Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.034
Filtrar
1.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849759

RESUMO

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Assuntos
Luz , Phaseolus , Phaseolus/fisiologia , Phaseolus/metabolismo , Phaseolus/enzimologia , Fosforilação , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Temperatura Baixa , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Via de Pentose Fosfato/fisiologia , Ativação Enzimática , Fotossíntese/fisiologia , Estresse Fisiológico , Proteínas Serina-Treonina Quinases/metabolismo
2.
Nat Commun ; 15(1): 4999, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866834

RESUMO

Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.


Assuntos
Microscopia Crioeletrônica , Criptófitas , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Criptófitas/metabolismo , Fotossíntese , Modelos Moleculares , Transferência de Energia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Clorofila A/metabolismo , Clorofila A/química
3.
J Phys Chem Lett ; 15(24): 6398-6408, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861672

RESUMO

Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation. Here, we show that a synergistic combination of first-principles calculations and ultrafast spectroscopy can give unprecedented insight into the EET pathways occurring within LHCs. We measured the transient absorption spectra of the minor CP29 complex of plants and of two mutants, systematically mapping the kinetic components seen in experiments to the simulated exciton dynamics. With our combined strategy, we show that EET in CP29 is surprisingly robust to the changes in the exciton states induced by mutations, explaining the versatility of plant LHCs.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz , Mutação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Cinética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II
4.
Nat Commun ; 15(1): 5211, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890314

RESUMO

Photosystem II (PSII) catalyzes water oxidation and plastoquinone reduction by utilizing light energy. It is highly susceptible to photodamage under high-light conditions and the damaged PSII needs to be restored through a process known as the PSII repair cycle. The detailed molecular mechanism underlying the PSII repair process remains mostly elusive. Here, we report biochemical and structural features of a PSII-repair intermediate complex, likely arrested at an early stage of the PSII repair process in the green alga Chlamydomonas reinhardtii. The complex contains three protein factors associated with a damaged PSII core, namely Thylakoid Enriched Factor 14 (TEF14), Photosystem II Repair Factor 1 (PRF1), and Photosystem II Repair Factor 2 (PRF2). TEF14, PRF1 and PRF2 may facilitate the release of the manganese-stabilizing protein PsbO, disassembly of peripheral light-harvesting complexes from PSII and blockage of the QB site, respectively. Moreover, an α-tocopherol quinone molecule is located adjacent to the heme group of cytochrome b559, potentially fulfilling a photoprotective role by preventing the generation of reactive oxygen species.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Tilacoides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Grupo dos Citocromos b/metabolismo , Grupo dos Citocromos b/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Luz
5.
Biochem J ; 481(13): 823-838, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38780411

RESUMO

The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Multimerização Proteica , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicolipídeos/metabolismo , Glicolipídeos/química , Modelos Moleculares , Cristalografia por Raios X
6.
Biochim Biophys Acta Bioenerg ; 1865(3): 149050, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38806091

RESUMO

Purple phototrophic bacteria possess light-harvesting 1 and reaction center (LH1-RC) core complexes that play a key role in converting solar energy to chemical energy. High-resolution structures of LH1-RC and RC complexes have been intensively studied and have yielded critical insight into the architecture and interactions of their proteins, pigments, and cofactors. Nevertheless, a detailed picture of the structure and assembly of LH1-only complexes is lacking due to the intimate association between LH1 and the RC. To study the intrinsic properties and structure of an LH1-only complex, a genetic system was constructed to express the Thermochromatium (Tch.) tepidum LH1 complex heterologously in a modified Rhodospirillum rubrum mutant strain. The heterologously expressed Tch. tepidum LH1 complex was isolated in a pure form free of the RC and exhibited the characteristic absorption properties of Tch. tepidum. Cryo-EM structures of the LH1-only complexes revealed a closed circular ring consisting of either 14 or 15 αß-subunits, making it the smallest completely closed LH1 complex discovered thus far. Surprisingly, the Tch. tepidum LH1-only complex displayed even higher thermostability than that of the native LH1-RC complex. These results reveal previously unsuspected plasticity of the LH1 complex, provide new insights into the structure and assembly of the LH1-RC complex, and show how molecular genetics can be exploited to study membrane proteins from phototrophic organisms whose genetic manipulation is not yet possible.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Chromatiaceae/metabolismo , Chromatiaceae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
7.
J Phys Chem B ; 128(21): 5201-5217, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756003

RESUMO

In this study, the site energy fluctuations, energy transfer dynamics, and some spectroscopic properties of the minor light-harvesting complex CP24 in a membrane environment were determined. For this purpose, a 3 µs-long classical molecular dynamics simulation was performed for the CP24 complex. Furthermore, using the density functional tight binding/molecular mechanics molecular dynamics (DFTB/MM MD) approach, we performed excited state calculations for the chlorophyll a and chlorophyll b molecules in the complex starting from five different positions of the MD trajectory. During the extended simulations, we observed variations in the site energies of the different sets as a result of the fluctuating protein environment. In particular, a water coordination to Chl-b 608 occurred only after about 1 µs in the simulations, demonstrating dynamic changes in the environment of this pigment. From the classical and the DFTB/MM MD simulations, spectral densities and the (time-dependent) Hamiltonian of the complex were determined. Based on these results, three independent strongly coupled chlorophyll clusters were revealed within the complex. In addition, absorption and fluorescence spectra were determined together with the exciton relaxation dynamics, which reasonably well agrees with experimental time scales.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Simulação de Dinâmica Molecular , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/química , Transferência de Energia , Clorofila A/química , Teoria da Densidade Funcional , Espectrometria de Fluorescência
8.
J Phys Chem Lett ; 15(22): 5838-5847, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38788163

RESUMO

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.


Assuntos
Diatomáceas , Transferência de Energia , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Diatomáceas/química , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Espectrometria de Fluorescência , Clorofila/química
9.
Commun Biol ; 7(1): 560, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734819

RESUMO

Photosynthetic cryptophytes are eukaryotic algae that utilize membrane-embedded chlorophyll a/c binding proteins (CACs) and lumen-localized phycobiliproteins (PBPs) as their light-harvesting antennae. Cryptophytes go through logarithmic and stationary growth phases, and may adjust their light-harvesting capability according to their particular growth state. How cryptophytes change the type/arrangement of the photosynthetic antenna proteins to regulate their light-harvesting remains unknown. Here we solve four structures of cryptophyte photosystem I (PSI) bound with CACs that show the rearrangement of CACs at different growth phases. We identify a cryptophyte-unique protein, PsaQ, which harbors two chlorophyll molecules. PsaQ specifically binds to the lumenal region of PSI during logarithmic growth phase and may assist the association of PBPs with photosystems and energy transfer from PBPs to photosystems.


Assuntos
Criptófitas , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Criptófitas/metabolismo , Criptófitas/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Proteínas de Ligação à Clorofila/genética , Fotossíntese , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética
10.
Nat Commun ; 15(1): 4437, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789432

RESUMO

Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.


Assuntos
Carotenoides , Chlamydomonas reinhardtii , Transferência de Energia , Chlamydomonas reinhardtii/metabolismo , Carotenoides/metabolismo , Carotenoides/química , Tilacoides/metabolismo , Fotossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Clorofila A/metabolismo , Clorofila A/química , Luz , Cinética , Clorofila/metabolismo , Chlamydomonas/metabolismo
11.
J Am Chem Soc ; 146(21): 14905-14914, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38759103

RESUMO

The ability to harvest light effectively in a changing environment is necessary to ensure efficient photosynthesis and crop growth. One mechanism, known as qE, protects photosystem II (PSII) and regulates electron transfer through the harmless dissipation of excess absorbed photons as heat. This process involves reversible clustering of the major light-harvesting complexes of PSII (LHCII) in the thylakoid membrane and relies upon the ΔpH gradient and the allosteric modulator protein PsbS. To date, the exact role of PsbS in the qE mechanism has remained elusive. Here, we show that PsbS induces hydrophobic mismatch in the thylakoid membrane through dynamic rearrangement of lipids around LHCII leading to observed membrane thinning. We found that upon illumination, the thylakoid membrane reversibly shrinks from around 4.3 to 3.2 nm, without PsbS, this response is eliminated. Furthermore, we show that the lipid digalactosyldiacylglycerol (DGDG) is repelled from the LHCII-PsbS complex due to an increase in both the pKa of lumenal residues and in the dipole moment of LHCII, which allows for further conformational change and clustering in the membrane. Our results suggest a mechanistic role for PsbS as a facilitator of a hydrophobic mismatch-mediated phase transition between LHCII-PsbS and its environment. This could act as the driving force to sort LHCII into photoprotective nanodomains in the thylakoid membrane. This work shows an example of the key role of the hydrophobic mismatch process in regulating membrane protein function in plants.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexo de Proteína do Fotossistema II , Tilacoides , Tilacoides/metabolismo , Tilacoides/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Galactolipídeos/metabolismo , Galactolipídeos/química , Luz
12.
Nat Plants ; 10(6): 874-879, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816499

RESUMO

Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function.


Assuntos
Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Avena/metabolismo , Avena/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Plântula/genética , Plântula/metabolismo
13.
Nat Commun ; 15(1): 4535, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806516

RESUMO

Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 Å using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery.


Assuntos
Microscopia Crioeletrônica , Criptófitas , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Criptófitas/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Proteínas de Ligação à Clorofila/química , Multimerização Proteica , Clorofila A/metabolismo , Clorofila A/química , Modelos Moleculares , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
14.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791114

RESUMO

Photosynthesis, as the primary source of energy for all life forms, plays a crucial role in maintaining the global balance of energy, entropy, and enthalpy in living organisms. Among its various building blocks, photosystem I (PSI) is responsible for light-driven electron transfer, crucial for generating cellular reducing power. PSI acts as a light-driven plastocyanin-ferredoxin oxidoreductase and is situated in the thylakoid membranes of cyanobacteria and the chloroplasts of eukaryotic photosynthetic organisms. Comprehending the structure and function of the photosynthetic machinery is essential for understanding its mode of action. New insights are offered into the structure and function of PSI and its associated light-harvesting proteins, with a specific focus on the remarkable structural conservation of the core complex and high plasticity of the peripheral light-harvesting complexes.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Cianobactérias/metabolismo , Modelos Moleculares , Transporte de Elétrons
15.
J Photochem Photobiol B ; 256: 112941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763078

RESUMO

Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.


Assuntos
Chlamydomonas reinhardtii , Complexos de Proteínas Captadores de Luz , Pressão Osmótica , Complexo de Proteína do Fotossistema II , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Fotossíntese/efeitos da radiação , Luz , Clorofila/metabolismo
16.
Photochem Photobiol Sci ; 23(5): 871-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564166

RESUMO

Exchange of B800 bacteriochlorophyll (BChl) a in light-harvesting complex 2 (LH2) is promising for a better understanding of the mechanism on intracomplex excitation energy transfer of this protein. Structural and spectroscopic properties of LH2 lacking B800 BChl a (B800-depleted LH2), which is an important intermediate protein in the B800 exchange, will be useful to tackle the energy transfer mechanism in LH2 by the B800 exchange strategy. In this study, we report a unique spectral change of B800-depleted LH2, in which the Qy absorption band of B800 BChl a is automatically recovered under neutral pH conditions. This spectral change was facilitated by factors for destabilization of LH2, namely, a detergent, lauryl dimethylamine N-oxide, and an increase in temperature. Spectral analyses in the preparation of an LH2 variant denoted as B800-recovered LH2 indicated that most BChl a that was released by decomposition of part of B800-depleted LH2 was a source of the production of B800-recovered LH2. Characterization of purified B800-recovered LH2 demonstrated that its spectroscopic and structural features was quite similar to those of native LH2. The current results indicate that the recovery of the B800 Qy band of B800-depleted LH2 originates from the combination of decomposition of part of B800-depleted LH2 and in situ reconstitution of BChl a into the B800 binding pockets of residual B800-depleted LH2, resulting in the formation of stable B800-recovered LH2.


Assuntos
Bacterioclorofila A , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Concentração de Íons de Hidrogênio , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura , Dimetilaminas/química , Transferência de Energia
17.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639311

RESUMO

Chlorophyll proteins (CPs) are the workhorses of biological photosynthesis, working together to absorb solar energy, transfer it to chemically active reaction centers, and control the charge-separation process that drives its storage as chemical energy. Yet predicting CP optical and electronic properties remains a serious challenge, driven by the computational difficulty of treating large, electronically coupled molecular pigments embedded in a dynamically structured protein environment. To address this challenge, we introduce here an analysis tool called PigmentHunter, which automates the process of preparing CP structures for molecular dynamics (MD), running short MD simulations on the nanoHUB.org science gateway, and then using electrostatic and steric analysis routines to predict optical absorption, fluorescence, and circular dichroism spectra within a Frenkel exciton model. Inter-pigment couplings are evaluated using point-dipole or transition-charge coupling models, while site energies can be estimated using both electrostatic and ring-deformation approaches. The package is built in a Jupyter Notebook environment, with a point-and-click interface that can be used either to manually prepare individual structures or to batch-process many structures at once. We illustrate PigmentHunter's capabilities with example simulations on spectral line shapes in the light harvesting 2 complex, site energies in the Fenna-Matthews-Olson protein, and ring deformation in photosystems I and II.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/química , Dicroísmo Circular , Fotossíntese , Simulação de Dinâmica Molecular
18.
Photosynth Res ; 160(2-3): 87-96, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625595

RESUMO

The primary photochemical reaction of photosynthesis in green sulfur bacteria occurs in the homodimer PscA core proteins by a special chlorophyll pair. The light induced excited state of the special pair producing P840+ is rapidly reduced by electron transfer from one of the two PscC subunits. Molecular dynamics (MD) simulations are combined with bioinformatic tools herein to provide structural and dynamic insight into the complex between the two PscA core proteins and the two PscC subunits. The microscopic dynamic model involves extensive sampling at atomic resolution and at a cumulative time-scale of 22µs and reveals well defined protein-protein interactions. The membrane complex is composed of the two PscA and the two PscC subunits and macroscopic connections are revealed within a putative electron transfer pathway from the PscC subunit to the special pair P840 located within the PscA subunits. Our results provide a structural basis for understanding the electron transport to the homodimer RC of the green sulfur bacteria. The MD based approach can provide the basis to further probe the PscA-PscC complex dynamics and observe electron transfer therein at the quantum level. Furthermore, the transmembrane helices of the different PscC subunits exert distinct dynamics in the complex.


Assuntos
Proteínas de Bactérias , Chlorobi , Simulação de Dinâmica Molecular , Transporte de Elétrons , Chlorobi/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Fotossíntese , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
20.
Photosynth Res ; 160(2-3): 77-86, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619701

RESUMO

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.


Assuntos
Complexo de Proteína do Fotossistema II , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA