Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
J Hazard Mater ; 471: 134336, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640665

RESUMO

Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.


Assuntos
Atrazina , Biodegradação Ambiental , Herbicidas , Piridinas , Streptomyces , Compostos de Sulfonilureia , Atrazina/metabolismo , Atrazina/química , Streptomyces/metabolismo , Streptomyces/genética , Herbicidas/metabolismo , Herbicidas/química , Compostos de Sulfonilureia/metabolismo , Compostos de Sulfonilureia/química , Piridinas/metabolismo , Piridinas/química , Poluentes do Solo/metabolismo , Genes Bacterianos , Redes Neurais de Computação
2.
Environ Res ; 235: 116570, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423356

RESUMO

Sulfonylurea herbicides have been widely used worldwide and play a significant role in modern agricultural production. However, these herbicides have adverse biological effects that can damage the ecosystems and harm human health. As such, rapid and effective techniques that remove sulfonylurea residues from the environment are urgently required. Attempts have been made to remove sulfonylurea residues from environment using various techniques such as incineration, adsorption, photolysis, ozonation, and microbial degradation. Among them, biodegradation is regarded as a practical and environmentally responsible way to eliminate pesticide residues. Microbial strains such as Talaromyces flavus LZM1, Methylopila sp. SD-1, Ochrobactrum sp. ZWS16, Staphylococcus cohnii ZWS13, Enterobacter ludwigii sp. CE-1, Phlebia sp. 606, and Bacillus subtilis LXL-7 can almost completely degrade sulfonylureas. The degradation mechanism of the strains is such that sulfonylureas can be catalyzed by bridge hydrolysis to produce sulfonamides and heterocyclic compounds, which deactivate sulfonylureas. The molecular mechanisms associated with microbial degradation of sulfonylureas are relatively poorly studied, with hydrolase, oxidase, dehydrogenase and esterase currently known to play a pivotal role in the catabolic pathways of sulfonylureas. Till date, there are no reports specifically on the microbial degrading species and biochemical mechanisms of sulfonylureas. Hence, in this article, the degradation strains, metabolic pathways, and biochemical mechanisms of sulfonylurea biodegradation, along with its toxic effects on aquatic and terrestrial animals, are discussed in depth in order to provide new ideas for remediation of soil and sediments polluted by sulfonylurea herbicides.


Assuntos
Herbicidas , Humanos , Herbicidas/análise , Ecossistema , Compostos de Sulfonilureia/toxicidade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/metabolismo , Sulfonamidas , Agricultura , Biodegradação Ambiental
3.
J Mol Model ; 29(8): 241, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436478

RESUMO

CONTEXT: The design and synthesis of safe and highly active sulfonylurea herbicides is still a challenge. Therefore, following some principles of structure-activity relationship (SAR) of sulfonylurea herbicides, this work focuses on evaluating two sulfonylurea derivatives bearing electron-withdrawing substituents, namely, -(CO)OCH3 and -NO2 on the aryl group, on herbicidal activity. To understand the effects caused by the substituent groups, the molecular and electronic structures of the sulfonylureas were evaluated by density functional theory. Likewise, the crystalline supramolecular arrangements of both compounds were analyzed by Hirshfeld surface, QTAIM, and NBO, with the aim of verifying changes in intermolecular interactions caused by substituent groups. Finally, through a toxicophoric analysis, we were able to predict the interacting groups in their biological target, acetolactate synthase, and verify the interactions with the binding site. METHODS: All theoretical calculations were conducted using the highly parameterized empirical exchange-correlation functional M06-2X accompanied by the diffuse and polarized basis set 6-311++G(d,p). The atomic coordinates were obtained directly from the crystalline structures, and from the energies of the frontier molecular orbitals (HOMO and LUMO), chemical descriptors were obtained that indicated the influence of the functional groups in the sulfonylureas on the reactivity of the molecules. The intermolecular interactions in the crystals were analyzed using the Hirshfeld, QTAIM, and NBO surfaces. Toxicophoric modeling was performed by the PharmaGist webserver and molecular docking calculations were performed by the GOLD 2022.1.0 software package so that the ligand was fitted to the binding site in a 10 Å sphere. For this, genetic algorithm parameters were used using the ChemPLP scoring function for docking and ASP for redocking.


Assuntos
Acetolactato Sintase , Herbicidas , Simulação de Acoplamento Molecular , Modelos Moleculares , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Herbicidas/química , Herbicidas/farmacologia , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Pirimidinas
4.
Artigo em Inglês | MEDLINE | ID: mdl-37331054

RESUMO

Modification of proteins can occur during diabetes due to the formation of advanced glycation end-products (AGEs) with reactive dicarbonyls such as glyoxal (Go) and methylglyoxal (MGo). Human serum albumin (HSA) is a serum protein that binds to many drugs in blood and that is known to be modified by Go and MGo. This study examined the binding of various sulfonylurea drugs with these modified forms of HSA by using high-performance affinity microcolumns prepared by non-covalent protein entrapment. Zonal elution experiments were employed to compare the retention and overall binding constants for the drugs with Go- or MGo-modified HSA vs normal HSA. The results were compared to values from the literature, such as measured or estimated using affinity columns containing covalently immobilized HSA or biospecifically-adsorbed HSA. The entrapment-based approach provided estimates of global affinity constants within 3-5 min for most of the tested drugs and with typical precisions of ±10-23%. Each entrapped protein microcolumn was stable for over at least 60-70 injections and one month of use. The results obtained with normal HSA agreed at the 95% confidence level with global affinity constants that have been reported for the given drugs in the literature. It was found for HSA that had been modified with clinically-relevant levels of either Go or MGo that an increase in the global affinity constant of up to 2.1-fold occurred for some of the tested drugs. The information acquired in this study can be used in the future to adapt this entrapment-based approach to study and evaluate interactions between other types of drugs and normal or modified binding agents for clinical testing and biomedical research.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/química , Albumina Sérica/química , Óxido de Magnésio , Ligação Proteica , Cromatografia de Afinidade/métodos , Compostos de Sulfonilureia/química
5.
Chemosphere ; 326: 138390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36935058

RESUMO

Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.


Assuntos
Herbicidas , Piridinas , Biodegradação Ambiental , Piridinas/química , Compostos de Sulfonilureia/química , Herbicidas/química , Redes e Vias Metabólicas
6.
J Agric Food Chem ; 71(13): 5117-5126, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943718

RESUMO

Amidosulfuron (AS) is from the commercial sulfonylurea herbicide family. It is highly effective against dicot broad-leaf weeds. This herbicide targets acetohydroxyacid synthase (AHAS), the first enzyme in the branched chain amino acid biosynthesis pathway. Here, we have determined the crystal structure of AS in complex with wildtype Arabidopsis thaliana AHAS (AtAHAS) and with the resistance mutant, S653T. In both structures, the cofactor, ThDP, is modified to a peracetate adduct, consistent with time-dependent accumulative inhibition. Compared to other AHAS-inhibiting herbicides of the sulfonylurea family, AS lacks a second aromatic ring. The replacement is an aryl sulfonyl group with a reduced number of interactions with the enzyme and relatively low affinity (Ki = 4.2 µM vs low nM when two heteroaromatic rings are present). This study shows that effective herbicides can have a relatively high Ki for plant AHAS but can still be a potent herbicide provided accumulative inhibition also occurs.


Assuntos
Acetolactato Sintase , Arabidopsis , Herbicidas , Arabidopsis/metabolismo , Acetolactato Sintase/química , Herbicidas/química , Compostos de Sulfonilureia/química , Resistência a Herbicidas
7.
Molecules ; 27(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630795

RESUMO

Sulfonylurea herbicides can lead to serious weed resistance due to their long degradation times and large-scale applications. This is especially true for chlorsulfuron, a widely used acetolactate synthase inhibitor used around the world. Its persistence in soil often affects the growth of crop seedlings in the following crop rotation, and leads to serious environmental pollution all over the world. Our research goal is to obtain chlorsulfuron-derived herbicides with high herbicidal activities, fast degradation times, as well as good crop safety. On account of the slow natural degradation of chlorsulfuron in alkaline soil, based on the previously reported results in acidic soil, the degradation behaviours of 5-substituted chlorsulfuron analogues (L101-L107) were investigated in a soil with pH 8.39. The experimental data indicated that 5-substituted chlorsulfuron compounds could accelerate degradation rates in alkaline soil, and thus, highlighted the potential for rational controllable degradation in soil. The degradation rates of these chlorsulfuron derivatives were accelerated by 1.84-77.22-fold, compared to chlorsulfuron, and exhibited excellent crop safety in wheat and corn (through pre-emergence treatment). In combination with bioassay activities, acidic and alkaline soil degradation, and crop safety, it was concluded that compounds L104 and L107, with ethyl or methyl groups, are potential green sulfonylurea herbicides for pre-emergence treatment on wheat and corn. This paper provides a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, fast, controllable degradation rates, and high crop safety.


Assuntos
Herbicidas , Solo , Herbicidas/química , Sulfonamidas/farmacologia , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Triazinas/química
8.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408768

RESUMO

Chlrosulfuron, a classical sulfonylurea herbicide that exhibits good safety for wheat but causes a certain degree of damage to subsequent corn in a wheat-corn rotation mode, has been suspended field application in China since 2014. Our previous study found that diethylamino-substituted chlorsulfuron derivatives accelerated the degradation rate in soil. In order to obtain sulfonylurea herbicides with good crop safety for both wheat and corn, while maintaining high herbicidal activities, a series of pyrimidine- and triazine-based diethylamino-substituted chlorsulfuron derivatives (W102-W111) were systematically evaluated. The structures of the synthesized compounds were confirmed with 1H NMR, 13C NMR, and HRMS. The preliminary biological assay results indicate that the 4,6-disubstituted pyrimidine and triazine derivatives could maintain high herbicidal activity. It was found that the synthesized compounds could accelerate degradation rates, both in acidic and alkaline soil. Especially, in alkaline soil, the degradation rate of the target compounds accelerated more than 22-fold compared to chlorsulfuron. Moreover, most chlorsulfuron analogs exhibited good crop safety for both wheat and corn at high dosages. This study provided a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, fast degradation rates, and high crop safety.


Assuntos
Herbicidas , Herbicidas/química , Pirimidinas , Solo , Relação Estrutura-Atividade , Sulfonamidas , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Triazinas/farmacologia , Zea mays
9.
Bioorg Med Chem ; 58: 116645, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151118

RESUMO

The nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays an important role in microglia-mediated inflammation. Dysregulation of NLRP3 signaling results in microglial activation and triggers inflammatory responses contributing to the development of neurological disorders including ischemic stroke, schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Inhibition of the NLRP3-linked inflammatory pathways reduces microglia-induced inflammation and is considered as a promising therapeutic approach for neuro-inflammatory diseases. In the present study, we report the development of AMS-17, a rationally-designed tertiary sulfonylurea compound for inhibition of inflammation in microglia. AMS-17 inhibited expression of the NLRP3, and its downstream components and cytokines such as caspase-1, tumor necrosis factor-α (TNF-α), IL-1ß and inducible nitric oxide synthase (iNOS). It also suppressed lipopolysaccharide (LPS)-induced N9 microglial cell phagocytosis in vitro and activation of the microglia in mouse brain in vivo. Together, these results provide promising evidences for the inhibitory effects of AMS-17 in inflammation. This proof-of-concept study provides a new chemical scaffold, designed with the aid of pharmacophore modeling, with NLRP3 inhibitory activity which can be further developed for the treatment of inflammation-associated neurological disorders.


Assuntos
Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Compostos de Sulfonilureia/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química
10.
Regul Toxicol Pharmacol ; 129: 105115, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35017022

RESUMO

In dietary risk assessment, residues of pesticidal ingredients or their metabolites need to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach focussing assessment and testing on classes of similar chemicals. To characterise similarity and to identify structural alerts associated with genotoxic concern, a set of chemical sub-structures was derived for an example dataset of 74 sulphonyl urea agrochemicals for which either Ames, chromosomal aberration or micronucleus test results are publicly available. This analysis resulted in a set of seven structural alerts that define the chemical space, in terms of the common parent and metabolic scaffolds, associated with the sulphonyl urea chemical class. An analysis of the available profiling schemes for DNA and protein reactivity shows the importance of investigating the predictivity of such schemes within a well-defined area of structural space. Structural space alerts, covalent chemistry profiling and physico-chemistry properties were combined to develop chemical categories suitable for chemical prioritisation. The method is a robust and reproducible approach to such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach was identified as being the need for pesticide-class specific metabolism data as the basis for structural space alert development.


Assuntos
Resíduos de Praguicidas/toxicidade , Compostos de Sulfonilureia/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Testes de Mutagenicidade , Resíduos de Praguicidas/química , Relatório de Pesquisa , Compostos de Sulfonilureia/química
11.
Bioorg Chem ; 117: 105418, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736133

RESUMO

New sulfonylbiguanide hydrochloride salts and sulfonylurea derivatives containing two sulfonyl groups were synthesized through the reaction of arylsulfonohydrazides with cyanoguanidine and p-tolylsulfonylisocyanate, respectively. Oral treatment of hyperglycemic rats with the synthesized sulfonylbiguanide derivatives 2 and sulfonylurea derivatives 3 revealed that sulfonylurea derivatives 3a and 3c possessed significant decrease of the elevated glucose in compression with the anti-diabetic standard drugs. Effects of the synthesized sulfonylurea derivatives 3a and 3c on the diabetic properties towards α-amylase, liver function enzyme levels (AST, ALT, ALP, TB and γ-GT), kidney functions (urea and creatinine), lipids profiles (TG, TL, TC and HDL-C) were studied. Also, the effect of sulfonylurea derivatives 3a and 3c as antioxidants (reduced glutathione and lipid peroxide) was evaluated. Histopathological examination of hepatic and pancreatic tissues was investigated. The obtained results suggested that the most potent sulfonylurea derivatives 3a and 3c might be possible used as novel diabetic inhibitor agents.


Assuntos
Biguanidas/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Compostos de Sulfonilureia/uso terapêutico , Animais , Biguanidas/síntese química , Biguanidas/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Relação Dose-Resposta a Droga , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Estreptozocina , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química
12.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361550

RESUMO

Efficient use of herbicides for plant protection requires the application of auxiliary substances such as surfactants, stabilizers, wetting or anti-foaming agents, and absorption enhancers, which can be more problematic for environment than the herbicides themselves. We hypothesized that the combination of sulfonylurea (iodosulfuron-methyl) anion with inexpensive, commercially available quaternary tetraalkylammonium cations could lead to biologically active ionic liquids (ILs) that could become a convenient and environment-friendly alternative to adjuvants. A simple one-step synthesis allowed for synthesizing iodosulfuron-methyl based ILs with high yields ranging from 88 to 96% as confirmed by UV, FTIR, and NMR. The obtained ILs were found to possess several favorable properties compared to the currently used sodium salt iodosulfuron-methyl, such as adjustable hydrophobicity (octanol-water partition coefficient) and enhanced stability in aqueous solutions, which was supported by molecular calculations showing cation-anion interaction energies. In addition, soil mobility and volatility of ILs were more beneficial compared to the parental herbicide. Herbicidal activity tests toward oil-seed rape and cornflower revealed that ILs comprising at least one alkyl chain in the decyl to octadecyl range had similar or better efficacy compared to the commercial preparation without addition of any adjuvant. Furthermore, results of antimicrobial activity indicated that they were practically harmless or slightly toxic toward model soil microorganisms such as Pseudomonas putida and Bacillus cereus.


Assuntos
Anti-Infecciosos/química , Herbicidas/química , Líquidos Iônicos/química , Sulfonamidas/química , Compostos de Sulfonilureia/química , Tensoativos/química , Anti-Infecciosos/farmacologia , Bacillus cereus/crescimento & desenvolvimento , Herbicidas/farmacologia , Pseudomonas putida/crescimento & desenvolvimento , Compostos de Sulfonilureia/farmacologia
13.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298964

RESUMO

The rapid emergence of drug-resistant bacteria is a major global health concern. Antimicrobial peptides (AMPs) and peptidomimetics have arisen as a new class of antibacterial agents in recent years in an attempt to overcome antibiotic resistance. A library of phenylglyoxamide-based small molecular peptidomimetics was synthesised by incorporating an N-alkylsulfonyl hydrophobic group with varying alkyl chain lengths and a hydrophilic cationic group into a glyoxamide core appended to phenyl ring systems. The quaternary ammonium iodide salts 16d and 17c showed excellent minimum inhibitory concentration (MIC) of 4 and 8 µM (2.9 and 5.6 µg/mL) against Staphylococcus aureus, respectively, while the guanidinium hydrochloride salt 34a showed an MIC of 16 µM (8.5 µg/mL) against Escherichia coli. Additionally, the quaternary ammonium iodide salt 17c inhibited 70% S. aureus biofilm formation at 16 µM. It also disrupted 44% of pre-established S. aureus biofilms at 32 µM and 28% of pre-established E. coli biofilms 64 µM, respectively. A cytoplasmic membrane permeability study indicated that the synthesised peptidomimetics acted via disruption and depolarisation of membranes. Moreover, the quaternary ammonium iodide salts 16d and 17c were non-toxic against human cells at their therapeutic dosages against S. aureus.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Escherichia coli/fisiologia , Peptidomiméticos , Staphylococcus aureus/fisiologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Peptidomiméticos/síntese química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia
14.
J Chromatogr A ; 1647: 462143, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33957346

RESUMO

Molecularly imprinting polymers with high selectivity toward 29 sulfonylurea herbicides were synthesized by precipitation polymerization, using metsulfuron-methyl and chlorsulfuron as the template molecule, 4-vinylpyridine as the function monomer, divinylbenzene as the crosslinking agent, and acetonitrile as porogen. The imprinted polymers were characterized and measured by scanning electron microscopy (SEM) and equilibrium adsorption experiments. The molecularly imprinted polymers displayed specific recognition for the tested 29 sulfonylurea herbicides, and the maximum apparent binding capacity was found to be 18.81 mg/g. The synthesized polymer was used as a solid-phase extraction (SPE) column coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of the tested analytes in agro-products. Within the range of 2-100 µg/L, the tested analytes have achieved a good linear association with correlation coefficient (R2) > 0.999. The calculated limits of detection (LODs, S/N=3) as along with limits of quantification (LOQs, S/N=10) were in the ranges of 0.005-0.07 µg/L and 0.018-0.23 µg/L, respectively. Under different spiking levels, the recovery rates were ranged from 74.8% - 110.5%, and the relative standard deviation (RSDs) were < 5.3%. Finally, the feasibility of the proposed methodology was successfully applied for detection of sulfonylurea herbicides in crops, vegetables, and oils samples.


Assuntos
Herbicidas , Impressão Molecular/métodos , Polímeros Molecularmente Impressos/química , Extração em Fase Sólida/métodos , Compostos de Sulfonilureia , Agricultura , Cromatografia Líquida , Herbicidas/análise , Herbicidas/química , Herbicidas/isolamento & purificação , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Compostos de Sulfonilureia/análise , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/isolamento & purificação , Espectrometria de Massas em Tandem
15.
ACS Synth Biol ; 10(3): 487-494, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33616380

RESUMO

Bioaugmentation is a promising alternative in soil remediation. One challenge of bioaugmentation is that exogenous pollutant-degrading microbes added to soil cannot establish enough biomass to eliminate pollutants. Considering that methanotrophs have a growth advantage in the presence of methane, we hypothesize that genetically engineered methanotrophs could degrade contaminants efficiently in soil with methane. Here, methanotroph Methylomonas sp. LW13, herbicide bensulfuron-methyl (BSM), and two kinds of soil were chosen to confirm this hypothesis. The unmarked gene knock-in method was first developed for strain LW13. Then, BSM hydrolase encoding gene sulE was inserted into the chromosome of strain LW13, conferring it BSM-degrading ability. After inoculation, the cell amount of strain LW13-sulE in soil raised considerably (over 100 fold in 9 days) with methane provision; meanwhile, >90% of BSM in soil was degraded. This study provides a proof of the concept that genetically engineered methanotroph is a potential platform for soil remediation.


Assuntos
Biodegradação Ambiental , Metano/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/metabolismo , Técnicas de Introdução de Genes , Hidrolases/genética , Hidrolases/metabolismo , Metano/química , Methylomonas/genética , Methylomonas/metabolismo , Praguicidas/química , Microbiologia do Solo , Poluentes do Solo/química , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/metabolismo , Zea mays/metabolismo
16.
Bioorg Med Chem ; 31: 115952, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421915

RESUMO

Chronic hepatitis B viral infection is a significant health problem world-wide, and currently available antiviral agents suppress HBV infections, but rarely cure this disease. It is presumed that antiviral agents that target the viral nuclear reservoir of transcriptionally active cccDNA may eliminate HBV infection. Through a series of chemical optimization, we identified a new series of glyoxamide derivatives affecting HBV nucleocapsid formation and cccDNA maintenance at low nanomolar levels. Among all the compounds synthesized, GLP-26 displays a major effect on HBV DNA, HBeAg secretion and cccDNA amplification. In addition, GLP-26 shows a promising pre-clinical profile and long-term effect on viral loads in a humanized mouse model.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Vírus da Hepatite B/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química
17.
Viruses ; 13(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467678

RESUMO

While treatment options are available for hepatitis B virus (HBV), there is currently no cure. Anti-HBV nucleoside analogs and interferon-alpha 2b rarely clear HBV covalently closed circular DNA (cccDNA), requiring lifelong treatment. Recently, we identified GLP-26, a glyoxamide derivative which modulates HBV capsid assembly. The impact of GLP-26 on viral replication and integrated DNA was assessed in an HBV nude mouse model bearing HBV transfected AD38 xenografts. At day 45 post-infection, GLP-26 reduced HBV titers by 2.3-3 log10 versus infected placebo-treated mice. Combination therapy with GLP-26 and entecavir reduced HBV log10 titers by 4.6-fold versus placebo. Next, we examined the pharmacokinetics (PK) in cynomolgus monkeys administered GLP-26 via IV (1 mg/kg) or PO (5 mg/kg). GLP-26 was found to have 34% oral bioavailability, with a mean input time of 3.17 h. The oral dose produced a mean peak plasma concentration of 380.7 ng/mL, observed 0.67 h after administration (~30-fold > in vitro EC90 corrected for protein binding), with a mean terminal elimination half-life of 2.4 h and a mean area under the plasma concentration versus time curve of 1660 ng·hr/mL. GLP-26 was 86.7% bound in monkey plasma. Lastly, GLP-26 demonstrated a favorable toxicity profile confirmed in primary human cardiomyocytes. Thus, GLP-26 warrants further preclinical development as an add on to treatment for HBV infection.


Assuntos
Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Cardiotoxinas/farmacocinética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Compostos de Sulfonilureia/farmacocinética , Montagem de Vírus/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Humanos , Macaca fascicularis , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Compostos de Sulfonilureia/efeitos adversos , Compostos de Sulfonilureia/química , Carga Viral
18.
AAPS PharmSciTech ; 22(1): 37, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409925

RESUMO

In 2017, there are 451 million people with diabetes worldwide. These figures were expected to increase to 693 million by 2045. The research and development of hypoglycemic drugs has become a top priority. Among them, sulfonylurea hypoglycemic drugs such as glipizide are commonly used in non-insulin-dependent type II diabetes. In order to adapt to the wide range of hypoglycemic drugs and the different individual needs of patients, this topic used glipizide as a model drug, and prepared glipizide preparations with 3D printing technology. The purpose of this study was to investigate the prescription applicability and control-release behavior of structure and explore the application prospects of 3D printing personalized drug delivery formulations. This article aims to establish a production process for personalized preparations based on 3D printing technology. The process is easy to obtain excipients, universal prescriptions, flexible dosages, exclusive customization, and integrated automation. In this paper, the UV method was used to determine the in vitro release and content analysis method of glipizide; the physical and chemical properties of the glipizide were investigated. The established analysis method was inspected and evaluated, and the experimental results met the methodological requirements. Glipizide controlled-release tablets were prepared by the semisolid extrusion (SSE) method using traditional pharmaceutical excipients combined with 3D printing technology. The formulation composition, in vitro release, and printing process parameters of the preparation were investigated, and the final prescription and process parameters (traveling speed 6.0-7.7 mm/s and extruding speed 0.0060-0.0077 mm/s) were selected through comprehensive analysis. The routine analysis results of the preparation showed that the performance of the preparation meets the requirements. In order for 3D printing technology to play a better role in community medicine and telemedicine, this article further explored the universality of the above prescription and determined the scope of application of prescription drugs and dosages. Glipizide, gliclazide, lornoxicam, puerarin, and theophylline were used as model drugs, and the range of drug loading percentage was investigated. The results showed when the solubility of the drug is 9.45 -8.34 mg/mL, and the drug loading is 3-43%; the release behavior is similar.


Assuntos
Formas de Dosagem , Medicina de Precisão , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Excipientes/química , Glipizida/química , Glipizida/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Solubilidade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/uso terapêutico , Comprimidos
19.
J Agric Food Chem ; 69(1): 45-54, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372787

RESUMO

Herbicide safeners enhance herbicide detoxification in crops without reducing their herbicidal efficacy against target weeds. To alleviate maize injury caused by the sulfonylurea herbicide nicosulfuron, a series of 1,3-disubstituted imidazolidine or hexahydropyrimidine derivatives were rationally designed via bioisosterism and active subunit combinations. Thirty novel compounds were synthesized using an efficient one-pot method and low-cost raw materials and characterized by IR, 1H NMR, 13C NMR, and high-resolution mass spectrometer (HRMS). Bioactivity and structure-activity relationship (SAR) were evaluated for herbicide safeners tested against nicosulfuron injury. Most of the compounds effectively protected sensitive maize against nicosulfuron damage. The parent skeletons and substituents of the target compounds both substantially influenced their safener activity. Compound I-3 exhibited superior bioactivity compared to the safener isoxadifen-ethyl. Molecular docking simulations disclosed that compound I-3 competed with nicosulfuron for the acetolactate synthase active site and demonstrated that this is the protective mechanism of safeners. The target compound I-3 presented with strong herbicide safener activity in maize and is, therefore, a potential candidate for the development of a novel herbicide safener.


Assuntos
Herbicidas/toxicidade , Substâncias Protetoras/síntese química , Substâncias Protetoras/farmacologia , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Desenho de Fármacos , Herbicidas/química , Imidazolidinas/química , Simulação de Acoplamento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Substâncias Protetoras/química , Piridinas/química , Piridinas/toxicidade , Pirimidinas/química , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/toxicidade , Zea mays/química , Zea mays/efeitos dos fármacos , Zea mays/enzimologia
20.
J Chromatogr A ; 1638: 461683, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33223150

RESUMO

Diabetes is characterized by elevated levels of blood glucose, which can result in the modification of serum proteins. The modification of a protein by glucose, or glycation, can also lead to the formation of advanced glycated end-products (AGEs). One protein that can be modified through glycation and AGE formation is human serum albumin (HSA). In this study, immunoextraction based on polyclonal anti-HSA antibodies was used with high-performance affinity microcolumns to see how AGE-related modifications produced by glyoxal (Go) and methylglyoxal (MGo) affected the binding of HSA to several first- and second-generation sulfonylureas, a class of drugs used to treat type II diabetes and known to bind to HSA. With this approach, it was possible to use a single platform to examine drug interactions with several preparations of HSA. Each applied protein sample could be used over 20-50 experiments, and global affinity constants for most of the examined drugs could be obtained in less than 7.5 min. The binding constants measured for these drugs with normal HSA gave good agreement with global affinities based on the literature. Both Go- and MGo-related modifications at clinically relevant levels were found by this method to create significant changes in the binding by some sulfonylureas with HSA. The global affinities for many of the drugs increased by 1.4-fold or more; gliclazide and tolazamide had no significant change with some preparations of modified HSA, and a small-to-moderate decrease in binding strength was noted for glibenclamide and gliclazide with Go-modified HSA. This approach can be adapted for the study of other drug-protein interactions and alternative modified proteins by altering the antibodies that are employed for immunoextraction and within the affinity microcolumn.


Assuntos
Anticorpos/isolamento & purificação , Cromatografia de Afinidade/métodos , Glioxal/química , Aldeído Pirúvico/química , Albumina Sérica Humana/metabolismo , Compostos de Sulfonilureia/química , Adsorção , Interações Medicamentosas , Gliclazida/química , Glibureto , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Cinética , Ligação Proteica , Estabilidade Proteica , Albumina Sérica Humana/química , Varfarina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA