Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.869
Filtrar
1.
PLoS One ; 19(5): e0301270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722951

RESUMO

Mixed-species groups and aggregations are quite common and may provide substantial fitness-related benefits to group members. Individuals may benefit from the overall size of the mixed-species group or from the diversity of species present, or both. Here we exposed mixed-species flocks of songbirds (Carolina chickadees, Poecile carolinensis, tufted titmice, Baeolophus bicolor, and the satellite species attracted to these two species) to three different novel feeder experiments to assess the influence of mixed-species flock size and composition on ability to solve the feeder tasks. We also assessed the potential role of habitat density and traffic noise on birds' ability to solve these tasks. We found that likelihood of solving a novel feeder task was associated with mixed-species flock size and composition, though the specific social factor involved depended on the particular species and on the novel feeder. We did not find an influence of habitat density or background traffic noise on likelihood of solving novel feeder tasks. Overall, our results reveal the importance of variation in mixed-species group size and diversity on foraging success in these songbirds.


Assuntos
Ecossistema , Animais , Aves Canoras/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Social , Especificidade da Espécie , Densidade Demográfica , Comportamento Animal/fisiologia
2.
Curr Biol ; 34(9): R335-R337, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714157

RESUMO

A new study compiles compelling evidence that stingless bees construct their brood combs in a self-organised manner in which local modification of a structure stimulates further modifications, a process known as stigmergy.


Assuntos
Comportamento de Nidação , Animais , Abelhas/fisiologia , Comportamento de Nidação/fisiologia , Comportamento Social , Comportamento Animal/fisiologia
3.
Curr Biol ; 34(9): R353-R355, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714164

RESUMO

A new paper shows that rates of aggression are higher, and rates of coalition formation are lower, among male bonobos than among male chimpanzees. These findings are noteworthy because they challenge the view that female bonobos' preferences for less aggressive males favored a reduction in male aggression and an increase in social tolerance.


Assuntos
Agressão , Comportamento Animal , Pan paniscus , Pan troglodytes , Animais , Pan paniscus/psicologia , Pan paniscus/fisiologia , Masculino , Feminino , Pan troglodytes/psicologia , Pan troglodytes/fisiologia , Comportamento Animal/fisiologia , Comportamento Social
4.
Sci Rep ; 14(1): 10491, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714729

RESUMO

Dogs (Canis lupus familiaris) are the domestically bred descendant of wolves (Canis lupus). However, selective breeding has profoundly altered facial morphologies of dogs compared to their wolf ancestors. We demonstrate that these morphological differences limit the abilities of dogs to successfully produce the same affective facial expressions as wolves. We decoded facial movements of captive wolves during social interactions involving nine separate affective states. We used linear discriminant analyses to predict affective states based on combinations of facial movements. The resulting confusion matrix demonstrates that specific combinations of facial movements predict nine distinct affective states in wolves; the first assessment of this many affective facial expressions in wolves. However, comparative analyses with kennelled rescue dogs revealed reduced ability to predict affective states. Critically, there was a very low predictive power for specific affective states, with confusion occurring between negative and positive states, such as Friendly and Fear. We show that the varying facial morphologies of dogs (specifically non-wolf-like morphologies) limit their ability to produce the same range of affective facial expressions as wolves. Confusion among positive and negative states could be detrimental to human-dog interactions, although our analyses also suggest dogs likely use vocalisations to compensate for limitations in facial communication.


Assuntos
Domesticação , Emoções , Expressão Facial , Lobos , Animais , Lobos/fisiologia , Cães , Emoções/fisiologia , Masculino , Feminino , Comportamento Animal/fisiologia , Humanos
5.
PLoS One ; 19(5): e0302833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701080

RESUMO

Dogs have previously been shown to synchronise their behaviour with their owner and the aim of this study was to test the effect of immediate interactions, breed, and the effects of domestication. The behavioural synchronisation test was conducted in outdoor enclosures and consisted of 30 s where the owner/handler was walking and 30 s of standing still. Three studies were conducted to explore the effect of immediate interaction (study A), the effect of breed group (study B), and the effect of domestication (study C). In study A, a group of twenty companion dogs of various breeds were tested after three different human interaction treatments: Ignore, Pet, and Play. The results showed that dogs adjusted their movement pattern to align with their owner's actions regardless of treatment. Furthermore, exploration, eye contact, and movement were all influenced by the owners moving pattern, and exploration also decreased after the Play treatment. In study B, the synchronisation test was performed after the Ignore treatment on three groups: 24 dogs of ancient dog breeds, 17 solitary hunting dogs, and 20 companion dogs (data from study A). Irrespective of the group, all dogs synchronised their moving behaviour with their owner. In addition, human walking positively influenced eye contact behaviour while simultaneously decreasing exploration behaviour. In study C, a group of six socialised pack-living wolves and six similarly socialised pack-living dogs were tested after the Ignore treatment. Interestingly, these animals did not alter their moving behaviour in response to their handler. In conclusion, dogs living together with humans synchronise with their owner's moving behaviour, while wolves and dogs living in packs do not. Hence, the degree of interspecies behavioural synchronisation may be influenced by the extent to which the dogs are immersed in everyday life with humans.


Assuntos
Comportamento Animal , Vínculo Humano-Animal , Lobos , Animais , Cães , Humanos , Lobos/fisiologia , Comportamento Animal/fisiologia , Masculino , Feminino , Animais de Estimação/psicologia , Interação Humano-Animal , Domesticação , Cruzamento
6.
Nat Commun ; 15(1): 4053, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744848

RESUMO

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Assuntos
Callithrix , Hipocampo , Navegação Espacial , Animais , Callithrix/fisiologia , Navegação Espacial/fisiologia , Hipocampo/fisiologia , Masculino , Locomoção/fisiologia , Visão Ocular/fisiologia , Células Piramidais/fisiologia , Movimentos da Cabeça/fisiologia , Interneurônios/fisiologia , Feminino , Comportamento Animal/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia
7.
Elife ; 122024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738986

RESUMO

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.


Assuntos
Comportamento Animal , Animais , Humanos , Masculino , Comportamento Animal/fisiologia , Feminino , Desempenho Psicomotor/fisiologia , Adulto , Equilíbrio Postural/fisiologia , Adulto Jovem , Macaca mulatta
8.
Nat Commun ; 15(1): 4013, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740778

RESUMO

Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.


Assuntos
Prosencéfalo Basal , Medo , Habenula , Neurônios , Animais , Habenula/fisiologia , Masculino , Medo/fisiologia , Prosencéfalo Basal/fisiologia , Prosencéfalo Basal/metabolismo , Camundongos , Neurônios/fisiologia , Neurônios/metabolismo , Optogenética , Camundongos Endogâmicos C57BL , Comportamento Social , Comportamento Animal/fisiologia , Vias Neurais/fisiologia , Ácido Glutâmico/metabolismo , Condicionamento Clássico/fisiologia
9.
Sci Rep ; 14(1): 10946, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740882

RESUMO

Necrophilic behavior (attempted copulation with corpses) has been scarcely reported in non-human primates, especially in the wild. Here is the first case of necrophilic behavior observed in wild stump-tailed macaques in Thailand. Six groups of total N > 460 individuals have been identified and habituated. The corpse of an adult female was found and directly observed for 2 days and by camera trap for 3 days. The cause of death could not be identified, but no prominent physical injury was detected. Within 3 days of the observation, three different males attempted copulation with the corpse. Noteworthy for this observation was that not only males in the group of the dead female but also males from different groups interacted with the corpse. Taken together, these observations suggest that some cues emanating from the corpse coupled with a nonresistant/passive orientation may have triggered these responses in the males. Given that necrophiliac responses have been scarcely reported in non-human primates, our findings provide new insight into these behaviors and to comparative thanatology in general.


Assuntos
Macaca , Animais , Masculino , Macaca/fisiologia , Feminino , Copulação/fisiologia , Comportamento Animal/fisiologia , Tailândia
10.
PLoS One ; 19(5): e0298657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713725

RESUMO

Zebrafish are an established and widely used animal model, yet there is limited understanding of their welfare needs. Despite an increasing number of studies on zebrafish enrichment, in-tank environmental enrichment remains unpopular among researchers. This is due to perceived concerns over health/hygiene when it comes to introducing enrichment into the tank, although actual evidence for this is sparse. To accommodate this belief, regardless of veracity, we tested the potential benefits of enrichments presented outside the tank. Thus, we investigated the preferences and physiological stress of zebrafish with pictures of pebbles placed underneath the tank. We hypothesized that zebrafish would show a preference for enriched environments and have lower stress levels than barren housed zebrafish. In our first experiment, we housed zebrafish in a standard rack system and recorded their preference for visual access to a pebble picture, with two positive controls: visual access to conspecifics, and group housing. Using a crossover repeated-measures factorial design, we tested if the preference for visual access to pebbles was as strong as the preference for social contact. Zebrafish showed a strong preference for visual access to pebbles, equivalent to that for conspecifics. Then, in a second experiment, tank water cortisol was measured to assess chronic stress levels of zebrafish housed with or without a pebble picture under their tank, with group housing as a positive control. Cortisol levels were significantly reduced in zebrafish housed with pebble pictures, as were cortisol levels in group housed zebrafish. In fact, single housed zebrafish with pebble pictures showed the same cortisol levels as group housed zebrafish without pebble pictures. Thus, the use of an under-tank pebble picture was as beneficial as being group housed, effectively compensating for the stress of single housing. Pebble picture enrichment had an additive effect with group housing, where group housed zebrafish with pebble pictures had the lowest cortisol levels of any treatment group.


Assuntos
Abrigo para Animais , Hidrocortisona , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Hidrocortisona/metabolismo , Estresse Fisiológico , Masculino , Comportamento Animal/fisiologia , Feminino , Bem-Estar do Animal
11.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709918

RESUMO

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Assuntos
Ansiedade , Arginina Vasopressina , Receptores de Vasopressinas , Núcleos Septais , Comportamento Social , Animais , Masculino , Feminino , Ansiedade/metabolismo , Camundongos , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Arginina Vasopressina/metabolismo , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Caracteres Sexuais , Optogenética , Comportamento Animal/fisiologia , Vasopressinas/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia
12.
Brain Behav ; 14(5): e3482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715397

RESUMO

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Assuntos
Proteína ADAM17 , Córtex Pré-Frontal , Ratos Endogâmicos Lew , Estresse Psicológico , Animais , Masculino , Ratos , Proteína ADAM17/metabolismo , Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Feminino
13.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38722696

RESUMO

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Assuntos
Crustáceos , Animais , Fenômenos Biomecânicos , Crustáceos/fisiologia , Crustáceos/anatomia & histologia , Metabolismo Energético , Comportamento Predatório/fisiologia , Comportamento Animal/fisiologia , Gravação em Vídeo
14.
Methods Mol Biol ; 2799: 107-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727905

RESUMO

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.


Assuntos
Aprendizagem em Labirinto , Memória de Longo Prazo , Receptores de N-Metil-D-Aspartato , Memória Espacial , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Memória de Longo Prazo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Espacial/fisiologia , Hipocampo/fisiologia , Hipocampo/metabolismo , Comportamento Animal/fisiologia , Plasticidade Neuronal/fisiologia
15.
Sci Rep ; 14(1): 10223, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702359

RESUMO

Animal activity reflects behavioral decisions that depend upon environmental context. Prior studies typically estimated activity distributions within few areas, which has limited quantitative assessment of activity changes across environmental gradients. We examined relationships between two response variables, activity level (fraction of each day spent active) and pattern (distribution of activity across a diel cycle) of white-tailed deer (Odocoileus virginianus), with four predictors-deer density, anthropogenic development, and food availability from woody twigs and agriculture. We estimated activity levels and patterns with cameras in 48 different 10.36-km2 landscapes across three larger regions. Activity levels increased with greater building density, likely due to heightened anthropogenic disturbance, but did not vary with food availability. In contrast, activity patterns responded to an interaction between twigs and agriculture, consistent with a functional response in habitat use. When agricultural land was limited, greater woody twig density was associated with reduced activity during night and evening. When agricultural land was plentiful, greater woody twig density was associated with more pronounced activity during night and evening. The region with the highest activity level also experienced the most deer-vehicle collisions. We highlight how studies of spatial variation in activity expand ecological insights on context-dependent constraints that affect wildlife behavior.


Assuntos
Comportamento Animal , Cervos , Ecossistema , Cervos/fisiologia , Animais , Comportamento Animal/fisiologia , Agricultura/métodos
16.
Sci Rep ; 14(1): 10179, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702498

RESUMO

Humans are exceptionally flexible in cooperation, partly due to our ability to recognize the roles of cooperative partners. While some non-human animals understand the need for a partner in such interactions, it is unclear whether they grasp the consequences of their partner's actions and adjust accordingly. Previous studies utilizing economic games with non-human animals yielded mixed results. We investigated dogs, known for their close cooperation with humans, in a stag hunt game. Dogs could cooperate for better rewards or defect for lower ones, while their human partners would either cooperate, never cooperate, or act randomly. We control for attraction to food, side bias, and local enhancement. Dogs were more likely to coordinate with their partners when it led to better rewards, suggesting that they understood their partner's actions. By highlighting this cognitive skill in dogs, we advance our knowledge of the intricate mechanisms driving cooperative behavior in non-human animals.


Assuntos
Comportamento Cooperativo , Animais , Cães , Humanos , Comportamento Animal/fisiologia , Recompensa , Masculino , Feminino
17.
Nat Commun ; 15(1): 3685, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693116

RESUMO

Sleep, locomotor and social activities are essential animal behaviors, but their reciprocal relationships and underlying mechanisms remain poorly understood. Here, we elicit information from a cutting-edge large-language model (LLM), generative pre-trained transformer (GPT) 3.5, which interprets 10.2-13.8% of Drosophila genes known to regulate the 3 behaviors. We develop an instrument for simultaneous video tracking of multiple moving objects, and conduct a genome-wide screen. We have identified 758 fly genes that regulate sleep and activities, including mre11 which regulates sleep only in the presence of conspecifics, and NELF-B which regulates sleep regardless of whether conspecifics are present. Based on LLM-reasoning, an educated signal web is modeled for understanding of potential relationships between its components, presenting comprehensive molecular signatures that control sleep, locomotor and social activities. This LLM-aided strategy may also be helpful for addressing other complex scientific questions.


Assuntos
Comportamento Animal , Drosophila melanogaster , Locomoção , Sono , Animais , Sono/fisiologia , Sono/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , Locomoção/genética , Comportamento Animal/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Social , Masculino
19.
PLoS One ; 19(5): e0300227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696419

RESUMO

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Assuntos
Envelhecimento , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Feminino , Masculino , Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Comportamento Exploratório/fisiologia
20.
Biol Res ; 57(1): 23, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705984

RESUMO

Obesity, associated with the intake of a high-fat diet (HFD), and anxiety are common among those living in modern urban societies. Recent studies suggest a role of microbiome-gut-brain axis signaling, including a role for brain serotonergic systems in the relationship between HFD and anxiety. Evidence suggests the gut microbiome and the serotonergic brain system together may play an important role in this response. Here we conducted a nine-week HFD protocol in male rats, followed by an analysis of the gut microbiome diversity and community composition, brainstem serotonergic gene expression (tph2, htr1a, and slc6a4), and anxiety-related defensive behavioral responses. We show that HFD intake decreased alpha diversity and altered the community composition of the gut microbiome in association with obesity, increased brainstem tph2, htr1a and slc6a4 mRNA expression, including in the caudal part of the dorsomedial dorsal raphe nucleus (cDRD), a subregion previously associated with stress- and anxiety-related behavioral responses, and, finally, increased anxiety-related defensive behavioral responses. The HFD increased the Firmicutes/Bacteroidetes ratio relative to control diet, as well as higher relative abundances of Blautia, and decreases in Prevotella. We found that tph2, htr1a and slc6a4 mRNA expression were increased in subregions of the dorsal raphe nucleus in the HFD, relative to control diet. Specific bacterial taxa were associated with increased serotonergic gene expression in the cDRD. Thus, we propose that HFD-induced obesity is associated with altered microbiome-gut-serotonergic brain axis signaling, leading to increased anxiety-related defensive behavioral responses in rats.


Assuntos
Ansiedade , Eixo Encéfalo-Intestino , Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Ansiedade/microbiologia , Eixo Encéfalo-Intestino/fisiologia , Ratos , Ratos Sprague-Dawley , Obesidade/microbiologia , Obesidade/psicologia , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Comportamento Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA