RESUMO
Aberrant expression of cyclin-dependent kinase 5 (Cdk5) has been reported in pituitary adenomas. However, the role of Cdk5 in the tumorigenesis remains unclear. We show that prenatal p25-activated Cdk5 phosphorylates minichromosome maintenance protein 2 (Mcm2), enhancing minichromosome maintenance (MCM) family proteins and driving intermediate lobe-located melanotrope-originated pituitary tumorigenesis. In a mouse model with CaMKII promoter-driven transgenic induction of p25, we observed intermediate lobe-originated pituitary adenoma producing non-functional proopiomelanocortin (POMC)-derived peptides under persistent p25 overexpression. Single-cell RNA sequencing revealed Mcm2 may play an important role during tumor progression. Subsequently, Mcm2 was identified as a potential phosphorylated substrate of Cdk5, mediating the tumorous proliferation of melanotrope cells. Silencing Cdk5 or Mcm2 suppressed cell proliferation and colony formation in the 293T cell lines. Therefore, our findings provide a new mouse model of intermediate lobe-originated pituitary adenoma induced by p25/Cdk5 and unveil a previously unappreciated role of Cdk5 and Mcm2 in pituitary adenoma tumorigenesis.
Assuntos
Proliferação de Células , Quinase 5 Dependente de Ciclina , Componente 2 do Complexo de Manutenção de Minicromossomo , Neoplasias Hipofisárias , Animais , Camundongos , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/genética , Fosforilação , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Carcinogênese/metabolismo , Carcinogênese/genética , Adenoma/patologia , Adenoma/metabolismo , Adenoma/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genéticaRESUMO
During DNA replication, core histones that form nucleosomes on template strands are evicted and associate with newly synthesized strands to reform nucleosomes. Mcm2, a subunit of the Mcm2-7 complex, which is a core component of the replicative helicase, interacts with histones in the amino-terminal region (Mcm2N) and is involved in the parental histone recycling to lagging strands. Herein, the interaction of Mcm2N with histones was biochemically analyzed to reveal the molecular mechanisms underlying histone recycling by Mcm2N. With the addition of Mcm2N, a histone hexamer, comprising an H3-H4 tetramer and an H2A-H2B dimer, was excised from the histone octamer to form a complex with Mcm2N. The histone hexamer, but not H3-H4 tetramer was released from Mcm2N in the presence of Nap1, a histone chaperone. FACT, another histone chaperone, stabilized Mcm2N-histone hexamer complex to protect from Nap1-dependent dissociation. This study indicates cooperative histone transfer via Mcm2N and histone chaperones.
Assuntos
Histonas , Componente 2 do Complexo de Manutenção de Minicromossomo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Replicação do DNA , Multimerização Proteica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Fatores de Elongação da TranscriçãoRESUMO
Ovarian cancer is one of the types of gynecological cancers that is considered to be particularly dangerous. Ovarian cancer treatment has come a long way in recent years, but the disease is still quite likely to spread to other parts of the body. In this line of research, our goal is to pinpoint the shifts in gene expression profiles that are responsible for the avoidance of ovarian cancer. The dataset GSE54388 which was deposited in the Gene Expression Omnibus (GEO) database was processed in order to find differentially expressed genes (DEGs) that were present between human ovarian surface epithelium samples and tumor epithelial component samples. The weighted gene correlation network analysis, also known as WGCNA, was performed on the modules that were associated with the ovarian cancer group. The Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the Gene Set Enrichment Analysis (GSEA) were used to compile a summary of the DEGs that were found in the Venn analysis of the Royalbule module. This analysis found 186 genes that overlapped in the royal blue module. Using the cytohubba plug-in that is included in the Cytoscape software, the Protein-protein Interaction (PPI) network was created and then searched to identify hub genes. Based on these findings, it seems that 10 genes have a role as hub genes in the prevention of ovarian cancer.
Assuntos
Biomarcadores Tumorais , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Componente 2 do Complexo de Manutenção de Minicromossomo , Neoplasias Ovarianas , Mapas de Interação de Proteínas , Humanos , Feminino , Neoplasias Ovarianas/genética , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Mapas de Interação de Proteínas/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Ontologia Genética , Perfilação da Expressão Gênica , Bases de Dados GenéticasRESUMO
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Assuntos
Proteínas Cdc20 , Subunidade alfa 2 de Fator de Ligação ao Core , Regulação Neoplásica da Expressão Gênica , Componente 2 do Complexo de Manutenção de Minicromossomo , Ubiquitinação , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proliferação de Células/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Progressão da Doença , Movimento Celular/genéticaRESUMO
The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related ß-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.
Assuntos
Envelhecimento , Instabilidade Genômica , Rim , Componente 2 do Complexo de Manutenção de Minicromossomo , Animais , Envelhecimento/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Instabilidade Genômica/genética , Camundongos , Fosforilação , Rim/metabolismo , Rim/patologia , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Camundongos Endogâmicos C57BL , Masculino , Metabolômica/métodos , Dano ao DNA , MultiômicaRESUMO
Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.
Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Histonas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/metabolismoRESUMO
Osteosarcoma (OS) is a common primary malignant bone tumor, and it is necessary to further investigate the molecular mechanism of OS progression. The expression of kinetochore associated protein 1 (KNTC1) and minichromosome maintenance 2 (MCM2) was detected by immunohistochemistry, quantitative PCR (qPCR) and Western blot. Gene knockdown or overexpression cell models were constructed and the proliferation, apoptosis, cell cycle and migration were detected in vitro, besides, xenograft models were established to explore the effects of KNTC1 downregulation in vivo. Public databased and bioinformatics analysis were performed to screen the downstream molecules and determine the expression of MCM2 in cancers. KNTC1 was overexpressed in OS tissues and positively correlated with overall survival of OS patients. KNTC1 knockdown inhibited the proliferation and migration, and arrested G2 phase, and induced apoptosis. Besides, KNTC1 downregulation restricted the xenograft tumor formation. MCM2, one of the coexpressed genes, was highly expressed in sarcoma and downregulated after KNTC1 knockdown. MCM2 overexpression heightened the proliferation and migration ability of OS cells, which was reversed the inhibiting effects of KNTC1 knockdown. KNTC1 was overexpressed in OS and promoted the progression of OS by upregulating MCM2.
Assuntos
Apoptose , Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Componente 2 do Complexo de Manutenção de Minicromossomo , Osteossarcoma , Animais , Feminino , Humanos , Masculino , Camundongos , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.
Assuntos
Proteína Centromérica A , Instabilidade Cromossômica , Histonas , Humanos , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Histonas/metabolismo , Histonas/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Células HeLa , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Centrômero/metabolismoRESUMO
BACKGROUND: A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7. METHODS: MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2. RESULTS: There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2. CONCLUSIONS: MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.
Assuntos
Neoplasias Pulmonares , Proteínas de Manutenção de Minicromossomo , Humanos , Quimiocina CXCL1 , Proteínas de Manutenção de Minicromossomo/genética , Proteínas , Células-Tronco Neoplásicas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Ciclo Celular/genética , Microambiente TumoralAssuntos
Histonas , Humanos , Histonas/metabolismo , Histonas/química , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Ligação Proteica , Domínios Proteicos , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismoRESUMO
Tamoxifen (TAM) resistance is finally developed in over 40% of patients with estrogen receptor α-positive breast cancer (ERα+ -BC), documenting that discovering new molecular subtype is needed to confer perception to the heterogeneity of ERα+ -BC. We obtained representative gene sets subtyping ERα+ -BC using gene set variation analysis (GSVA), non-negative matrix factorization (NMF), and COX regression methods on the basis of METABRIC, TCGA, and GEO databases. Furthermore, the risk score of ERα+ -BC subtyping was established using least absolute shrinkage and selection operator (LASSO) regression on the basis of genes in the representative gene sets, thereby generating the two subtypes of ERα+ -BC. We further found that minichromosome maintenance complex component 2 (MCM2) functioned as the hub gene subtyping ERα+ -BC using GO, KEGG, and MCODE. MCM2 expression was capable for specifically predicting 1-year overall survival (OS) of ERα+ -BC and correlated with T stage, AJCC stage, and tamoxifen (TAM) sensitivity of ERα+ -BC. The downregulation of MCM2 expression inhibited proliferation, migration, and invasion of TAM-resistant cells and promoted G0/G1 arrest. Altogether, tamoxifen resistance entails that MCM2 is a hub gene subtyping ERα+ -BC, providing a novel dimension for discovering a potential target of TAM-resistant BC.
Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Componente 2 do Complexo de Manutenção de Minicromossomo , Tamoxifeno , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Tamoxifeno/farmacologiaRESUMO
Minichromosome maintenance complex component 2 (MCM2) is a member of the MCM family and is involved in various cancers. However, the role of MCM2 in endometrial cancer (EC) remains unclear. In this study, we aim to determine the biological function of MCM2 in EC cells and identify the potential underlying mechanisms. MCM2 expression and prognostic significance were analyzed in TCGA-UCEC datasets. Combining bioinformatics analyses and experiments, stemness-related molecules and phenotypes were examined to evaluate the impact of MCM2 on stemness in EC cells. The major findings of these analyses are as follows: 1) MCM2 is expressed at higher levels in EC tissues than in normal endometrial tissues. High expression of MCM2 is related to the characteristics of poorly differentiated EC. High MCM2 expression is correlated with poor overall survival in EC patients; 2) MCM2 knockdown was found to decrease sphere formation ability, downregulate the expression of stemness-related molecules, and reduce the proportion of CD133+ cells, while MCM2 overexpression elicited the opposite effect in EC cells; 3) MCM2-mediated stemness features are dependent on the activation of Akt/ß-catenin signaling pathways; and 4) MCM2 knockdown increases cisplatin sensitivity in EC cells. MCM2 regulates stemness by regulating the Akt/ß-catenin signaling pathway in EC cells.
Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Linhagem Celular Tumoral , Neoplasias do Endométrio/genética , Proliferação de CélulasRESUMO
Coiled-Coil Domain-Containing (CCDC) is a large class of structural proteins containing left-handed supercoiled structure. The clinical value and the functional implication of CCDC in colorectal cancer (CRC) remain unknown. Based on the genetic, transcriptional, and clinical data from The Cancer Genome Atlas, five of thirty-six CCDC proteins were differentially expressed in the CRC and associated with the survival of patients with CRC. A CCDC-score model was established to evaluate the prognosis of patients. The potential function of Coiled-Coil Domain-Containing 154 (CCDC154) was investigated using bioinformatical methods, which unveiled that high expression of CCDC154 indicates poor survival for patients with CRC and correlates with low infiltration of CD8+ T cells and high infiltration of neutrophils, indicating that CCDC154 enhances tumor growth and metastasis. CCDC154 interacts with Minichromosome Maintenance Complex Component 2 (MCM2) protein and promotes malignant phenotype via MCM2. We validated the expression level and survival prediction value of CCDC154 in clinical samples, and analyzed its co-expression of MCM2, Ki-67 and p53. This work discloses the role of CCDC in clinical setting and CCDC154 functions in CRC.
Assuntos
Proteínas de Ciclo Celular , Neoplasias Colorretais , Humanos , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , PrognósticoRESUMO
BACKGROUND: Gallbladder carcinoma is a malignant epithelial tumor of gallbladder with a high degree of malignancy. However, relationship between KNTC1 and MCM2 and gallbladder cancer is unclear. METHODS: GSE139682 and GSE202479 were downloaded from gene expression omnibus (GEO). Differentially expressed genes (DEGs) were screened. Functional enrichment analysis and gene set enrichment analysis (GSEA) were performed. Protein-protein interaction (PPI) Network was constructed and analyzed. Gene expression heat map was drawn. Comparative toxicogenomics database (CTD) analysis was performed to find diseases most related to core genes. TargetScan was performed for screening miRNAs that regulated central DEGs. RESULTS: 230 DEGs were identified. According to GObp analysis, they were mainly concentrated in regulation of ossification, regulation of spindle microtubule and centromere attachment, cytoskeleton tissue of cortical actin. According to GOcc analysis, they are mainly concentrated in plasma membrane part, cell junction, plasma membrane region and anterior membrane. According to GOmf analysis, they are mainly enriched in protein homodimerization activity, proximal promoter sequence-specific DNA binding and sulfur compound binding. KEGG showed that target genes were mainly enriched in Hippo signal pathway, p53 signal pathway and cancer pathway. KIFC2, TUBG1, RACGAP1, CHMP4C, SFN and MYH11 were identified as core genes. Gene expression heat map showed that KNTC1, MCM2, CKAP2, RACGAP1, CCNB1 were highly expressed in gallbladder carcinoma samples. CTD analysis showed that KNTC1, MCM2, CKAP2, RACGAP1, CCNB1 were associated with head and neck squamous cell carcinoma, necrosis, inflammation and hepatomegaly. CONCLUSIONS: KNTC1 and MCM2 are highly expressed in gallbladder cancer. Higher expression level correlates with worse prognosis.
Assuntos
Neoplasias da Vesícula Biliar , Neoplasias de Cabeça e Pescoço , Humanos , Perfilação da Expressão Gênica , Neoplasias da Vesícula Biliar/genética , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Neoplasias de Cabeça e Pescoço/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismoRESUMO
The mechanisms of self-renewal and pluripotency maintenance of human pluripotent stem cells (hPSCs) have not been fully elucidated, especially for the role of those poorly characterized long noncoding RNAs (lncRNAs). ESRG is a lncRNA highly expressed in hPSCs, and its functional roles are being extensively explored in the field. Here, we identified that the transcription of ESRG can be directly regulated by OCT4, a key self-renewal factor in hPSCs. Knockdown of ESRG induces hPSC differentiation, cell cycle arrest, and apoptosis. ESRG binds to MCM2, a replication-licensing factor, to sustain its steady-state level and nuclear location, safeguarding error-free DNA replication. Further study showed that ESRG knockdown leads to MCM2 abnormalities, resulting in DNA damage and activation of the p53 pathway, ultimately impairs hPSC self-renewal and pluripotency, and induces cell apoptosis. In summary, our study suggests that ESRG, as a novel target of OCT4, plays an essential role in maintaining the cell survival and self-renewal/pluripotency of hPSCs in collaboration with MCM2 to suppress p53 signaling. These findings provide critical insights into the mechanisms underlying the maintenance of self-renewal and pluripotency in hPSCs by lncRNAs.
Assuntos
Componente 2 do Complexo de Manutenção de Minicromossomo , Células-Tronco Pluripotentes , RNA Longo não Codificante , Proteína Supressora de Tumor p53 , Humanos , Diferenciação Celular/genética , Sobrevivência Celular/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Hypoxia impairs blood-brain barrier (BBB) structure and function, causing pathophysiological changes in the context of stroke and high-altitude brain edema. Brain microvascular endothelial cells (BMECs) are major structural and functional elements of the BBB, and their exact role in hypoxia remains unknown. Here, we first deciphered the molecular events that occur in BMECs under 24 h hypoxia by whole-transcriptome sequencing assay. We found that hypoxia inhibited BMEC cell cycle progression and proliferation and downregulated minichromosome maintenance complex component 2 (Mcm2) expression. Mcm2 overexpression attenuated the inhibition of cell cycle progression and proliferation caused by hypoxia. Then, we predicted the upstream miRNAs of MCM2 through TargetScan and miRanDa and selected miR-212-3p, whose expression was significantly increased under hypoxia. Moreover, the miR-212-3p inhibitor attenuated the inhibition of cell cycle progression and cell proliferation caused by hypoxia by regulating MCM2. Taken together, these results suggest that the miR-212-3p/MCM2 axis plays an important role in BMECs under hypoxia and provide a potential target for the treatment of BBB disorder-related cerebrovascular disease.
Assuntos
Células Endoteliais , MicroRNAs , Humanos , Células Endoteliais/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Encéfalo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Divisão Celular , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia Celular/genéticaRESUMO
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
Assuntos
Diabetes Mellitus , Componente 2 do Complexo de Manutenção de Minicromossomo , Neoplasias , Receptor para Produtos Finais de Glicação Avançada , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismoRESUMO
Tumour cells develop by accumulating changes in the genome that result in changes of main cellular processes. Aberrations of basic processes such as replication and chromatin reassembly are particularly important for genomic (in)stability. The aim of this study was to analyse the expression of genes whose products are crucial for the regulation of replication and chromatin reassembly during lymphomagenesis (DNMT1, PCNA, MCM2, CDT1, EZH2, GMNN, EP300). Non-tumour B cells were used as a control, and follicular lymphoma (FL) and the two most common groups of diffuse large B cell lymphoma (DLBCL) samples were used as a model for tumour progression. The results showed that there are significant changes in the expression of the analysed genes in lymphomagenesis, but also that these changes do not display linearity when assessed in relation to the degree of tumour aggression. Additionally, an integrated bioinformatics analysis of the difference in the expression of selected genes between tumour and non-tumour samples, and between tumour samples (FL vs. DLBCL) in five GEO datasets, did not show a consistent pattern of difference among the datasets.
Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Antígeno Nuclear de Célula em Proliferação , Linfoma não Hodgkin/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma Folicular/patologia , Cromatina , Proteínas de Ciclo Celular/genética , Geminina/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Proteína p300 Associada a E1ARESUMO
BACKGROUND: Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. CONCLUSIONS: MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Assuntos
Replicação do DNA , Neoplasias , Humanos , Neoplasias/genética , Proliferação de Células , Transformação Celular Neoplásica , Proteínas de Ciclo Celular/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismoRESUMO
Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.