Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.389
Filtrar
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639311

RESUMO

Chlorophyll proteins (CPs) are the workhorses of biological photosynthesis, working together to absorb solar energy, transfer it to chemically active reaction centers, and control the charge-separation process that drives its storage as chemical energy. Yet predicting CP optical and electronic properties remains a serious challenge, driven by the computational difficulty of treating large, electronically coupled molecular pigments embedded in a dynamically structured protein environment. To address this challenge, we introduce here an analysis tool called PigmentHunter, which automates the process of preparing CP structures for molecular dynamics (MD), running short MD simulations on the nanoHUB.org science gateway, and then using electrostatic and steric analysis routines to predict optical absorption, fluorescence, and circular dichroism spectra within a Frenkel exciton model. Inter-pigment couplings are evaluated using point-dipole or transition-charge coupling models, while site energies can be estimated using both electrostatic and ring-deformation approaches. The package is built in a Jupyter Notebook environment, with a point-and-click interface that can be used either to manually prepare individual structures or to batch-process many structures at once. We illustrate PigmentHunter's capabilities with example simulations on spectral line shapes in the light harvesting 2 complex, site energies in the Fenna-Matthews-Olson protein, and ring deformation in photosystems I and II.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/química , Dicroísmo Circular , Fotossíntese , Simulação de Dinâmica Molecular
2.
Photosynth Res ; 160(2-3): 77-86, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619701

RESUMO

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study. Moreover, the analysis uncovered that the excited state of the PSII subunit of the intact membrane possesses a significantly large CT character. The observed notably large magnitude of the excited state CT character may signify the supplementary role of PSII in regulative energy dissipation during iron deficiency.


Assuntos
Complexo de Proteína do Fotossistema II , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
3.
Photosynth Res ; 160(2-3): 87-96, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38625595

RESUMO

The primary photochemical reaction of photosynthesis in green sulfur bacteria occurs in the homodimer PscA core proteins by a special chlorophyll pair. The light induced excited state of the special pair producing P840+ is rapidly reduced by electron transfer from one of the two PscC subunits. Molecular dynamics (MD) simulations are combined with bioinformatic tools herein to provide structural and dynamic insight into the complex between the two PscA core proteins and the two PscC subunits. The microscopic dynamic model involves extensive sampling at atomic resolution and at a cumulative time-scale of 22µs and reveals well defined protein-protein interactions. The membrane complex is composed of the two PscA and the two PscC subunits and macroscopic connections are revealed within a putative electron transfer pathway from the PscC subunit to the special pair P840 located within the PscA subunits. Our results provide a structural basis for understanding the electron transport to the homodimer RC of the green sulfur bacteria. The MD based approach can provide the basis to further probe the PscA-PscC complex dynamics and observe electron transfer therein at the quantum level. Furthermore, the transmembrane helices of the different PscC subunits exert distinct dynamics in the complex.


Assuntos
Proteínas de Bactérias , Chlorobi , Simulação de Dinâmica Molecular , Transporte de Elétrons , Chlorobi/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Fotossíntese , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química
4.
J Phys Chem Lett ; 15(12): 3470-3477, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38512331

RESUMO

The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.


Assuntos
Chloroflexi , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Bacterioclorofilas/metabolismo , Proteínas de Bactérias/química
5.
J Photochem Photobiol B ; 254: 112891, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555841

RESUMO

Chlorosomes of green photosynthetic bacteria are large light-harvesting complexes enabling these organisms to survive at extremely low-light conditions. Bacteriochlorophylls found in chlorosomes self-organize and are ideal candidates for use in biomimetic light-harvesting in artificial photosynthesis and other applications for solar energy utilization. Here we report on the construction and characterization of an artificial antenna consisting of bacteriochlorophyll c co-aggregated with ß-carotene, which is used to extend the light-harvesting spectral range, and bacteriochlorophyll a, which acts as a final acceptor for excitation energy. Efficient energy transfer between all three components was observed by means of fluorescence spectroscopy. The efficiency varies with the ß-carotene content, which increases the average distance between the donor and acceptor in both energy transfer steps. The efficiency ranges from 89 to 37% for the transfer from ß-carotene to bacteriochlorophyll c, and from 93 to 69% for the bacteriochlorophyll c to bacteriochlorophyll a step. A significant part of this study was dedicated to a development of methods for determination of energy transfer efficiency. These methods may be applied also for study of chlorosomes and other pigment complexes.


Assuntos
Bacterioclorofila A , Bacterioclorofilas , Bacterioclorofilas/química , Bacterioclorofila A/química , beta Caroteno , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Transferência de Energia , Fotossíntese
6.
J Phys Chem Lett ; 15(11): 3149-3158, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38478725

RESUMO

We combine site-directed mutagenesis with picosecond time-resolved fluorescence and femtosecond transient absorption (TA) spectroscopies to identify excitation energy transfer (EET) processes between chlorophylls (Chls) and xanthophylls (Xant) in the minor antenna complex CP29 assembled inside nanodiscs, which result in quenching. When compared to WT CP29, a longer lifetime was observed in the A2 mutant, missing Chl a612, which closely interacts with Xant Lutein in site L1. Conversely, a shorter lifetime was obtained in the A5 mutant, in which the interaction between Chl a603 and Chl a609 is strengthened, shifting absorption to lower energy and enhancing Chl-Xant EET. Global analysis of TA data indicated that EET from Chl a Qy to a Car dark state S* is active in both the A2 and A5 mutants and that their rate constants are modulated by mutations. Our study provides experimental evidence that multiple Chl-Xant interactions are involved in the quenching activity of CP29.


Assuntos
Clorofila , Luteína , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia , Xantofilas , Sítios de Ligação , Mutagênese Sítio-Dirigida
7.
J Phys Chem Lett ; 15(9): 2392-2399, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38394035

RESUMO

Fucoxanthin Chlorophyll Protein (FCP) is a Light Harvesting Complex found in diatoms and brown algae. It is particularly interesting for its efficiency in capturing the blue-green part of the light spectrum due to the presence of specific chromophores (fucoxanthin, chlorophyll a, and chlorophyll c). Recently, the crystallographic structure of FCP was solved, revealing the 3D arrangement of the pigments in the protein scaffold. While this information is helpful for interpreting the spectroscopic features of FCP, it has also raised new questions about the potential interactions between fucoxanthin and chlorophyll c. These interactions were suggested by their spatial closeness but have never been experimentally observed. To investigate this possible interaction mechanism, in this work, two-dimensional electronic spectroscopy (2DES) has been applied to study the ultrafast relaxation dynamics of FCP. The experiments captured an instantaneous delocalization of the excitation among fucoxanthin and chlorophyll c, suggesting the presence of a non-negligible coupling between the chromophores.


Assuntos
Clorofila , Xantofilas , Clorofila A , Clorofila/química , Análise Espectral , Xantofilas/química , Complexos de Proteínas Captadores de Luz/química
8.
Environ Microbiol ; 26(2): e16591, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38387883

RESUMO

The ecological success of purple sulfur bacteria (PSB) is linked to their ability to collect near-infrared solar energy by membrane-integrated, pigment-protein photocomplexes. These include a Core complex containing both light-harvesting 1 (LH1) and reaction centre (RC) components (called the LH1-RC photocomplex) present in all PSB and a peripheral light-harvesting complex present in most but not all PSB. In research to explain the unusual absorption properties of the thermophilic purple sulfur bacterium Thermochromatium tepidum, Ca2+ was discovered bound to LH1 polypeptides in its LH1-RC; further work showed that calcium controls both the thermostability and unusual spectrum of the Core complex. Since then, Ca2+ has been found in the LH1-RC photocomplexes of several other PSB, including mesophilic species, but not in the LH1-RC of purple non-sulfur bacteria. Here we focus on four species of PSB-two thermophilic and two mesophilic-and describe how Ca2+ is integrated into and affects their photosynthetic machinery and why this previously overlooked divalent metal is a key nutrient for their ecological success.


Assuntos
Cálcio , Chromatiaceae , Cálcio/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Peptídeos/metabolismo , Chromatiaceae/genética , Chromatiaceae/metabolismo
9.
J Phys Chem Lett ; 15(9): 2499-2510, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38410961

RESUMO

Diatoms are one of the most abundant photosynthetic organisms on earth and contribute largely to atmospheric oxygen production. They contain fucoxanthin and chlorophyll-a/c binding proteins (FCPs) as light-harvesting complexes with a remarkable adaptation to the fluctuating light on ocean surfaces. To understand the basis of the photosynthetic process in diatoms, the excitation energy funneling within FCPs must be probed. A state-of-the-art multiscale analysis within a quantum mechanics/molecular mechanics framework has been employed. To this end, the chlorophyll (Chl) excitation energies within the FCP complex from the diatom Phaeodactylum tricornutum have been determined. The Chl-c excitation energies were found to be 5-fold more susceptible to electric fields than those of Chl-a pigments and thus are significantly lower in FCP than in organic solvents. This finding challenges the general belief that the excitation energy of Chl-c is always higher than that of Chl-a in FCP proteins and reveals that Chl-c molecules are much more sensitive to electric fields within protein scaffolds than in Chl-a pigments. The analysis of the linear absorption spectrum and the two-dimensional electronic spectra of the FCP complex strongly supports these findings and allows us to study the excitation transfer within the FCP complex.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Clorofila/química , Clorofila A/metabolismo , Fotossíntese , Proteínas de Ligação à Clorofila/química , Complexos de Proteínas Captadores de Luz/química
10.
J Am Chem Soc ; 146(6): 3984-3991, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236721

RESUMO

The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll a/c-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model. Spectral analysis reveals the significant contribution of unique fucoxanthin molecules (fucoxanthin-S) in FCPII to the diatom-specific spectrum, and further analysis determines their essential role in excitation-energy transfer to chlorophyll. It was revealed that the specificity of these fucoxanthin-S molecules is caused by the proximity between protomers associated with the tetramerization of FCPII. The findings of this study demonstrate that diatoms employ fucoxanthin-S to harvest energy under the ocean in the absence of long-wavelength sunlight and can provide significant information about the survival strategies of photosynthetic organisms to adjust to their living environment.


Assuntos
Carotenoides , Diatomáceas , Xantofilas , Carotenoides/química , Clorofila A , Diatomáceas/química , Microscopia Crioeletrônica , Subunidades Proteicas/metabolismo , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Transferência de Energia , Proteínas de Ligação à Clorofila/química , Proteínas de Ligação à Clorofila/metabolismo
11.
J Am Chem Soc ; 146(5): 3508-3520, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38286009

RESUMO

Plants are designed to utilize visible light for photosynthesis. Expanding this light absorption toward the far-red could boost growth in low-light conditions and potentially increase crop productivity in dense canopies. A promising strategy is broadening the absorption of antenna complexes to the far-red. In this study, we investigated the capacity of the photosystem I antenna protein Lhca4 to incorporate far-red absorbing chlorophylls d and f and optimize their spectra. We demonstrate that these pigments can successfully bind to Lhca4, with the protein environment further red-shifting the chlorophyll d absorption, markedly extending the absorption range of this complex above 750 nm. Notably, chlorophyll d substitutes the canonical chlorophyll a red-forms, resulting in the most red-shifted emission observed in a plant light-harvesting complex. Using ultrafast spectroscopy, we show that the introduction of these novel chlorophylls does not interfere with the excited state decay or the energy equilibration processes within the complex. The results demonstrate the feasibility of engineering plant antennae to absorb deeper into the far-red region while preserving their functional and structural integrity, paving the way for innovative strategies to enhance photosynthesis.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Clorofila A , Complexos de Proteínas Captadores de Luz/química , Clorofila/metabolismo , Fotossíntese , Análise Espectral , Complexo de Proteína do Fotossistema I/química , Plantas
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123847, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38217986

RESUMO

The exciton interaction of four chlorophyll a (Chl a) molecules in a symmetrical tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP was analyzed in the pH range of 3-11. Exciton splitting ΔE = 232 ± 2 cm-1 of the Qy band of Chl a into two subcomponents with relative intensities of 78.1 ± 0.7 % and 21.9 ± 0.7 % was determined by a joint decomposition of the absorption and circular dichroism spectra into Gaussian functions. The exciton coupling parameters were calculated based on the BoWSCP atomic structure in three approximations: the point dipole model, the distributed atomic monopoles, and direct ab initio calculations in the TDDFT/PCM approximation. The Coulomb interactions of monomers were calculated within the continuum model using three values of optical permittivity. The models based on the properties of free Chl a in solution suffer from significant errors both in estimating the absolute value of the exciton interaction and in the relative intensity of exciton transitions. Calculations within the TDDFT/PCM approximation reproduce the experimentally determined parameters of the exciton splitting and the relative intensities of the exciton bands. The following factors of pigment-protein and pigment-pigment interactions were examined: deviation of the macrocycle geometry from the planar conformation of free Chl; the formation of hydrogen bonds between the macrocycle and water molecules; the overlap of wave functions of monomers at close distances. The most significant factor is the geometrical deformation of the porphyrin macrocycle, which leads to an increase in the dipole moment of Chl monomer from 5.5 to 6.9 D and to a rotation of the dipole moment by 15° towards the cyclopentane ring. The contributions of resonant charge-transfer states to the wave functions of the Chl dimer were determined and the transition dipole moments of the symmetric and antisymmetric charge-transfer states were estimated.


Assuntos
Proteínas de Transporte , Clorofila , Clorofila/química , Clorofila A , Água/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo
13.
Nat Commun ; 15(1): 847, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286840

RESUMO

In plants, light-harvesting complexes serve as antennas to collect and transfer the absorbed energy to reaction centers, but also regulate energy transport by dissipating the excitation energy of chlorophylls. This process, known as nonphotochemical quenching, seems to be activated by conformational changes within the light-harvesting complex, but the quenching mechanisms remain elusive. Recent spectroscopic measurements suggest the carotenoid S* dark state as the quencher of chlorophylls' excitation. By investigating lutein embedded in different conformations of CP29 (a minor antenna in plants) via nonadiabatic excited state dynamics simulations, we reveal that different conformations of the complex differently stabilize the lutein s-trans conformer with respect to the dominant s-cis one. We show that the s-trans conformer presents the spectroscopic signatures of the S* state and rationalize its ability to accept energy from the closest excited chlorophylls, providing thus a relationship between the complex's conformation and the nonphotochemical quenching.


Assuntos
Complexos de Proteínas Captadores de Luz , Luteína , Luteína/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Carotenoides/química , Clorofila/química , Plantas
14.
Trends Microbiol ; 32(1): 38-52, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37380557

RESUMO

Bacterial photosynthesis is essential for sustaining life on Earth as it aids in carbon assimilation, atmospheric composition, and ecosystem maintenance. Many bacteria utilize anoxygenic photosynthesis to convert sunlight into chemical energy while producing organic matter. The core machinery of anoxygenic photosynthesis performed by purple photosynthetic bacteria and Chloroflexales is the reaction center-light-harvesting 1 (RC-LH1) pigment-protein supercomplex. In this review, we discuss recent structural studies of RC-LH1 core complexes based on the advancement in structural biology techniques. These studies have provided fundamental insights into the assembly mechanisms, structural variations, and modularity of RC-LH1 complexes across different bacterial species, highlighting their functional adaptability. Understanding the natural architectures of RC-LH1 complexes will facilitate the design and engineering of artificial photosynthetic systems, which can enhance photosynthetic efficiency and potentially find applications in sustainable energy production and carbon capture.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Ecossistema , Fotossíntese , Carbono , Proteínas de Bactérias/metabolismo
15.
J Mol Biol ; 436(5): 168407, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109993

RESUMO

Light is required for photosynthesis, but plants are often exposed to excess light, which can lead to photodamage and eventually cell death. To prevent this, they evolved photoprotective feedback mechanisms that regulate photosynthesis and trigger processes that dissipate light energy as heat, called non-photochemical quenching (NPQ). In excess light conditions, the light reaction and activity of Photosystem II (PSII) generates acidification of the thylakoid lumen, which is sensed by special pH-sensitive proteins called Photosystem II Subunit S (PsbS), actuating a photoprotective "switch" in the light-harvesting antenna. Despite its central role in regulating photosynthetic energy conversion, the molecular mechanism of PsbS as well as its interaction with partner proteins are not well understood. This review summarizes the current knowledge on the molecular structure and mechanistic aspects of the light-stress sensor PsbS and addresses open questions and challenges in the field regarding a full understanding of its functional mechanism and role in NPQ.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexo de Proteína do Fotossistema II , Plantas , Luz , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Plantas/enzimologia , Conformação Proteica
16.
J Phys Chem B ; 127(51): 10974-10986, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38097367

RESUMO

In plants and algae, the primary antenna protein bound to photosystem II is light-harvesting complex II (LHCII), a pigment-protein complex that binds eight chlorophyll (Chl) a molecules and six Chl b molecules. Chl a and Chl b differ only in that Chl a has a methyl group (-CH3) on one of its pyrrole rings, while Chl b has a formyl group (-CHO) at that position. This blue-shifts the Chl b absorbance relative to Chl a. It is not known how the protein selectively binds the right Chl type at each site. Knowing the selection criteria would allow the design of light-harvesting complexes that bind different Chl types, modifying an organism to utilize the light of different wavelengths. The difference in the binding affinity of Chl a and Chl b in pea and spinach LHCII was calculated using multiconformation continuum electrostatics and free energy perturbation. Both methods have identified some Chl sites where the bound Chl type (a or b) has a significantly higher affinity, especially when the protein provides a hydrogen bond for the Chl b formyl group. However, the Chl a sites often have little calculated preference for one Chl type, so they are predicted to bind a mixture of Chl a and b. The electron density of the spinach LHCII was reanalyzed, which, however, confirmed that there is negligible Chl b in the Chl a-binding sites. It is suggested that the protein chooses the correct Chl type during folding, segregating the preferred Chl to the correct binding site.


Assuntos
Clorofila , Complexos de Proteínas Captadores de Luz , Complexos de Proteínas Captadores de Luz/química , Clorofila/química , Clorofila A , Complexo de Proteína do Fotossistema II , Plantas/metabolismo
17.
J Phys Chem B ; 127(48): 10315-10325, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38015096

RESUMO

Light-harvesting (LH) complexes in photosynthetic organisms absorb photons within limited wavelength ranges over a broad solar spectrum. Extension of the LH wavelength has been realized by attaching artificial fluorophores to LH complexes (biohybrid LH complexes) for complementing the limited-wavelength regions. However, how efficiently such fluorophores in biohybrid LH complexes function to drive the photocatalytic reaction center (RC) has not been quantitatively evaluated, specifically in comparison with native LH antenna complexes. In this study, we prepared various biohybrid LH1-RC complexes (from Rhodopseudomonas palustris), to quantitatively evaluate the LH activity of the attached external chromophores through a photocurrent generation reaction by LH1-RC on an electrode. For a direct comparison of the LH activity among the LH chromophores that were examined, we introduced the k1 term, which represents the extent of the functional coupling of LH and the photochemical reactions in the RC. We determined that the hydrophobic fluorophore ATTO647N attached to LH1 possesses the highest LH activity among the examined hydrophilic fluorophores such as Alexa647, and its activity is comparable to that of native LH1(-RC). The LH activity of LH2 (from Rhodoblastus acidophilus strain 10050) and its biohybrid LH2s were examined for the comprehensive assessment of their LH activity.


Assuntos
Fotossíntese , Rhodobacter sphaeroides , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/química , Rhodobacter sphaeroides/metabolismo
18.
J Phys Chem B ; 127(48): 10360-10369, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37983555

RESUMO

The light harvesting-reaction center complex (LH-RC) of Roseiflexus castenholzii binds bacteriochlorophylls a (BChls a), B800 and B880, absorbing around 800 and 880 nm, respectively. We comparatively investigated the interband excitation energy transfer (EET) dynamics of the wild-type LH-RC (wt-LH-RC) of Rfl. castenholzii and its carotenoid (Car)-less mutant (m-LH-RC) and found that Car can boost the B800 → B880 EET rate from (2.43 ps)-1 to (1.75 ps)-1, accounting for 38% acceleration of the EET process. Interestingly, photoexcitation of wt-LH-RC at 800 nm induced pronounced excitation dynamics of Car despite the insufficient photon energy for direct Car excitation, a phenomenon which is attributed to the BChl-Car exciplex 1[B800(↑↑)···Car(↓↓)]*. Such an exciplex is suggested to play an essential role in promoting the B800 → B880 EET process, as corroborated by the recently reported cryo-EM structures of wt-LH-RC and m-LH-RC. The mechanism of Car-mediated EET will be helpful to deepen the understanding of the role of Car in bacterial photosynthesis.


Assuntos
Chloroflexi , Fotossíntese , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Bacterioclorofilas/química , Proteínas de Bactérias/química , Luz
19.
Mol Plant ; 16(12): 1937-1950, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37936349

RESUMO

State transition is a fundamental light acclimation mechanism of photosynthetic organisms in response to the environmental light conditions. This process rebalances the excitation energy between photosystem I (PSI) and photosystem II through regulated reversible binding of the light-harvesting complex II (LHCII) to PSI. However, the structural reorganization of PSI-LHCI, the dynamic binding of LHCII, and the regulatory mechanisms underlying state transitions are less understood in higher plants. In this study, using cryoelectron microscopy we resolved the structures of PSI-LHCI in both state 1 (PSI-LHCI-ST1) and state 2 (PSI-LHCI-LHCII-ST2) from Arabidopsis thaliana. Combined genetic and functional analyses revealed novel contacts between Lhcb1 and PsaK that further enhanced the binding of the LHCII trimer to the PSI core with the known interactions between phosphorylated Lhcb2 and the PsaL/PsaH/PsaO subunits. Specifically, PsaO was absent in the PSI-LHCI-ST1 supercomplex but present in the PSI-LHCI-LHCII-ST2 supercomplex, in which the PsaL/PsaK/PsaA subunits undergo several conformational changes to strengthen the binding of PsaO in ST2. Furthermore, the PSI-LHCI module adopts a more compact configuration with shorter Mg-to-Mg distances between the chlorophylls, which may enhance the energy transfer efficiency from the peripheral antenna to the PSI core in ST2. Collectively, our work provides novel structural and functional insights into the mechanisms of light acclimation during state transitions in higher plants.


Assuntos
Arabidopsis , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Microscopia Crioeletrônica , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo , Arabidopsis/metabolismo
20.
J Phys Chem B ; 127(42): 9014-9020, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819729

RESUMO

We report resonance Raman spectra of the light-harvesting fucoxanthin-chlorophyll a/c-binding proteins (FCPs) of marine diatom Fragilariopsis sp. The Raman shifts in the 15N-isotope-enriched diatom provide the first spectroscopic evidence for the characterization of the Ca-N marker bands and, thus, of the penta- and hexacoordinated states of chlorophylls a/c in the FCPs. Under 405 and 442 nm Raman excitations, all of the marker bands of Chl a/c are observed and the isotope-based assignments provide new information concerning the structure of Chls a/c in the FCPs and their interactions with the protein environment. Therefore, the Raman spectrum at 405 nm originates from the π-π* transitions of Chl a/c and not from a different, non π-π* electronic transition, as previously reported (BBA Bioenergetics, 2010, 1797, 1647-1656). Based on the 15N isotope shifts of the Ca-N and in conjunction with other marker bands, two distinct conformations of five- and six-coordinated Chl a and Chl c are observed. In addition, two keto carbonyls were observed at 1679 (strong H-bonded) and 1691 cm-1 (weak H-bonded) in both the 405 and 442 nm Raman spectra, respectively. Collectively, the results provide solid evidence of the nature of the vibrational modes of the active Chl a/c photosynthetic pigments in the FCPs.


Assuntos
Diatomáceas , Análise Espectral Raman , Clorofila A/metabolismo , Proteínas de Ligação à Clorofila/química , Diatomáceas/química , Clorofila/química , Isótopos , Complexos de Proteínas Captadores de Luz/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA