Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Sci Rep ; 14(1): 13727, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877142

RESUMO

Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.


Assuntos
Núcleo Celular , Proliferação de Células , Conectina , Camundongos Knockout , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Núcleo Celular/metabolismo , Conectina/genética , Conectina/metabolismo , Sarcômeros/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/deficiência , Cálcio/metabolismo
2.
BMC Med Genomics ; 17(1): 170, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937733

RESUMO

BACKGROUND: TTN is a complex gene with large genomic size and highly repetitive structure. Pathogenic variants in TTN have been reported to cause a range of skeletal muscle and cardiac disorders. Homozygous or compound heterozygous mutations tend to cause a wide spectrum of phenotypes with congenital or childhood onset. The onset and severity of the features were considered to be correlated with the types and location of the TTN variants. METHODS: Whole-exome sequencing was performed on three unrelated families presenting with fetal akinesia deformation sequence (FADS), mainly characterized by reduced fetal movements and limb contractures. Sanger sequencing was performed to confirm the variants. RT-PCR analysis was performed. RESULTS: TTN c.38,876-2 A > C, a meta transcript-only variant, with a second pathogenic or likely pathogenic variant in trans, was observed in five affected fetuses from the three families. Sanger sequencing showed that all the fetal variants were inherited from the parents. RT-PCR analysis showed two kinds of abnormal splicing, including intron 199 extension and skipping of 8 bases. CONCLUSIONS: Here we report on three unrelated families presenting with FADS caused by four TTN variants. In addition, our study demonstrates that pathogenic meta transcript-only TTN variant can lead to defects which is recognizable prenatally in a recessive manner.


Assuntos
Conectina , Linhagem , Humanos , Feminino , Conectina/genética , Masculino , Sequenciamento do Exoma , Artrogripose/genética , Contratura/genética , Mutação , Gravidez , Feto , Adulto
3.
Neoplasia ; 54: 101013, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850835

RESUMO

In invasive lung adenocarcinoma (LUAD), patients with micropapillary (MIP) or solid (SOL) components had a significantly poorer prognosis than those with only lepidic (LEP), acinar (ACI) or papillary (PAP) components. It is interesting to explore the genetic features of different histologic subtypes, especially the highly aggressive components. Based on a cohort of 5,933 patients, this study observed that in different tumor size groups, LUAD with MIP/SOL components showed a different prevalence, and patients with ALK alteration or TP53 mutations had a higher probability of developing MIP/SOL components. To control individual differences, this research used spatial whole-exome sequencing (WES) via laser-capture microdissection of five patients harboring these five coexistent components and identified genetic features among different histologic components of the same tumor. In tracing the evolution of components, we found that titin (TTN) mutation might serve as a crucial intratumor potential driver for MIP/SOL components, which was validated by a cohort of 146 LUAD patients undergoing bulk WES. Functional analysis revealed that TTN mutations enriched the complement and coagulation cascades, which correlated with the pathway of cell adhesion, migration, and proliferation. Collectively, the histologic subtypes of invasive LUAD were genetically different, and certain trunk genotypes might synergize with branching TTN mutation to develop highly aggressive components.


Assuntos
Adenocarcinoma de Pulmão , Sequenciamento do Exoma , Neoplasias Pulmonares , Mutação , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Masculino , Feminino , Conectina/genética , Prognóstico , Pessoa de Meia-Idade
4.
Nat Commun ; 15(1): 4496, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802383

RESUMO

Titin N2B unique sequence (N2B-us) is a 572 amino acid sequence that acts as an elastic spring to regulate muscle passive elasticity. It is thought to lack stable tertiary structures and is a force-bearing region that is regulated by mechanical stretching. In this study, the conformation of N2B-us and its interaction with four-and-a-half LIM domain protein 2 (FHL2) are investigated using AlphaFold2 predictions and single-molecule experimental validation. Surprisingly, a stable alpha/beta structural domain is predicted and confirmed in N2B-us that can be mechanically unfolded at forces of a few piconewtons. Additionally, more than twenty FHL2 LIM domain binding sites are predicted to spread throughout N2B-us. Single-molecule manipulation experiments reveals the force-dependent binding of FHL2 to the N2B-us structural domain. These findings provide insights into the mechano-sensing functions of N2B-us and its interactions with FHL2.


Assuntos
Conectina , Proteínas com Homeodomínio LIM , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/genética , Conectina/metabolismo , Conectina/química , Conectina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sítios de Ligação , Humanos , Animais , Proteínas Musculares/metabolismo , Proteínas Musculares/química , Proteínas Musculares/genética , Sequência de Aminoácidos
5.
Circ Genom Precis Med ; 17(3): e004320, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38804128

RESUMO

BACKGROUND: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT). METHODS: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies. RESULTS: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A, SCN10A, and TTN/CCDC141. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals. CONCLUSIONS: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.


Assuntos
Estudo de Associação Genômica Ampla , Taquicardia Supraventricular , Humanos , Taquicardia Supraventricular/genética , Predisposição Genética para Doença , Taquicardia por Reentrada no Nó Atrioventricular/genética , Polimorfismo de Nucleotídeo Único , Conectina/genética , Transcriptoma
6.
J Am Coll Cardiol ; 83(17): 1640-1651, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38658103

RESUMO

BACKGROUND: Disease penetrance in genotype-positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES: This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS: The authors evaluated 779 G+ patients (age 35.8 ± 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN) without DCM followed at 25 Spanish centers. RESULTS: After a median follow-up of 37.1 months (Q1-Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person-years; 95% CI: 2.3-3.5 per 100 person-years). DCM penetrance and age at DCM onset was different according to underlying gene group (log-rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1-year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end-diastolic diameter (HR per 1-mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identified late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS: Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end-diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM.


Assuntos
Cardiomiopatia Dilatada , Genótipo , Penetrância , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Conectina/genética , Eletrocardiografia , Seguimentos , Espanha/epidemiologia , Estudos Retrospectivos
7.
J Nanobiotechnology ; 22(1): 191, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637832

RESUMO

BACKGROUND: Exosomes assume a pivotal role as essential mediators of intercellular communication within tumor microenvironments. Within this context, long noncoding RNAs (LncRNAs) have been observed to be preferentially sorted into exosomes, thus exerting regulatory control over the initiation and progression of cancer through diverse mechanisms. RESULTS: Exosomes were successfully isolated from cholangiocarcinoma (CCA) CTCs organoid and healthy human serum. Notably, the LncRNA titin-antisense RNA1 (TTN-AS1) exhibited a conspicuous up-regulation within CCA CTCs organoid derived exosomes. Furthermore, a significant elevation of TTN-AS1 expression was observed in tumor tissues, as well as in blood and serum exosomes from patients afflicted with CCA. Importantly, this hightened TTN-AS1 expression in serum exosomes of CCA patients manifested a strong correlation with both lymph node metastasis and TNM staging. Remarkably, both CCA CTCs organoid-derived exosomes and CCA cells-derived exosomes featuring pronounced TTN-AS1 expression demonstrated the capability to the proliferation and migratory potential of CCA cells. Validation of these outcomes was conducted in vivo experiments. CONCLUSIONS: In conclusion, our study elucidating that CCA CTCs-derived exosomes possess the capacity to bolster the metastasis tendencies of CCA cells by transporting TTN-AS1. These observations underscore the potential of TTN-AS1 within CTCs-derived exosomes to serve as a promising biomarker for the diagnosis and therapeutic management of CCA.


Assuntos
Colangiocarcinoma , Exossomos , MicroRNAs , Células Neoplásicas Circulantes , RNA Bacteriano , RNA Longo não Codificante , Humanos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exossomos/metabolismo , Conectina/genética , Conectina/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Proliferação de Células , Movimento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
8.
J Biol Chem ; 300(5): 107254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569934

RESUMO

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Assuntos
Conectina , Proteínas com Domínio LIM , Proteínas Musculares , Miócitos Cardíacos , Proteínas do Tecido Nervoso , Proteínas Nucleares , Sarcômeros , Animais , Humanos , Camundongos , Ratos , Conectina/metabolismo , Conectina/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Sarcômeros/metabolismo , Fatores de Transcrição
9.
Cancer Invest ; 42(4): 297-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38666471

RESUMO

Endometrioid endometrial carcinoma (EEC) stands as a prevalent gynecologic malignancy in developed regions. However, predicting relapse cases remains challenging, necessitating the identification of a novel biomarker for EEC relapse. The assessment of tumor mutational burden (TMB) is pivotal for immunotherapy in EEC patients. However, both whole-exome sequencing (WES) and targeted sequencing encountered application-related difficulties. In light of this, standardized and simplified techniques for TMB measurement are imperative. In this study, we employed WES on 25 EEC patients (12 relapsed cases and 13 non-relapsed cases) who accepted hysterectomy surgery (CHCAMS cohort). We additionally obtained a total of 391 tumor samples with clinicopathological features from TCGA website to broaden the study cohort. In the CHCAMS cohort, the TTN mutant group showed shorter progression-free survival (p < 0.001) and overall survival (p < 0.001) than TTN wild-type group. Additionally, we discovered that the number of TTN mutations per sample was significantly linked with TMB-WES in CHCAMS cohort and TCGA cohort (p < 0.05). And the number of TTN mutations per sample in POLE mutant group was greater than in the POLE wild-type group (p < 0.0001). In conclusion, TTN mutation may serve as a biomarker for EEC prognosis. TTN mutation is also associated with WES-TMB, and could be a simplified TMB measurement technique.


Assuntos
Carcinoma Endometrioide , Conectina , Neoplasias do Endométrio , Mutação , Humanos , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/mortalidade , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Carcinoma Endometrioide/mortalidade , Pessoa de Meia-Idade , Conectina/genética , Biomarcadores Tumorais/genética , Idoso , Prognóstico , Sequenciamento do Exoma/métodos , Adulto
10.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604403

RESUMO

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Assuntos
Conectina , Mecanotransdução Celular , Camundongos Knockout , Animais , Camundongos , Conectina/metabolismo , Conectina/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Condicionamento Físico Animal , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Modelos Animais de Doenças , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas Quinases , Peptídeos e Proteínas de Sinalização Intracelular
11.
Sci Rep ; 14(1): 5313, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438525

RESUMO

The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.


Assuntos
Cardiomiopatias , Humanos , Conectina/genética , Cardiomiopatias/genética , Intervenção Educacional Precoce , Aconselhamento Genético , Testes Genéticos
12.
Neuromuscul Disord ; 37: 1-5, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430701

RESUMO

This report describes a novel TTN -related phenotype in two brothers, both affected by a childhood onset, very slowly progressive myopathy with cores, associated with dilated cardiomyopathy only in their late disease stages. Clinical exome sequencing documented in both siblings the heterozygous c.2089A>T and c.19426+2T>A variants in TTN. The c.2089A>T, classified in ClinVar as possibly pathogenic, introduces a premature stop codon in exon 14, whereas the c.19426+2T>A affects TTN alternative splicing. The unfeasibility of segregation studies prevented us from establishing the inheritance mode of the muscle disease in this family, although the lack of any reported muscle or heart symptoms in both parents might support an autosomal recessive transmission. In this view, the occurrence of cardiomyopathy in both probands might be related to the c.2089A>T truncating variant in exon 14, and the childhood onset, slowly progressive myopathy to the c.19426+2T>A splicing variant, possibly allowing translation of an almost full length TTN protein.


Assuntos
Cardiomiopatia Dilatada , Doenças Musculares , Masculino , Humanos , Criança , Conectina/genética , Doenças Musculares/genética , Fenótipo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Códon sem Sentido , Mutação
13.
J Mol Cell Cardiol ; 190: 13-23, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462126

RESUMO

Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.


Assuntos
Cálcio , Proteínas de Transporte , Conectina , Contração Miocárdica , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Sarcômeros/metabolismo , Modelos Cardiovasculares , Simulação por Computador , Animais , Coração/fisiopatologia , Coração/fisiologia
14.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429495

RESUMO

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética
16.
PLoS One ; 19(2): e0296802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381767

RESUMO

OBJECTIVE: To generate a mouse model carrying TTNtv Y4370* simulating the newly discovered human heterozygous nonsense TTNtv c.13254T>G (p.Tyr4418Ter) to supplement and improve the functional evidence of pathogenic mutation TTNtv c.13254T>G on the pathogenic type of dilated cardiomyopathy. METHODS: We generated 4 mice carrying TTNtv p. Y4370* through CRISPR/Cas-mediated genome engineering. Monthly serological detection, bimonthly echocardiography, and histology evaluation were carried out to observe and compare alterations of cardiac structure and function between 4 TTN+/- mice and 4 wild-type (WT) mice. RESULTS: For the two-month-old TTN+/- mice, serum glutamic-oxalacetic transaminase (AST), lactic dehydrogenase (LDH), and creatine kinase (CK) were significantly increased, the diastolic Left Ventricular Systolic Anterior Wall (LVAW), and the LV mass markedly rose, with the left ventricular volume displaying an increasing trend and Ejection Fraction (EF) and Fractional Shortening (FS) showing a decreasing trend. Besides, the histological evaluation showed that cardiac fibrosis level and positive rate of cardiac mast cell of TTN+/- mice were obviously increased compared with WT mice. CONCLUSIONS: TTNtv Y4370* could lead to cardiac structure and function alterations in mice, supplementing the evidence of TTNtv c.13254T>G pathogenicity in human.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Animais , Humanos , Lactente , Camundongos , Cardiomiopatias/genética , Conectina/genética , Coração , Mutação
17.
Leg Med (Tokyo) ; 68: 102380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237273

RESUMO

The diagnosis of cardiomyopathy often relies on the subjective judgment of pathologists due to the variety of morphologic changes in the condition and its low specificity. This uncertainty can contribute to unexplained sudden cardiac deaths (USCD). To enhance the accuracy of hereditary cardiomyopathy diagnosis in forensic medicine, we proposed a combination of molecular autopsy and pathologic autopsy. By analyzing 16 deceased patients suspected of cardiomyopathy, using whole exome sequencing (WES) in molecular autopsy, and applying a combined diagnostic strategy, the study found pathogenic or likely pathogenic variants in 6 cases. Out of the 16 cases, cardiomyopathy was confirmed in 3, while 3 exhibited conditions consistent with it. Data for 4 cases was inconclusive, and cardiomyopathy was ruled out in 6. Notably, a novel variant of the TTN gene was identified. This research suggests that a grading diagnostic strategy, combining molecular and pathological evidence, can improve the accuracy of forensic cardiomyopathy diagnosis. This approach provides a practical model and strategy for precise forensic cause-of-death determination, addressing the limitations of relying solely on morphologic assessments in cardiomyopathy cases, and integrating genetic information for a more comprehensive diagnosis.


Assuntos
Autopsia , Cardiomiopatias , Humanos , Cardiomiopatias/patologia , Cardiomiopatias/genética , Cardiomiopatias/diagnóstico , Autopsia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Patologia Legal/métodos , Sequenciamento do Exoma , Conectina/genética , Morte Súbita Cardíaca/patologia , Idoso , Medicina Legal/métodos , Adulto Jovem , Causas de Morte
18.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226618

RESUMO

Titin (TTN) is one of the largest and most complex proteins expressed in humans, and truncation variants are the most prevalent genetic lesion identified in individuals with dilated cardiomyopathy (DCM) or other disorders of impaired cardiac contractility. Two reports in this issue of the JCI shed light on a potential mechanism involving truncated TTN sarcomere integration and the potential for disruption of sarcomere structural integrity. Kellermayer, Tordai, and colleagues confirmed the presence of truncated TTN protein in human DCM samples. McAfee and authors developed a patient-specific TTN antibody to study truncated TTN subcellular localization and to explore its functional consequences. A "poison peptide" mechanism emerges that inspires alternative therapeutic approaches while opening new lines for inquiry, such as the role of haploinsufficiency of full-length TTN protein, mechanisms explaining sarcomere dysfunction, and explanations for variable penetrance.


Assuntos
Cardiomiopatia Dilatada , Sarcômeros , Humanos , Conectina/genética , Conectina/metabolismo , Sarcômeros/metabolismo , Cardiomiopatia Dilatada/metabolismo , Penetrância , Mutação
19.
Circulation ; 149(16): 1285-1297, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235591

RESUMO

BACKGROUND: TTN truncation variants (TTNtvs) are the most common genetic lesion identified in individuals with dilated cardiomyopathy, a disease with high morbidity and mortality rates. TTNtvs reduce normal TTN (titin) protein levels, produce truncated proteins, and impair sarcomere content and function. Therapeutics targeting TTNtvs have been elusive because of the immense size of TTN, the rarity of specific TTNtvs, and incomplete knowledge of TTNtv pathogenicity. METHODS: We adapted CRISPR activation using dCas9-VPR to functionally interrogate TTNtv pathogenicity and develop a therapeutic in human cardiomyocytes and 3-dimensional cardiac microtissues engineered from induced pluripotent stem cell models harboring a dilated cardiomyopathy-associated TTNtv. We performed guide RNA screening with custom TTN reporter assays, agarose gel electrophoresis to quantify TTN protein levels and isoforms, and RNA sequencing to identify molecular consequences of TTN activation. Cardiomyocyte epigenetic assays were also used to nominate DNA regulatory elements to enable cardiomyocyte-specific TTN activation. RESULTS: CRISPR activation of TTN using single guide RNAs targeting either the TTN promoter or regulatory elements in spatial proximity to the TTN promoter through 3-dimensional chromatin interactions rescued TTN protein deficits disturbed by TTNtvs. Increasing TTN protein levels normalized sarcomere content and contractile function despite increasing truncated TTN protein. In addition to TTN transcripts, CRISPR activation also increased levels of myofibril assembly-related and sarcomere-related transcripts. CONCLUSIONS: TTN CRISPR activation rescued TTNtv-related functional deficits despite increasing truncated TTN levels, which provides evidence to support haploinsufficiency as a relevant genetic mechanism underlying heterozygous TTNtvs. CRISPR activation could be developed as a therapeutic to treat a large proportion of TTNtvs.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Cardiomiopatia Dilatada/patologia , Conectina/genética , Haploinsuficiência/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Sistemas CRISPR-Cas , Miócitos Cardíacos/metabolismo
20.
Skelet Muscle ; 14(1): 2, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229112

RESUMO

BACKGROUND: Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functional outcome measures that may exhibit variability within and between participants, rendering their use as sole measures of drug efficacy challenging. Given this, supportive objective biomarkers may be useful in enhancing observed clinical results. Creatine kinase (CK) is traditionally used as a diagnostic biomarker of DMD, but its potential as a robust pharmacodynamic (PD) biomarker is difficult due to the wide variability seen within the same participant over time. Thus, there is a need for the discovery and validation of novel PD biomarkers to further support and bolster traditional outcome measures of efficacy in DMD. METHOD: Potential PD biomarkers in DMD participant urine were examined using a proteomic approach on the Somalogic platform. Findings were confirmed in both mdx mice and Golden Retriever muscular dystrophy (GRMD) dog plasma samples. RESULTS: Changes in the N-terminal fragment of titin, a well-known, previously characterized biomarker of DMD, were correlated with the expression of microdystrophin protein in mice, dogs, and humans. Further, titin levels were sensitive to lower levels of expressed microdystrophin when compared to CK. CONCLUSION: The measurement of objective PD biomarkers such as titin may provide additional confidence in the assessment of the mechanism of action and efficacy in gene therapy clinical trials of DMD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03368742.


Assuntos
Distrofia Muscular de Duchenne , Proteômica , Humanos , Camundongos , Animais , Cães , Conectina/genética , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Biomarcadores , Creatina Quinase , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA