Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.097
Filtrar
1.
Vestn Oftalmol ; 140(2): 34-39, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38742496

RESUMO

PURPOSE: This study evaluates the accuracy of modern intraocular lens (IOL) calculation formulas using axial length (AL) data obtained by ultrasound biometry (UBM) compared to the third-generation SRK/T calculator. MATERIAL AND METHODS: The study included 230 patients (267 eyes) with severe lens opacities that prevented optical biometry, who underwent phacoemulsification (PE) with IOL implantation. IOL power calculation according to the SRK/T formula was based on AL and anterior chamber depth obtained by UBM (Tomey Biometer Al-100) and keratometry on the Topcon KR 8800 autorefractometer. To adapt AL for new generation calculators - Barrett Universal II (BUII), Hill RBF ver. 3.0 (RBF), Kane and Ladas Super Formula (LSF) - the retinal thickness (0.20 mm) was added to the axial length determined by UBM, and then the optical power of the artificial lens was calculated. The mean error and its modulus value were used as criteria for the accuracy of IOL calculation. RESULTS: A significant difference (p=0.008) in the mean IOL calculation error was found between the formulas. Pairwise analysis revealed differences between SRK/T (-0.32±0.58 D) and other formulas - BUII (-0.16±0.52 D; p=0.014), RBF (-0.17±0.51 D; p=0.024), Kane (-0.17±0.52 D; p=0.029), but not with the LSF calculator (-0.19±0.53 D; p=0.071). No significant differences between the formulas were found in terms of mean error modulus (p=0.238). New generation calculators showed a more frequent success in hitting target refraction (within ±1.00 D in more than 95% of cases) than the SRK/T formula (86%). CONCLUSION: The proposed method of adding 0.20 mm to the AL determined by UBM allows using this parameter in modern IOL calculation formulas and improving the refractive results of PE, especially in eyes with non-standard anterior segment structure.


Assuntos
Biometria , Lentes Intraoculares , Facoemulsificação , Refração Ocular , Humanos , Biometria/métodos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Refração Ocular/fisiologia , Facoemulsificação/métodos , Comprimento Axial do Olho/diagnóstico por imagem , Implante de Lente Intraocular/métodos , Catarata/fisiopatologia , Catarata/diagnóstico , Óptica e Fotônica/métodos , Microscopia Acústica/métodos
2.
BMJ Open ; 14(5): e078018, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692719

RESUMO

OBJECTIVE: To investigate the differences in myopia prevalence and ocular biometry in children and adolescents in Chongqing and Tibet, China. DESIGN: Cross-sectional study. SETTING: The study included children and adolescents aged 6-18 years in Chongqing, a low-altitude region, and in Qamdo, a high-altitude region of Tibet. PARTICIPANTS: A total of 448 participants in Qamdo, Tibet, and 748 participants in Chongqing were enrolled in this study. METHODS: All participants underwent uncorrected visual acuity assessment, non-cycloplegic refraction, axial length (AL) measurement, intraocular pressure (IOP) measurement and corneal tomography. And the participants were grouped according to age (6-8, 9-11, 12-14 and 15-18 years group), and altitude of location (primary school students: group A (average altitude: 325 m), group B (average altitude: 2300 m), group C (average altitude: 3250 and 3170 m) and group D (average altitude: 3870 m)). RESULTS: There was no statistical difference in mean age (12.09±3.15 vs 12.2±3.10, p=0.549) and sex distribution (males, 50.4% vs 47.6%, p=0.339) between the two groups. The Tibet group presented greater spherical equivalent (SE, -0.63 (-2.00, 0.13) vs -0.88 (-2.88, -0.13), p<0.001), shorter AL (23.45±1.02 vs 23.92±1.19, p<0.001), lower prevalence of myopia (39.7% vs 47.6%, p=0.008) and flatter mean curvature power of the cornea (Km, 43.06±1.4 vs 43.26±1.36, p=0.014) than the Chongqing group. Further analysis based on age subgroups revealed that the Tibet group had a lower prevalence of myopia and higher SE in the 12-14, and 15-18 years old groups, shorter AL in the 9-11, 12-14 and 15-18 years old groups, and lower AL to corneal radius of curvature ratio (AL/CR) in all age subgroups compared with the Chongqing group, while Km was similar between the two groups in each age subgroup. Simple linear regression analysis showed that SE decreased with age in both the Tibet and Chongqing groups, with the Tibet group exhibiting a slower rate of decrease (p<0.001). AL and AL/CR increased with age in both the Tibet and Chongqing groups, but the rate of increase was slower in the Tibet group (p<0.001 of both). Multiple linear regression analysis revealed that AL had the greatest effect on SE in both groups, followed by Km. In addition, the children and adolescents in Tibet presented thinner corneal thickness (CCT, p<0.001), smaller white to white distance (WTW, p<0.001), lower IOP (p<0.001) and deeper anterior chamber depth (ACD, p=0.015) than in Chongqing. Comparison of altitude subgroups showed that the prevalence of myopia (p=0.002), SE (p=0.031), AL (p=0.001) and AL/CR (p<0.001) of children at different altitudes was statistically different but the Km (p=0.189) were similar. The highest altitude, Tengchen County, exhibited the lowest prevalence of myopia and greatest SE among children, and the mean AL also decreased with increasing altitude. CONCLUSIONS: Myopia prevalence in Tibet was comparable with that in Chongqing for students aged 6-8 and 9-11 years but was lower and myopia progressed more slowly for students aged 12-14 and 15-18 years than in Chongqing, and AL was the main contributor for this difference, which may be related to higher ultraviolet radiation exposure and lower IOP in children and adolescents at high altitude in Tibet. Differences in AL and AL/CR between Tibet and Chongqing children and adolescents manifested earlier than in SE, underscoring the importance of AL measurement in myopia screening.


Assuntos
Altitude , Biometria , Miopia , Refração Ocular , Humanos , Adolescente , Criança , Estudos Transversais , Masculino , Feminino , Tibet/epidemiologia , Miopia/epidemiologia , Prevalência , China/epidemiologia , Refração Ocular/fisiologia , Acuidade Visual , Comprimento Axial do Olho/diagnóstico por imagem , Pressão Intraocular/fisiologia , Córnea/diagnóstico por imagem , Córnea/patologia , Córnea/anatomia & histologia
3.
Sci Rep ; 14(1): 11382, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762668

RESUMO

The annual increase in myopia prevalence poses a significant economic and health challenge. Our study investigated the effect of calcitriol role in myopia by inducing the condition in guinea pigs through form deprivation for four weeks. Untargeted metabolomics methods were used to analyze the differences in metabolites in the vitreous body, and the expression of vitamin D receptor (VDR) in the retina was detected. Following form deprivation, the guinea pigs received intraperitoneal injections of calcitriol at different concentrations. We assessed myopia progression using diopter measurements and biometric analysis after four weeks. Results indicated that form deprivation led to a pronounced shift towards myopia, characterized by reduced choroidal and scleral thickness, disorganized collagen fibers, and decreased scleral collagen fiber diameter. Notably, a reduction in calcitriol expression in vitreous body, diminished vitamin D and calcitriol levels in the blood, and decreased VDR protein expression in retinal tissues were observed in myopic guinea pigs. Calcitriol administration effectively slowed myopia progression, preserved choroidal and scleral thickness, and prevented the reduction of scleral collagen fiber diameter. Our findings highlight a significant decrease in calcitriol and VDR expressions in myopic guinea pigs and demonstrate that exogenous calcitriol supplementation can halt myopia development, enhancing choroidal and scleral thickness and scleral collagen fiber diameter.


Assuntos
Calcitriol , Miopia , Retina , Animais , Cobaias , Miopia/metabolismo , Miopia/tratamento farmacológico , Miopia/patologia , Calcitriol/farmacologia , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Masculino , Modelos Animais de Doenças , Esclera/metabolismo , Esclera/efeitos dos fármacos , Esclera/patologia , Corioide/metabolismo , Corioide/efeitos dos fármacos , Corioide/patologia , Vitamina D/farmacologia , Vitamina D/administração & dosagem , Comprimento Axial do Olho , Corpo Vítreo/metabolismo , Corpo Vítreo/efeitos dos fármacos , Progressão da Doença , Colágeno/metabolismo
4.
Transl Vis Sci Technol ; 13(5): 8, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739084

RESUMO

Purpose: This study aimed to evaluate the ocular characteristics associated with spontaneously high myopia in adult nonhuman primates (NHPs). Methods: A total of 537 eyes of 277 macaques with an average age of 18.53 ± 3.01 years (range = 5-26 years), raised in a controlled environment, were included. We measured ocular parameters, including spherical equivalent (SE), axial length (AXL), and intraocular pressure. The 45-degree fundus images centered on the macula and the disc assessed the fundus tessellation and parapapillary atrophy (PPA). Additionally, optical coherence tomography (OCT) was used to measure the thickness of the retinal nerve fiber layer (RNFL). Results: The mean SE was -1.58 ± 3.71 diopters (D). The mean AXL was 18.76 ± 0.86 mm. The prevalence rate of high myopia was 17.7%. As myopia aggravated, the AXL increased (r = -0.498, P < 0.001). Compared with non-high myopia, highly myopic eyes had a greater AXL (P < 0.001), less RNFL thickness (P = 0.004), a higher incidence of PPA (P < 0.001), and elevated grades of fundus tessellation (P < 0.001). The binary logistic regression was performed, which showed PPA (odds ratio [OR] = 4.924, 95% confidence interval [CI] = 2.375-10.207, P < 0.001) and higher grades of fundus tessellation (OR = 1.865, 95% CI = 1.474-2.361, P < 0.001) were independent risk characteristics for high myopia. Conclusions: In NHPs, a higher grade of fundus tessellation and PPA were significant biomarkers of high myopia. Translational Relevance: The study demonstrates adult NHPs raised in conditioned rooms have a similar prevalence and highly consistent fundus changes with human beings, which strengthens the foundation for utilizing macaques as an animal model in high myopic studies.


Assuntos
Fundo de Olho , Tomografia de Coerência Óptica , Animais , Masculino , Feminino , Modelos Animais de Doenças , Disco Óptico/patologia , Disco Óptico/diagnóstico por imagem , Atrofia Óptica/patologia , Atrofia Óptica/epidemiologia , Pressão Intraocular/fisiologia , Miopia Degenerativa/patologia , Miopia Degenerativa/epidemiologia , Fibras Nervosas/patologia , Comprimento Axial do Olho/patologia , Células Ganglionares da Retina/patologia , Miopia/patologia , Miopia/epidemiologia , Miopia/veterinária
5.
BMC Ophthalmol ; 24(1): 207, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711043

RESUMO

PURPOSE: To understand the ocular biometric parameters characteristics and refractive errors in 3-to 6-year-old preschool children in Chengdu, China, and to investigate the prevalence of refractive errors. METHOD: A school-based cross-sectional study was conducted in Chengdu from 2020 to2022 with a total of 666 kindergartens. All children were measured by non-cycloplegic autorefraction and uncorrected visual acuity (UCVA) and ocular biometric parameters. Finally, univariate linear regression models were used to analyze the relationship between ocular biometric parameters and refraction. RESULTS: A total of 108,578 preschool children aged 3-6 underwent examinations, revealing a myopia prevalence of 6.1%. The mean axial length (AL), keratometry (K), corneal radius (CR), axial length/corneal radius (AL/CR) Ratio, central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), and vitreous chamber depth (VCD) were 22.35 ± 0.69 mm, 43.35 ± 1.58 D, 7.80 ± 0.28 mm, 2.87 ± 0.08, 533.31 ± 32.51 µm, 2.70 ± 0.28 mm, 3.91 ± 0.27 mm, and 15.20 ± 0.68 mm, respectively. With increasing age, AL, CR, AL/CR ratio, CCT, ACD, LT, and VCD also increased. Regardless of age, males consistently exhibited longer AL, flatter corneal curvature, shallower ACD, thicker CCT, thinner LT, and longer VCD compared to females. AL, K, CR, LT, and VCD all showed significant linear relationships with SE (all P < 0.001) in univariate linear regression analysis after adjusting for gender and age. CONCLUSION: The prevalence of myopia among preschool children aged 3-6 in Chengdu is relatively low. Ocular biometric parameters affecting refractive errors include AL, K, CR, LT, and VCD. The preschool period serves as a critical phase for myopia prevention and control.


Assuntos
Biometria , Refração Ocular , Acuidade Visual , Humanos , Feminino , Masculino , Estudos Transversais , China/epidemiologia , Refração Ocular/fisiologia , Pré-Escolar , Criança , Acuidade Visual/fisiologia , Prevalência , Comprimento Axial do Olho , Córnea/patologia , Córnea/anatomia & histologia , Erros de Refração/epidemiologia , Erros de Refração/fisiopatologia , Câmara Anterior/diagnóstico por imagem , Câmara Anterior/patologia , Miopia/epidemiologia , Miopia/fisiopatologia
6.
Medicine (Baltimore) ; 103(20): e38143, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758890

RESUMO

This study was aimed to analyze ocular biometric changes following cycloplegia in pediatric patients with strabismus and amblyopia. Cycloplegia is routinely used to measure refractive error accurately by paralyzing accommodation. However, effects on axial length (AL), anterior chamber depth (ACD), keratometry (Km), and white-to-white distance (WTW) are not well studied in this population. This retrospective study examined 797 patients (1566 eyes) undergoing cycloplegic refraction at a Samsung Kangbuk hospital pediatric ophthalmology clinic from 2010 to 2023. Ocular biometry was measured before and after instilling 1% cyclopentolate and 0.5% phenylephrine/0.5% tropicamide. Patients were categorized by strabismus diagnosis, age, refractive error and amblyopia status. Differences in AL, ACD, Km, WTW, and refractive error pre- and post-cycloplegia were analyzed using paired t tests. ACD (3.44 ±â€…0.33 vs 3.58 ±â€…0.29 mm, P < .05) and WTW (12.09 ±â€…0.42 vs 12.30 ±â€…0.60 mm, P < .05) increased significantly after cycloplegia in all groups except other strabismus subgroup (Cs) in both parameters and youngest subgroup (G1) in ACD. Refractive error demonstrated a hyperopic shift from -0.48 ±â€…3.00 D to -0.06 ±â€…3.32 D (P < .05) in overall and a myopic shift from -6.97 ±â€…4.27 to -8.10 ±â€…2.26 in high myopia (HM). Also, AL and Km did not change significantly. In conclusion, cycloplegia impacts ocular biometrics in children with strabismus and amblyopia, significantly increasing ACD and WTW. Refractive error shifts hyperopically in esotropia subgroup (ET) and myopically in high myopia subgroup (HM), eldest subgroup (G3) relating more to anterior segment changes than AL/Km. Understanding cycloplegic effects on biometry is important for optimizing refractive correction in these patients.


Assuntos
Ambliopia , Biometria , Ciclopentolato , Midriáticos , Refração Ocular , Estrabismo , Humanos , Ambliopia/fisiopatologia , Estrabismo/fisiopatologia , Estudos Retrospectivos , Masculino , Feminino , Criança , Biometria/métodos , Midriáticos/administração & dosagem , Midriáticos/farmacologia , Pré-Escolar , Refração Ocular/efeitos dos fármacos , Refração Ocular/fisiologia , Ciclopentolato/administração & dosagem , Erros de Refração/fisiopatologia , Adolescente , Câmara Anterior/efeitos dos fármacos , Câmara Anterior/patologia , Comprimento Axial do Olho
7.
PLoS One ; 19(4): e0301844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626193

RESUMO

PURPOSE: This study aimed to investigate the underlying factors driving the onset of myopia, specifically the role of the ciliary muscle's contraction in the elongation of the axial length of the eye. METHODS: The retrospective study was conducted utilizing data from three ophthalmic centers in Shanghai and Beijing. Both Chinese and Caucasian children were involved. The axial length of the subjects' eyes was measured in both relaxed and contracted state of the ciliary muscle. A comprehensive mechanical model was also developed to observe the influence of ciliary muscle contraction on the axial length. RESULTS: This study included a sample of 198 right eyes of 198 myopic children. Of these, 97 were male and 101 were female, 126 were of Chinese ethnicity and 72 were Caucasian. The age of onset for myopia ranged from 5.9 to 16.9 years old. The axial length of the eye decreased 0.028 ± 0.007mm following dilation, indicating relaxation of the ciliary muscle (t paired student = 15.16, p = 6.72 x 10-35). In contrast, ciliary muscle contraction resulted in an increase in axial length. Considering proportionality, a significant 90.4% (179 eyes) exhibited a reduced axial length, while a minor 9.6% (19 eyes) demonstrated an increase post-mydriasis. Finite element modeling demonstrated that muscle contraction caused a tension force that transmits towards the posterior pole of the eye, causing it to extend posteriorly. CONCLUSION: The contraction of the ciliary muscle leads to an extension of the axial length. This could potentially be the initiating factor for myopia.


Assuntos
Miopia , Criança , Humanos , Masculino , Feminino , Pré-Escolar , Adolescente , Estudos Retrospectivos , China , Miopia/etiologia , Corpo Ciliar , Músculo Liso , Comprimento Axial do Olho
8.
Zhonghua Yan Ke Za Zhi ; 60(4): 330-336, 2024 Apr 11.
Artigo em Chinês | MEDLINE | ID: mdl-38583056

RESUMO

Objective: To investigate the influence of corneal e-value on the effectiveness of orthokeratology in controlling myopia in children and adolescents. Methods: A retrospective cohort study was conducted, involving the data from 1 563 myopic patients (1 563 eyes) who underwent orthokeratology at the Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine from June 2015 to August 2021 and adhered to lens wear for at least 2 years. The cohort consisted of 737 males and 826 females with an average age of (10.84±2.13) years. Based on corneal e-value parameters obtained from corneal topography, patients were categorized into a low e-value group (n=425) and a high e-value group (n=1 138). Data on gender, age, parental myopia history, and baseline measures such as spherical equivalent (SE), axial length, and corneal e-value were collected. Differences in axial length change and corneal fluorescein staining rates were compared between the two groups at 1 and 2 years after the start of lens wear. A generalized linear mixed model was established with axial length change as the dependent variable to analyze the correlation between axial length change and baseline corneal e-value. Results: The initial age of the 1 563 myopic patients was (10.84±2.13) years, with a baseline SE of (-3.05±1.30) D. After 1 year of lens wear, the axial length change was (0.20±0.19) mm in the low e-value group and (0.24±0.20) mm in the high e-value group. After 2 years, the changes were (0.38±0.25) mm and (0.43±0.27) mm, respectively, with statistically significant differences (all P<0.05). The incidence of corneal staining after 1 year of lens wear was 9.2% (39/425) in the low e-value group and 14.1% (160/1 138) in the high e-value group. After 2 years, the rates were 15.8% (67/425) and 21.8% (248/1 138), respectively, with statistically significant differences (all P<0.05). After adjusting for parental myopia history, age, SE, and baseline axial length, the baseline corneal e-value was positively correlated with axial length change at 1 and 2 years after lens wear (all P<0.05). Conclusions: Corneal e-value is an independent factor influencing the effectiveness of orthokeratology in controlling myopia. A smaller corneal e-value is associated with slower axial length growth after orthokeratology, indicating better control of myopia in treated eyes.


Assuntos
Lentes de Contato , Miopia , Procedimentos Ortoceratológicos , Masculino , Feminino , Criança , Humanos , Adolescente , Estudos Retrospectivos , Comprimento Axial do Olho , Miopia/terapia , Topografia da Córnea , Refração Ocular
9.
BMC Ophthalmol ; 24(1): 183, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649861

RESUMO

AIM: To evaluate the objective visual outcomes following implantation of extended depth of focus intraocular lens (EDOF IOL) in individuals with varying axial lengths (AL) and targeted refraction. METHODS: This retrospective study comprised age-matched eyes that underwent implantation of the EDOF IOL. Eyes were categorized based on AL into groups: control group with AL < 26 mm; high myopia group with AL ≥ 26 mm. Each group was then subdivided based on postoperative spherical equivalent (SE). Follow-up at three months included assessment of uncorrected visual acuity at different distances, contrast sensitivity (CS), refractive outcomes, and spectacle independence. RESULTS: Overall, this study included 100 eyes from 100 patients, comprising 50 males (50.00%) and 50 females (50.00%), with 20 eyes in each group. In the control group, the uncorrected distance visual acuity (UDVA) at 5 and 3 m (m) in the - 1.50 to -0.75 group was inferior to that of the - 0.75 to 0.00 group (P = 0.004). Conversely, the uncorrected near visual acuity (UNVA) at 33 cm in the - 1.50 to -0.75 group was superior to that of the - 0.75 to 0.00 group (P = 0.005). Within the high myopia group, the UDVA at 5 and 3 m in the - 2.25 to -1.50 group was worse than in the - 0.75 to 0.00 group (P = 0.009 and 0.008, respectively). However, the UNVA at 33 cm in the - 2.25 to -1.50 group was better than in the - 0.75 to 0.00 group (P = 0.020). No significant differences were observed among the groups for corrected distance visual acuity (CDVA) (P > 0.05). Additionally, in the high myopia group, the CS of the - 2.25 to -1.50 group was lower compared to that of the - 0.75 to 0.00 group (P = 0.017). Among high myopia patients, 90.00% with refraction ranging from - 1.50 to -0.75 reported achieving overall spectacle independence. CONCLUSIONS: Implantation of extended depth of focus intraocular lenses (IOLs) yields satisfactory visual and refractive outcomes in eyes with axial myopia. Among high myopia patients, a refraction ranging from - 1.50 to -0.75 diopters achieves superior visual quality compared to other postoperative myopic diopters.


Assuntos
Implante de Lente Intraocular , Lentes Intraoculares , Miopia , Refração Ocular , Acuidade Visual , Humanos , Feminino , Masculino , Estudos Retrospectivos , Acuidade Visual/fisiologia , Refração Ocular/fisiologia , Pessoa de Meia-Idade , Miopia/fisiopatologia , Miopia/cirurgia , Idoso , Desenho de Prótese , Adulto , Sensibilidades de Contraste/fisiologia , Facoemulsificação , Pseudofacia/fisiopatologia , Comprimento Axial do Olho , Percepção de Profundidade/fisiologia , Seguimentos
10.
Transl Vis Sci Technol ; 13(4): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38662401

RESUMO

Purpose: To determine whether light chromaticity without defocus induced by longitudinal chromatic aberration (LCA) is sufficient to regulate eye growth. Methods: An interferometric setup based on a spatial light modulator was used to illuminate the dominant eyes of 23 participants for 30 minutes with three aberration-free stimulation conditions: (1) short wavelength (450 nm), (2) long wavelength (638 nm), and (3) broadband light (450-700 nm), covering a retinal area of 12°. The non-dominant eye was occluded and remained as the control eye. Axial length and choroidal thickness were measured before and after the illumination period. Results: Axial length increased significantly from baseline for short-wavelength (P < 0.01, 7.4 ± 2.2 µm) and long-wavelength (P = 0.01, 4.8 ± 1.7 µm) light. The broadband condition also showed an increase in axial length with no significance (P = 0.08, 5.1 ± 3.5 µm). The choroidal thickness significantly decreased in the case of long-wavelength light (P < 0.01, -5.7 ± 2.2 µm), but there was no significant change after short-wavelength and broadband illumination. The axial length and choroidal thickness did not differ significantly between the test and control eyes or between the illumination conditions (all P > 0.05). Also, the illuminated versus non-illuminated choroidal zone did not show a significant difference (all P > 0.05). Conclusions: All stimulation conditions with short- and long-wavelength light and broadband light led to axial elongation and choroidal thinning. Therefore, light chromaticity without defocus induced by LCA is suggested to be insufficient to regulate eye growth. Translational Relevance: This study helps in understanding if light chromaticity alone is a sufficient regulator of eye growth.


Assuntos
Comprimento Axial do Olho , Corioide , Humanos , Corioide/anatomia & histologia , Corioide/crescimento & desenvolvimento , Corioide/efeitos da radiação , Feminino , Masculino , Adulto , Adulto Jovem , Luz , Interferometria/métodos , Tomografia de Coerência Óptica , Estimulação Luminosa/métodos
11.
BMC Ophthalmol ; 24(1): 191, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664659

RESUMO

BACKGROUND: To assess the age and timeline distribution of ocular axial length shortening among myopic children treated with photobiomodulation therapy in the real world situations. METHODS: Retrospective study of photobiomodulation therapy in Chinese children aged 4 to 13 years old where axial length measurements were recorded and assessed to determine effectiveness at two age groups (4 ∼ 8 years old group and 9 ∼ 13 years old group). Data was collected from myopic children who received photobiomodulation therapy for 6 ∼ 12 months. Effectiveness of myopia control was defined as any follow-up axial length ≤ baseline axial length, confirming a reduction in axial length. Independent t-test was used to compare the effectiveness of the younger group and the older group with SPSS 22.0. RESULTS: 342 myopic children were included with mean age 8.64 ± 2.20 years and baseline mean axial length of 24.41 ± 1.17 mm. There were 85.40%, 46.30%, 71.20% and 58.30% children with axial length shortening recorded at follow-up for 1 month, 3 months, 6 months and 12 months, respectively. With respect to the axial length shortened eyes, the mean axial length difference (standard deviation) was - 0.039 (0.11) mm, -0.032 (0.11) mm, -0.037 (0.12) mm, -0.028 (0.57) mm at 1, 3, 6, and 12-month follow-up, respectively. Greater AL shortening was observed among the older group who had longer baseline axial lengths than the younger group (P < 0.001). CONCLUSIONS: Overall myopia control effectiveness using photobiomodulation therapy was shown to be age and time related, with the maximum absolute reduction in axial elongation being cumulative.


Assuntos
Comprimento Axial do Olho , Terapia com Luz de Baixa Intensidade , Miopia , Humanos , Estudos Retrospectivos , Criança , Feminino , Masculino , Miopia/fisiopatologia , Miopia/radioterapia , Adolescente , Pré-Escolar , Terapia com Luz de Baixa Intensidade/métodos , Refração Ocular/fisiologia , Seguimentos
12.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1819-1828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38446204

RESUMO

PURPOSE: The aim of this study is to investigate the distribution of spherical equivalent and axial length in the general population and to analyze the influence of education on spherical equivalent with a focus on ocular biometric parameters. METHODS: The Gutenberg Health Study is a population-based cohort study in Mainz, Germany. Participants underwent comprehensive ophthalmologic examinations as part of the 5-year follow-up examination in 2012-2017 including genotyping. The spherical equivalent and axial length distributions were modeled with gaussian mixture models. Regression analysis (on person-individual level) was performed to analyze associations between biometric parameters and educational factors. Mendelian randomization analysis explored the causal effect between spherical equivalent, axial length, and education. Additionally, effect mediation analysis examined the link between spherical equivalent and education. RESULTS: A total of 8532 study participants were included (median age: 57 years, 49% female). The distribution of spherical equivalent and axial length follows a bi-Gaussian function, partially explained by the length of education (i.e., < 11 years education vs. 11-20 years). Mendelian randomization indicated an effect of education on refractive error using a genetic risk score of education as an instrument variable (- 0.35 diopters per SD increase in the instrument, 95% CI, - 0.64-0.05, p = 0.02) and an effect of education on axial length (0.63 mm per SD increase in the instrument, 95% CI, 0.22-1.04, p = 0.003). Spherical equivalent, axial length and anterior chamber depth were associated with length of education in regression analyses. Mediation analysis revealed that the association between spherical equivalent and education is mainly driven (70%) by alteration in axial length. CONCLUSIONS: The distribution of axial length and spherical equivalent is represented by subgroups of the population (bi-Gaussian). This distribution can be partially explained by length of education. The impact of education on spherical equivalent is mainly driven by alteration in axial length.


Assuntos
Comprimento Axial do Olho , Escolaridade , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Alemanha/epidemiologia , Comprimento Axial do Olho/patologia , Distribuição Normal , Biometria/métodos , Refração Ocular/fisiologia , Seguimentos , Erros de Refração/fisiopatologia , Erros de Refração/diagnóstico , Erros de Refração/genética , Idoso , Adulto
13.
J AAPOS ; 28(2): 103857, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438073

RESUMO

PURPOSE: To investigate whether axial length changes in subjects wearing myopia control spectacles under mesopic conditions. METHODS: Young users of monofocal spectacles with myopic spherical equivalent ranging from -1.00 D to -5.00 D were enrolled prospectively. Subjects were tested while using a pair of special defocus spectacles with a central zone including the distance myopic correction and a peripheral zone with an addition of +3.50 D. Subjects first read an online book with black letters on white background on a desktop computer with their monofocal spectacles for 20 minutes and then read with special defocus spectacles for another 20 minutes. Reading took place in a darkened room under 20 lux illumination. Before and after these periods, axial length of the right eye was measured ten times using the Lenstar, and average measurements were recorded. RESULTS: The 11 subjects in this pilot study had a mean age of 20.9 ± 7.7 years, and 1 was female. Their mean spherical equivalent of the right eyes was -3.20 ± 2.29 D. As expected, axial length increased by 8.2 ± 9.4 µm (P < 0.01) after 20 minutes of reading with monofocal spectacles in low light. When reading with defocus spectacles under the same conditions, the axial length saw an additional, nonsignificant change of 2.2 ± 12.2 µm (P = 0.56). CONCLUSIONS: When reading in mesopic conditions, the axial length in study subjects did not return to baseline values with myopia control spectacles.


Assuntos
Óculos , Miopia , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Projetos Piloto , Leitura , Comprimento Axial do Olho , Miopia/terapia , Refração Ocular
14.
Cont Lens Anterior Eye ; 47(3): 102136, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503665

RESUMO

PURPOSE: To investigate the effects of modifications in back optical zone diameter (BOZD), reverse curve width (RCW), and compression factor (CF) on refractive error changes and axial elongation in myopic children undergoing orthokeratology (ortho-k) over a 12-month period. METHOD: In this retrospective study, data from 126 myopic children undergoing ortho-k fitting were analyzed. Subjects were categorized into four distinct groups based on lens design parameters: Group A (BOZD 6.0 mm, RCW 0.6 mm, CF 0.75 D); Group B (BOZD 6.0 mm, RCW 0.6 mm, CF 1.25 D); Group C (BOZD 5.4 mm, RCW 0.9 mm, CF 1.25 D); and Group D (BOZD 5.0 mm, RCW 1.1 mm, CF 1.25 D). The study evaluated uncorrected visual acuity (UCVA), corneal topography, and axial length (AL) at intervals, using Linear Mixed Models (LMMs) for time-based changes, and ANOVA or Kruskal-Wallis tests for group differences in AL elongation. A multivariable regression analysis identified factors independently associated with AL elongation. RESULTS: Within the first day and week, all four groups displayed significant improvements in UCVA and alterations in corneal curvature, which subsequently stabilized. Although UCVA variations between groups were subtle, Group D had less corneal curvature change than Groups A and B initially and exhibited significantly less AL elongation after one year. No significant difference in corneal curvature change or AL elongation was observed between Group C and the other groups. Multiple regression analysis indicated that older baseline age, greater baseline spherical equivalent refractive error, and smaller BOZD were associated with less AL elongation. CONCLUSION: The study reveals a positive correlation between BOZD and axial length growth over the 12-month period. A pure 0.5 D CF increment demonstrates a nonsignificant impact. This study provides new ideas into optimizing the parameters of ortho-k lenses.


Assuntos
Comprimento Axial do Olho , Lentes de Contato , Topografia da Córnea , Miopia , Procedimentos Ortoceratológicos , Refração Ocular , Acuidade Visual , Humanos , Estudos Retrospectivos , Miopia/fisiopatologia , Miopia/terapia , Feminino , Masculino , Criança , Acuidade Visual/fisiologia , Comprimento Axial do Olho/fisiopatologia , Refração Ocular/fisiologia , Adolescente , Ajuste de Prótese , Córnea/fisiopatologia
15.
Zhonghua Yan Ke Za Zhi ; 60(3): 257-264, 2024 Mar 11.
Artigo em Chinês | MEDLINE | ID: mdl-38462374

RESUMO

Objective: To achieve automatic segmentation, quantification, and grading of different regions of leopard spots fundus (FT) using deep learning technology. The analysis includes exploring the correlation between novel quantitative indicators, leopard spot fundus grades, and various systemic and ocular parameters. Methods: This was a cross-sectional study. The data were sourced from the Beijing Eye Study, a population-based longitudinal study. In 2001, a group of individuals aged 40 and above were surveyed in five urban communities in Haidian District and three rural communities in Daxing District of Beijing. A follow-up was conducted in 2011. This study included individuals aged 50 and above who participated in the second 5-year follow-up in 2011, considering only the data from the right eye. Color fundus images centered on the macula of the right eye were input into the leopard spot segmentation model and macular detection network. Using the macular center as the origin, with inner circle diameters of 1 mm, 3 mm, and outer circle diameter of 6 mm, fine segmentation of the fundus was achieved. This allowed the calculation of the leopard spot density (FTD) and leopard spot grade for each region. Further analyses of the differences in ocular and systemic parameters among different regions' FTD and leopard spot grades were conducted. The participants were categorized into three refractive types based on equivalent spherical power (SE): myopia (SE<-0.25 D), emmetropia (-0.25 D≤SE≤0.25 D), and hyperopia (SE>0.25 D). Based on axial length, the participants were divided into groups with axial length<24 mm, 24-26 mm, and>26 mm for the analysis of different types of FTD. Statistical analyses were performed using one-way analysis of variance, Kruskal-Wallis test, Bonferroni test, and Spearman correlation analysis. Results: The study included 3 369 participants (3 369 eyes) with an average age of (63.9±10.6) years; among them, 1 886 were female (56.0%) and 1, 483 were male (64.0%). The overall FTD for all eyes was 0.060 (0.016, 0.163); inner circle FTD was 0.000 (0.000, 0.025); middle circle FTD was 0.030 (0.000, 0.130); outer circle FTD was 0.055 (0.009, 0.171). The results of the univariate analysis indicated that FTD in various regions was correlated with axial length (overall: r=0.38, P<0.001; inner circle: r=0.31, P<0.001; middle circle: r=0.36, P<0.001; outer circle: r=0.39, P<0.001), subfoveal choroidal thickness (SFCT) (overall: r=-0.69, P<0.001; inner circle: r=-0.57, P<0.001; middle circle: r=-0.68, P<0.001; outer circle: r=-0.72, P<0.001), age (overall: r=0.34, P<0.001; inner circle: r=0.30, P<0.001; middle circle: r=0.31, P<0.001; outer circle: r=0.35, P<0.001), gender (overall: r=-0.11, P<0.001; inner circle: r=-0.04, P<0.001; middle circle: r=-0.07, P<0.001; outer circle: r=-0.11, P<0.001), SE (overall: r=-0.20; P<0.001; inner circle: r=-0.19, P<0.001; middle circle: r=-0.20, P<0.001; outer circle: r=-0.20, P<0.001), uncorrected visual acuity (overall: r=-0.18, P<0.001; inner circle: r=-0.26, P<0.001; middle circle: r=-0.24, P<0.001; outer circle: r=-0.22, P<0.001), and body mass index (BMI) (overall: r=-0.11, P<0.001; inner circle: r=-0.13, P<0.001; middle circle: r=-0.14, P<0.001; outer circle: r=-0.13, P<0.001). Further multivariate analysis results indicated that different region FTD was correlated with axial length (overall: ß=0.020, P<0.001; inner circle: ß=-0.022, P<0.001; middle circle: ß=0.027, P<0.001; outer circle: ß=0.022, P<0.001), SFCT (overall: ß=-0.001, P<0.001; inner circle: ß=-0.001, P<0.001; middle circle: ß=-0.001, P<0.001; outer circle: ß=-0.001, P<0.001), and age (overall: ß=0.002, P<0.001; inner circle: ß=0.001, P<0.001; middle circle: ß=0.002, P<0.001; outer circle: ß=0.002, P<0.001). The distribution of overall (H=56.76, P<0.001), inner circle (H=72.22, P<0.001), middle circle (H=75.83, P<0.001), and outer circle (H=70.34, P<0.001) FTD differed significantly among different refractive types. The distribution of overall (H=373.15, P<0.001), inner circle (H=367.67, P<0.001), middle circle (H=389.14, P<0.001), and outer circle (H=386.89, P<0.001) FTD differed significantly among different axial length groups. Furthermore, comparing various levels of FTD with systemic and ocular parameters, significant differences were found in axial length (F=142.85, P<0.001) and SFCT (F=530.46, P<0.001). Conclusions: The use of deep learning technology enables automatic segmentation and quantification of different regions of theFT, as well as preliminary grading. Different region FTD is significantly correlated with axial length, SFCT, and age. Individuals with older age, myopia, and longer axial length tend to have higher FTD and more advanced FT grades.


Assuntos
Aprendizado Profundo , Demência Frontotemporal , Miopia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Estudos Transversais , Tomografia de Coerência Óptica/métodos , Miopia/diagnóstico , Fundo de Olho , Comprimento Axial do Olho
16.
BMC Ophthalmol ; 24(1): 126, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504225

RESUMO

BACKGROUND: This study evaluates the impact of corneal power on the accuracy of 14 newer intraocular lens (IOL) calculation formulas in cataract surgery. The aim is to assess how these formulas perform across different corneal curvature ranges, thereby guiding more precise IOL selection. METHODS: In this retrospective case series, 336 eyes from 336 patients who underwent cataract surgery were studied. The cohort was divided into three groups according to preoperative corneal power. Key metrics analyzed included mean prediction error (PE), standard deviation of PE (SD), mean absolute prediction error (MAE), median absolute error (MedAE), and the percentage of eyes with PE within ± 0.25 D, 0.50 D, ± 0.75 D, ± 1.00 D and ± 2.00 D. RESULTS: In the flat K group (Km < 43 D), VRF-G, Emmetropia Verifying Optical Version 2.0 (EVO2.0), Kane, and Hoffer QST demonstrated lower SDs (± 0.373D, ± 0.379D, ± 0.380D, ± 0.418D, respectively) compared to the VRF formula (all P < 0.05). EVO2.0 and K6 showed significantly different SDs compared to Barrett Universal II (BUII) (all P < 0.02). In the medium K group (43 D ≤ Km < 46 D), VRF-G, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS recorded lower MAEs (0.307D to 0.320D) than Olsen (OLCR) and Castrop (all P < 0.03), with RBF3.0 having the second lowest MAE (0.309D), significantly lower than VRF and Olsen (OLCR) (all P < 0.05). In the steep K group (Km ≥ 46D), RBF3.0, K6, and Kane achieved significantly lower MAEs (0.279D, 0.290D, 0.291D, respectively) than Castrop (all P < 0.001). CONCLUSIONS: The study highlights the varying accuracy of newer IOL formulas based on corneal power. VRF-G, EVO2.0, Kane, K6, and Hoffer QST are highly accurate for flat corneas, while VRF-G, RBF3.0, BUII, Karmona, K6, EVO2.0, Kane, and Pearl-DGS are recommended for medium K corneas. In steep corneas, RBF3.0, K6, and Kane show superior performance.


Assuntos
Extração de Catarata , Catarata , Lentes Intraoculares , Facoemulsificação , Humanos , Estudos Retrospectivos , Córnea , Olho Artificial , Biometria , Refração Ocular , Óptica e Fotônica , Comprimento Axial do Olho
17.
Sci Rep ; 14(1): 6787, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514709

RESUMO

The aim of this study was to investigate the anatomical and physiological ocular parameters in adolescents with myopia and to examine the relations between refractive error (SER), ocular biometry, body size and flexibility parameters in myopic adolescents. A cross-sectional study of 184 myopic adolescents, aged 15 to 19 years was conducted. Refractive error and corneal curvature measures of the eye were evaluated using an autorefractometer under cycloplegia. Central corneal thickness was determined by contact pachymetry. The ocular axial length, anterior and vitreous chamber depth, and lens thickness were measured using A-scan biometry ultrasonography. Height and body weight were measured according to a standardized protocol. Body mass index (BMI) was subsequently calculated. Beighton scale was used to measure joint flexibility. Body stature was positively correlated with ocular axial length (r = 0.39, p < 0.001) and vitreous chamber depth (r = 0.37, p < 0.001). There was a negative correlation between height and SER (r = - 0.46; p < 0.001). Beighton score and body weight had weak positive correlations with axial length and vitreous chamber depth, and a weak negative correlation with SER. A significantly more negative SER was observed in the increased joint mobility group (p < 0.05; U = 5065.5) as compared to normal joint mobility group: mean - 4.37 ± 1.85 D (median - 4.25; IQR - 6.25 to - 3.25 D) and mean - 3.72 ± 1.66 D (median - 3.50; IQR - 4.75 to - 2.25 D) respectively. There was a strong association between height and axial length, as well as SER. Higher degree of myopia significantly correlated with greater Beighton score (increased joint mobility).


Assuntos
Miopia , Erros de Refração , Adolescente , Humanos , Estudos Transversais , Olho/diagnóstico por imagem , Biometria , Peso Corporal , Segmento Anterior do Olho , Refração Ocular , Câmara Anterior/diagnóstico por imagem , Câmara Anterior/anatomia & histologia , Comprimento Axial do Olho/diagnóstico por imagem
18.
BMC Ophthalmol ; 24(1): 143, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549060

RESUMO

AIM: To investigate the correlation of angles α and κ with the refractive and biological parameters in children. METHODS: This case-series study included 438 eyes of 219 children (males/females = 105/114, age: 3-15 years). Ocular biometric parameters, including axial length, corneal radius of curvature (CR), white-to-white distance (WTW), angle κ and angle α, were measured using IOL Master 700; auto-refraction were assessed under cycloplegia. The eyes were assigned to different groups based on CR, WTW, and gender to compare the angles α and κ, and analyze the correlations between the differences of biological parameters on angles α and κ. RESULTS: The means of axial length, CR, WTW, angle α, and angle κ were 23.24 ± 1.14 mm, 7.79 ± 0.27 mm, 11.68 ± 0.41 mm, 0.45 ± 0.25 mm, and 0.27 ± 0.22 mm, respectively. Angle α was correlated with CR and WTW (fixed effect coefficient [FEC] = 0.237, p = 0.015; FEC = -0.109, p = 0.003; respectively), and angle κ also correlated with CR and WTW (FEC = 0.271, p = 0.003; FEC = -0.147, p < 0.001, respectively). Comparing subgroups, the large CR and small WTW group had larger angles α (0.49 ± 0.27 vs. 0.41 ± 0.21, p < 0.001; 0.46 ± 0.27 vs. 0.44 ± 0.21, p < 0.05, respectively) and κ (0.29 ± 0.25 vs. 0.24 ± 0.15, p < 0.01; 0.29 ± 0.25 vs. 0.26 ± 0.19, p < 0.05, respectively). The differences in interocular angles α and κ showed correlation with interocular WTW (r = - 0.255, p < 0.001; r = - 0.385, p < 0.001). Eyes with smaller WTW tended to have larger angle κ (0.28 ± 0.27 vs. 0.25 ± 0.15, p < 0.05). CONCLUSION: The size of angle α/κ may be correlated to CR and WTW, and a larger WTW eye may suggest a smaller angle κ compared with the fellow eye.


Assuntos
Presbiopia , Refração Ocular , Criança , Humanos , Feminino , Masculino , Pré-Escolar , Adolescente , Testes Visuais , Córnea , Biometria , Comprimento Axial do Olho
19.
Curr Eye Res ; 49(6): 605-614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38363071

RESUMO

PURPOSE: To investigate the influence of lens thickness (LT) on accuracy of Kane, Hill-RBF 3.0 Barrett Universal II (BUII), Emmetropia Verifying Optical (EVO), and Pearl-DGS formulas in eyes with different axial lengths (AL). METHODS: The prospective cohort study was conducted at Eye and ENT Hospital of Fudan University. Patients who had uneventful cataract surgery between March 2021 and July 2023 were recruited. Manifest refraction was conducted two-month post-surgery. Eyes were divided into 4 groups based on AL: short (<22mm), medium (22-24.5 mm), medium long (24.5-26mm) and very long (≥26mm). In each AL group, eyes were then divided into 3 subgroups based on the LT measured with IOLmaster700: thin (<4.5 mm), medium (4.5-5.0 mm), and thick (≥ 5 mm). The influence of LT on accuracy of Kane, Hill-RBF 3.0, BUII, EVO, and Pearl-DGS formulas were investigated in each AL group. RESULTS: A total of 327 eyes from 327 patients were analyzed, with 64, 102, 73 and 88 eyes in each AL group, respectively. In eyes with AL < 24.5 mm, myopic PE was significantly associated with greater LT using all the 5 formulas (all p < 0.05). Backward stepwise multivariate regression analyses revealed that LT was an important influencing factor for PE in all 5 formulas, particularly in eyes with AL <24.5 mm. In eyes with AL <24.5 mm and LT > 5.0 mm, PE of all 5 formulas calculated with the optional parameter LT were more myopic than those calculated without LT. CONCLUSIONS: Thicker LT was associated with more myopic PE among eyes with AL <24.5 mm when using all 5 formulas. Further optimization of current formulas is necessary, especially for eyes with short AL and thick LT.


Assuntos
Comprimento Axial do Olho , Biometria , Emetropia , Cristalino , Miopia Degenerativa , Refração Ocular , Humanos , Estudos Prospectivos , Masculino , Feminino , Refração Ocular/fisiologia , Comprimento Axial do Olho/patologia , Emetropia/fisiologia , Biometria/métodos , Pessoa de Meia-Idade , Cristalino/patologia , Cristalino/diagnóstico por imagem , Idoso , Miopia Degenerativa/diagnóstico , Miopia Degenerativa/fisiopatologia , Acuidade Visual , Óptica e Fotônica , Lentes Intraoculares , Implante de Lente Intraocular , Reprodutibilidade dos Testes , Miopia/fisiopatologia , Miopia/diagnóstico
20.
Am J Ophthalmol ; 262: 10-18, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38316200

RESUMO

PURPOSE: To evaluate the association between the endothelial cell density (ECD) and central corneal thickness (CCT) in medium, short, and long eyes of preoperative Han Chinese cataract patients. DESIGN: Retrospective cross-sectional study. METHODS: We consecutively enrolled 410 eyes, namely, 50 short eyes (axial length [AL]<22.0 mm), 150 medium eyes (22.0≤AL<24.0 mm), 120 medium-long eyes (24.0≤AL<26.0 mm), and 90 long eyes (AL≥26.0 mm), of 410 adult patients scheduled for cataract surgery. The ECD and CCT were determined preoperatively with a noncontact specular microscope. The association between the CCT and ECD was identified by using a multivariable regression analysis. A thin cornea was defined as having a CCT less than 500 µm. RESULTS: After adjusting for age, the presence of arterial hypertension, the presence of diabetes mellitus, intraocular pressure, and AL, a positive association between the CCT and ECD was identified in short eyes (linear regression coefficient [B]=3.40; standardized B [ß]=0.52; P = .03), medium eyes (B = 2.33; ß=0.28; P = .002), medium-long eyes (B = 1.84; ß=0.25; P = .02), and long eyes (B = 2.69; ß=0.41; P = .04). In the total group, the multivariable logistic analysis showed a significant link between the presence of a thin cornea and a lower ECD (odds ratio [OR]=0.80 per 100 cells/mm2 increase; P = .001). CONCLUSIONS: For cataract patients of Han ethnicity, a significant association between a thin CCT and a lower ECD was shown across the AL spectrum and was most prominent in short eyes. Eyes with a thin cornea are more likely to have a lower ECD.


Assuntos
Povo Asiático , Catarata , Córnea , Endotélio Corneano , Humanos , Masculino , Feminino , Estudos Retrospectivos , Estudos Transversais , Idoso , Contagem de Células , Endotélio Corneano/patologia , Pessoa de Meia-Idade , Córnea/patologia , Catarata/etnologia , Catarata/patologia , Povo Asiático/etnologia , China/epidemiologia , Comprimento Axial do Olho/patologia , Paquimetria Corneana , Idoso de 80 Anos ou mais , Pressão Intraocular/fisiologia , População do Leste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA