contrast, step increases from darkness to high light stimulated a stable, partially reduced redox state in PGRL1A. Mutations of 2 cysteines in PGRL1A, Cys82 and Cys183, resulted in a constitutively pseudo-reduced state. The mutant displayed higher proton motive force (PMF) and nonphotochemical quenching (NPQ) than the wild type (WT) and showed altered donor and acceptor dynamic flow around PSI. These changes were found to correspond with the redox state of PGRL1A. Continuous light regimes did not affect mutant growth compared to the WT. However, under fluctuating regimes of high light, the mutant showed better growth than the WT. In contrast, in fluctuating regimes of low light, the mutant displayed a growth penalty that can be attributed to constant stimulation of CEF under low light. Treatment with photosynthetic inhibitors indicated that PGRL1A redox state control depends on the penultimate Fd redox state. Our results showed that redox state changes in PGRL1A are crucial to optimize photosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Prótons , Transporte de Elétrons , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Oxirredução , Luz , Arabidopsis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
13.
J Exp Bot ; 75(3): 947-961, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37891008

RESUMO

The production of ATP and NADPH by the light reactions of photosynthesis and their consumption by the Calvin-Benson-Bassham (CBB) cycle and other downstream metabolic reactions requires careful regulation. Environmental shifts perturb this balance, leading to photo-oxidative stress and losses in CO2 assimilation. Imbalances in the production and consumption of ATP and NADPH manifest themselves as transient instability in the chlorophyll fluorescence, P700, electrochromic shift, and CO2 uptake signals recorded on leaves. These oscillations can be induced in wild-type plants by sudden shifts in CO2 concentration or light intensity; however, mutants exhibiting increased oscillatory behaviour have yet to be reported. This has precluded an understanding of the regulatory mechanisms employed by plants to suppress oscillations. Here we show that the Arabidopsis pgr5 mutant, which is deficient in Proton Gradient Regulation 5 (PGR5)-dependent cyclic electron transfer (CET), exhibits increased oscillatory behaviour. In contrast, mutants lacking the NADH-dehydrogenase-like-dependent CET are largely unaffected. The absence of oscillations in the hope2 mutant which, like pgr5, lacks photosynthetic control and exhibits high ATP synthase conductivity, ruled out loss of these photoprotective mechanisms as causes. Instead, we observed slower formation of the proton motive force and, by inference, ATP synthesis in pgr5 following environmental perturbation, leading to the transient reduction of the electron transfer chain and photosynthetic oscillations. PGR5-dependent CET therefore plays a major role in damping the effect of environmental perturbations on photosynthesis to avoid losses in CO2 fixation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Prótons , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , NADP/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Transporte de Elétrons , Arabidopsis/metabolismo , Luz , Trifosfato de Adenosina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
14.
Photosynth Res ; 159(2-3): 261-272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032488

RESUMO

In photosynthetic bacteria, the absorbed light drives the canonical cyclic electron transfer between the reaction center and the cytochrome bc1 complexes via the pools of mobile electron carriers. If kinetic or structural barriers hinder the participation of the bc1 complex in the cyclic flow of electrons, then the pools of mobile redox agents must supply the electrons for the multiple turnovers of the reaction center. These conditions were achieved by continuous high light excitation of intact cells of bacterial strains Rba. sphaeroides and Rvx. gelatinosus with depleted donor side cytochromes c2 (cycA) and tetraheme cytochrome subunit (pufC), respectively. The gradual oxidation by ferricyanide further reduced the availability of electron donors to pufC. Electron transfer through the reaction center was tracked by absorption change and by induction and relaxation of the fluorescence of the bacteriochlorophyll dimer. The rate constants of the electron transfer (~ 3 × 103 s‒1) from the mobile donors of Rvx. gelatinosus bound either to the RC (pufC) or to the tetraheme subunit (wild type) were similar. The electrons transferred through the reaction center dimer were supplied entirely by the donor pool; their number amounted to about 5 in wild type Rvx. gelatinosus and decreased to 1 in pufC oxidized by ferricyanide. Fluorescence yield was measured as a function of the oxidized fraction of the dimer and its complex shape reveals the contribution of two competing processes: the migration of the excitation energy among the photosynthetic units and the availability of electron donors to the oxidized dimer. The experimental results were simulated and rationalized by a simple kinetic model of the two-electron cycling of the acceptor side combined with aperiodic one-electron redox function of the donor side.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Humanos , Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Citocromos/metabolismo , Oxirredução , Transporte de Elétrons , Citocromos c/metabolismo , Proteobactérias/metabolismo , Ferricianetos , Doadores de Tecidos , Cinética , Rhodobacter sphaeroides/metabolismo
15.
Chemphyschem ; 25(2): e202300335, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37953408

RESUMO

A new tractable linear electronic transition dipole moment time correlation function (ETDMTCF) that accurately accounts for electronic dephasing, asymmetry, and width of 1-phonon profile, which the zero-phonon line (ZPL) contributes to it, in Rhodopseudomonas viridis bacterial reaction center is derived. This time correlation function proves to be superior to other frequency-domain expressions in case of strong electron-phonon coupling (which is often the case in bacterial RCs and pigment-protein complexes), many vibrational modes involved, and high temperature, whereby more vibronic and electronic (sequence) transitions would arise. The Fourier transform of this ETDMTCF leads to asymmetric multiphonon profiles composed of Lorentzian distribution and Gaussian distribution on the high- and low-energy sides, respectively, whereby the overtone widths fold themselves with that of the one-phonon profile. This ETDMTCF also features expedient computation in large systems using asymmetric phonon profiles to account correctly for dephasing and pigment-protein interaction (electron-phonon coupling). The derived ETDMTCF allows computing all nonlinear optical signals in both time and frequency domains, through the nonlinear dipole moment time correlation functions (as guided by nonlinear optical response theory) in line with the eight Liouville space pathways. The linear transition dipole moment time correlation function is of a central value as the nonlinear transition dipole moment time correlation function is expressed in terms of the linear transition dipole moment time correlation function, derived herein. One of the great advantages of presenting this ETDMTCF is its applicability to nonlinear transition dipole moment time correlation functions in line with the eight Liouville space pathways needed in computing nonlinear signals. As such, there is more to the utility and applicability of the presented ETDMTCF besides computational expediency and efficiency. Results show good agreement with the reported literature. The intimate connection between a one-phonon profile and the corresponding bath spectral density in photosynthetic complexes is discussed.


Assuntos
Bactérias , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/química
16.
Biochemistry (Mosc) ; 88(10): 1417-1427, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105014

RESUMO

In the bioenergetics studies, the direct electrometric method played an important role. This method is based on measuring the electrical potential difference (Δψ) between two compartments of the experimental cell generated by some membrane proteins. These proteins are incorporated into closed lipid-protein membrane vesicles associated with an artificial lipid membrane that separates the compartments. The very existence of such proteins able to generate Δψ was one of the consequences of Peter Mitchell's chemiosmotic concept. The discovery and investigation of their functioning contributed to the recognition of this concept and, eventually the well-deserved awarding of the Nobel Prize to P. Mitchell. Lel A. Drachev (1926-2022) was one of the main authors of the direct electrometrical method. With his participation, key studies were carried out on the electrogenesis of photosynthetic and respiratory membrane proteins, including bacteriorhodopsin, visual rhodopsin, photosynthetic bacterial reaction centers, cytochrome oxidase and others.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Bactérias , Complexo IV da Cadeia de Transporte de Elétrons , Lipídeos
17.
Phys Chem Chem Phys ; 25(41): 28437-28451, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843877

RESUMO

A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz/química , Metodologias Computacionais , Teoria Quântica , Complexo de Proteínas do Centro de Reação Fotossintética/química , DNA
18.
Elife ; 122023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796246

RESUMO

Using the X-ray free-electron laser (XFEL) structures of the photosynthetic reaction center from Blastochloris viridis that show light-induced time-dependent structural changes (Dods et al., (2021) Nature 589, 310-314), we investigated time-dependent changes in the energetics of the electron-transfer pathway, considering the entire protein environment of the protein structures and titrating the redox-active sites in the presence of all fully equilibrated titratable residues. In the dark and charge separation intermediate structures, the calculated redox potential (Em) values for the accessory bacteriochlorophyll and bacteriopheophytin in the electron-transfer-active branch (BL and HL) are higher than those in the electron-transfer-inactive branch (BM and HM). However, the stabilization of the charge-separated [PLPM]•+HL•- state owing to protein reorganization is not clearly observed in the Em(HL) values in the charge-separated 5 ps ([PLPM]•+HL•- state) structure. Furthermore, the expected chlorin ring deformation upon formation of HL•- (saddling mode) is absent in the HL geometry of the original 5 ps structure. These findings suggest that there is no clear link between the time-dependent structural changes and the electron-transfer events in the XFEL structures.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Elétrons , Transporte de Elétrons , Lasers
19.
J Phys Chem B ; 127(33): 7283-7290, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556839

RESUMO

Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/metabolismo , Peptídeos , Fotossíntese , Transferência de Energia , Proteínas de Bactérias/química
20.
J Phys Chem Lett ; 14(31): 7038-7044, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524046

RESUMO

Multiscale molecular modeling is utilized to predict optical absorption and circular dichroism spectra of two single-point mutants of the Fenna-Matthews-Olson photosynthetic pigment-protein complex. The modeling approach combines classical molecular dynamics simulations with structural refinement of photosynthetic pigments and calculations of their excited states in a polarizable protein environment. The only experimental input to the modeling protocol is the X-ray structure of the wild-type protein. The first-principles modeling reproduces changes in the experimental optical spectra of the considered mutants, Y16F and Q198V. Interestingly, the Q198V mutation has a negligible effect on the electronic properties of the targeted bacteriochlorophyll a pigment. Instead, the electronic properties of several other pigments respond to this mutation. The molecular modeling demonstrates that a single-point mutation can induce long-range effects on the protein structure, while extensive structural changes near a pigment do not necessarily lead to significant changes in the electronic properties of that pigment.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Simulação de Dinâmica Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA