Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.811
Filtrar
1.
PLoS One ; 19(5): e0298651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753655

RESUMO

Dynamic functional connectivity investigates how the interactions among brain regions vary over the course of an fMRI experiment. Such transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort. In this paper, we develop a multi-subject Bayesian framework where the estimation of dynamic functional networks is informed by time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states. We assume the state-transition probabilities to vary over time and across subjects as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. We further assume sparsity in the network structures via shrinkage priors, and achieve edge selection in the estimated graph structures by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We evaluate the performances of our method vs alternative approaches on synthetic data. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, as a proxy of cognitive processing, and assess the heterogeneity of the effects of changes in pupil dilation on the subjects' propensity to change connectivity states. The heterogeneity of state occupancy across subjects provides an understanding of the relationship between increased pupil dilation and transitions toward different cognitive states.


Assuntos
Teorema de Bayes , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Modelos Neurológicos , Cadeias de Markov , Conectoma/métodos , Mapeamento Encefálico/métodos
2.
PLoS One ; 19(5): e0293053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768123

RESUMO

Resting-state functional magnetic resonance imaging (rs-fMRI) has increasingly been used to study both Alzheimer's disease (AD) and schizophrenia (SZ). While most rs-fMRI studies being conducted in AD and SZ compare patients to healthy controls, it is also of interest to directly compare AD and SZ patients with each other to identify potential biomarkers shared between the disorders. However, comparing patient groups collected in different studies can be challenging due to potential confounds, such as differences in the patient's age, scan protocols, etc. In this study, we compared and contrasted resting-state functional network connectivity (rs-FNC) of 162 patients with AD and late mild cognitive impairment (LMCI), 181 schizophrenia patients, and 315 cognitively normal (CN) subjects. We used confounder-controlled rs-FNC and applied machine learning algorithms (including support vector machine, logistic regression, random forest, and k-nearest neighbor) and deep learning models (i.e., fully-connected neural networks) to classify subjects in binary and three-class categories according to their diagnosis labels (e.g., AD, SZ, and CN). Our statistical analysis revealed that FNC between the following network pairs is stronger in AD compared to SZ: subcortical-cerebellum, subcortical-cognitive control, cognitive control-cerebellum, and visual-sensory motor networks. On the other hand, FNC is stronger in SZ than AD for the following network pairs: subcortical-visual, subcortical-auditory, subcortical-sensory motor, cerebellum-visual, sensory motor-cognitive control, and within the cerebellum networks. Furthermore, we observed that while AD and SZ disorders each have unique FNC abnormalities, they also share some common functional abnormalities that can be due to similar neurobiological mechanisms or genetic factors contributing to these disorders' development. Moreover, we achieved an accuracy of 85% in classifying subjects into AD and SZ where default mode, visual, and subcortical networks contributed the most to the classification and accuracy of 68% in classifying subjects into AD, SZ, and CN with the subcortical domain appearing as the most contributing features to the three-way classification. Finally, our findings indicated that for all classification tasks, except AD vs. SZ, males are more predictable than females.


Assuntos
Doença de Alzheimer , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Masculino , Imageamento por Ressonância Magnética/métodos , Idoso , Pessoa de Meia-Idade , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Conectoma/métodos , Descanso/fisiologia , Estudos de Casos e Controles
3.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741270

RESUMO

This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer's disease.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Conectoma/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Cognição/fisiologia , Idoso , Pessoa de Meia-Idade , Aprendizado Profundo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/fisiopatologia , Adulto
4.
J Neural Eng ; 21(3)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38718789

RESUMO

Objective.Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children. While numerous intelligent methods are applied for its subjective diagnosis, they seldom consider the consistency problem of ADHD biomarkers. In practice, these data-driven approaches lead to varying learned features for ADHD classification across diverse ADHD datasets. This phenomenon significantly undermines the reliability of identified biomarkers and hampers the interpretability of these methods.Approach.In this study, we propose a cross-dataset feature selection (FS) module using a grouped SVM-based recursive feature elimination approach (G-SVM-RFE) to enhance biomarker consistency across multiple datasets. Additionally, we employ connectome gradient data for ADHD classification. In details, we introduce the G-SVM-RFE method to effectively concentrate gradient components within a few brain regions, thereby increasing the likelihood of identifying these regions as ADHD biomarkers. The cross-dataset FS module is integrated into an existing binary hypothesis testing (BHT) framework. This module utilizes external datasets to identify global regions that yield stable biomarkers. Meanwhile, given a dataset which waits for implementing the classification task as local dataset, we learn its own specific regions to further improve the performance of accuracy on this dataset.Main results.By employing this module, our experiments achieve an average accuracy of 96.7% on diverse datasets. Importantly, the discriminative gradient components primarily originate from the global regions, providing evidence for the significance of these regions. We further identify regions with the high appearance frequencies as biomarkers, where all the used global regions and one local region are recognized.Significance.These biomarkers align with existing research on impaired brain regions in children with ADHD. Thus, our method demonstrates its validity by providing enhanced biological explanations derived from ADHD mechanisms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Biomarcadores , Máquina de Vetores de Suporte , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/classificação , Humanos , Biomarcadores/análise , Criança , Masculino , Feminino , Conectoma/métodos , Encéfalo/metabolismo , Bases de Dados Factuais , Reprodutibilidade dos Testes
5.
NPJ Syst Biol Appl ; 10(1): 50, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724582

RESUMO

Connectome studies have shown how Alzheimer's disease (AD) disrupts functional and structural connectivity among brain regions. But the molecular basis of such disruptions is less studied, with most genomic/transcriptomic studies performing within-brain-region analyses. To inspect how AD rewires the correlation structure among genes in different brain regions, we performed an Inter-brain-region Differential Correlation (Inter-DC) analysis of RNA-seq data from Mount Sinai Brain Bank on four brain regions (frontal pole, superior temporal gyrus, parahippocampal gyrus and inferior frontal gyrus, comprising 264 AD and 372 control human post-mortem samples). An Inter-DC network was assembled from all pairs of genes across two brain regions that gained (or lost) correlation strength in the AD group relative to controls at FDR 1%. The differentially correlated (DC) genes in this network complemented known differentially expressed genes in AD, and likely reflects cell-intrinsic changes since we adjusted for cell compositional effects. Each brain region used a distinctive set of DC genes when coupling with other regions, with parahippocampal gyrus showing the most rewiring, consistent with its known vulnerability to AD. The Inter-DC network revealed master dysregulation hubs in AD (at genes ZKSCAN1, SLC5A3, RCC1, IL17RB, PLK4, etc.), inter-region gene modules enriched for known AD pathways (synaptic signaling, endocytosis, etc.), and candidate signaling molecules that could mediate region-region communication. The Inter-DC network generated in this study is a valuable resource of gene pairs, pathways and signaling molecules whose inter-brain-region functional coupling is disrupted in AD, thereby offering a new perspective of AD etiology.


Assuntos
Doença de Alzheimer , Encéfalo , Redes Reguladoras de Genes , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Redes Reguladoras de Genes/genética , Encéfalo/metabolismo , Conectoma/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Masculino , Feminino , Idoso
6.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727014

RESUMO

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Assuntos
Disfunção Cognitiva , Conectoma , Imageamento por Ressonância Magnética , Rede Nervosa , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Masculino , Adulto , Feminino , Conectoma/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Adulto Jovem , Pessoa de Meia-Idade
7.
Hum Brain Mapp ; 45(7): e26698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726908

RESUMO

Mediation analysis assesses whether an exposure directly produces changes in cognitive behavior or is influenced by intermediate "mediators". Electroencephalographic (EEG) spectral measurements have been previously used as effective mediators representing diverse aspects of brain function. However, it has been necessary to collapse EEG measures onto a single scalar using standard mediation methods. In this article, we overcome this limitation and examine EEG frequency-resolved functional connectivity measures as a mediator using the full EEG cross-spectral tensor (CST). Since CST samples do not exist in Euclidean space but in the Riemannian manifold of positive-definite tensors, we transform the problem, allowing for the use of classic multivariate statistics. Toward this end, we map the data from the original manifold space to the Euclidean tangent space, eliminating redundant information to conform to a "compressed CST." The resulting object is a matrix with rows corresponding to frequencies and columns to cross spectra between channels. We have developed a novel matrix mediation approach that leverages a nuclear norm regularization to determine the matrix-valued regression parameters. Furthermore, we introduced a global test for the overall CST mediation and a test to determine specific channels and frequencies driving the mediation. We validated the method through simulations and applied it to our well-studied 50+-year Barbados Nutrition Study dataset by comparing EEGs collected in school-age children (5-11 years) who were malnourished in the first year of life with those of healthy classmate controls. We hypothesized that the CST mediates the effect of malnutrition on cognitive performance. We can now explicitly pinpoint the frequencies (delta, theta, alpha, and beta bands) and regions (frontal, central, and occipital) in which functional connectivity was altered in previously malnourished children, an improvement to prior studies. Understanding the specific networks impacted by a history of postnatal malnutrition could pave the way for developing more targeted and personalized therapeutic interventions. Our methods offer a versatile framework applicable to mediation studies encompassing matrix and Hermitian 3D tensor mediators alongside scalar exposures and outcomes, facilitating comprehensive analyses across diverse research domains.


Assuntos
Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Criança , Pré-Escolar , Feminino , Masculino , Conectoma/métodos , Cognição/fisiologia , Desnutrição/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/fisiologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lactente
8.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771241

RESUMO

The functional brain connectome is highly dynamic over time. However, how brain connectome dynamics evolves during the third trimester of pregnancy and is associated with later cognitive growth remains unknown. Here, we use resting-state functional Magnetic Resonance Imaging (MRI) data from 39 newborns aged 32 to 42 postmenstrual weeks to investigate the maturation process of connectome dynamics and its role in predicting neurocognitive outcomes at 2 years of age. Neonatal brain dynamics is assessed using a multilayer network model. Network dynamics decreases globally but increases in both modularity and diversity with development. Regionally, module switching decreases with development primarily in the lateral precentral gyrus, medial temporal lobe, and subcortical areas, with a higher growth rate in primary regions than in association regions. Support vector regression reveals that neonatal connectome dynamics is predictive of individual cognitive and language abilities at 2  years of age. Our findings highlight network-level neural substrates underlying early cognitive development.


Assuntos
Encéfalo , Cognição , Conectoma , Imageamento por Ressonância Magnética , Humanos , Conectoma/métodos , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia , Recém-Nascido , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Pré-Escolar , Desenvolvimento da Linguagem , Desenvolvimento Infantil/fisiologia
9.
Neuroimage ; 293: 120616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697587

RESUMO

Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.


Assuntos
Córtex Cerebral , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/anatomia & histologia , Aprendizado de Máquina , Feminino , Masculino , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Reprodutibilidade dos Testes
10.
Neuroimage ; 293: 120633, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704057

RESUMO

Video games are a valuable tool for studying the effects of training and neural plasticity on the brain. However, the underlying mechanisms related to plasticity-associated brain structural changes and their impact on brain dynamics are unknown. Here, we used a semi-empirical whole-brain model to study structural neural plasticity mechanisms linked to video game expertise. We hypothesized that video game expertise is associated with neural plasticity-mediated changes in structural connectivity that manifest at the meso­scale level, resulting in a more segregated functional network topology. To test this hypothesis, we combined structural connectivity data of StarCraft II video game players (VGPs, n = 31) and non-players (NVGPs, n = 31), with generic fMRI data from the Human Connectome Project and computational models, to generate simulated fMRI recordings. Graph theory analysis on simulated data was performed during both resting-state conditions and external stimulation. VGPs' simulated functional connectivity was characterized by a meso­scale integration, with increased local connectivity in frontal, parietal, and occipital brain regions. The same analyses at the level of structural connectivity showed no differences between VGPs and NVGPs. Regions that increased their connectivity strength in VGPs are known to be involved in cognitive processes crucial for task performance such as attention, reasoning, and inference. In-silico stimulation suggested that differences in FC between VGPs and NVGPs emerge in noisy contexts, specifically when the noisy level of stimulation is increased. This indicates that the connectomes of VGPs may facilitate the filtering of noise from stimuli. These structural alterations drive the meso­scale functional changes observed in individuals with gaming expertise. Overall, our work sheds light on the mechanisms underlying structural neural plasticity triggered by video game experiences.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Plasticidade Neuronal , Jogos de Vídeo , Humanos , Plasticidade Neuronal/fisiologia , Conectoma/métodos , Masculino , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Feminino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Modelos Neurológicos
11.
Neurobiol Dis ; 196: 106521, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697575

RESUMO

BACKGROUND: Lesion network mapping (LNM) is a popular framework to assess clinical syndromes following brain injury. The classical approach involves embedding lesions from patients into a normative functional connectome and using the corresponding functional maps as proxies for disconnections. However, previous studies indicated limited predictive power of this approach in behavioral deficits. We hypothesized similarly low predictiveness for overall survival (OS) in glioblastoma (GBM). METHODS: A retrospective dataset of patients with GBM was included (n = 99). Lesion masks were registered in the normative space to compute disconnectivity maps. The brain functional normative connectome consisted in data from 173 healthy subjects obtained from the Human Connectome Project. A modified version of the LNM was then applied to core regions of GBM masks. Linear regression, classification, and principal component (PCA) analyses were conducted to explore the relationship between disconnectivity and OS. OS was considered both as continuous and categorical (low, intermediate, and high survival) variable. RESULTS: The results revealed no significant associations between OS and network disconnection strength when analyzed at both voxel-wise and classification levels. Moreover, patients stratified into different OS groups did not exhibit significant differences in network connectivity patterns. The spatial similarity among the first PCA of network maps for each OS group suggested a lack of distinctive network patterns associated with survival duration. CONCLUSIONS: Compared with indirect structural measures, functional indirect mapping does not provide significant predictive power for OS in patients with GBM. These findings are consistent with previous research that demonstrated the limitations of indirect functional measures in predicting clinical outcomes, underscoring the need for more comprehensive methodologies and a deeper understanding of the factors influencing clinical outcomes in this challenging disease.


Assuntos
Neoplasias Encefálicas , Conectoma , Glioblastoma , Imageamento por Ressonância Magnética , Humanos , Glioblastoma/mortalidade , Glioblastoma/diagnóstico por imagem , Glioblastoma/fisiopatologia , Masculino , Feminino , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/diagnóstico por imagem , Pessoa de Meia-Idade , Conectoma/métodos , Estudos Retrospectivos , Adulto , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
12.
Clin Neurol Neurosurg ; 241: 108305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713964

RESUMO

OBJECTIVE: Establish the evolution of the connectome before and after resection of motor area glioma using a comparison of connectome maps and high-definition differential tractography (DifT). METHODS: DifT was done using normalized quantitative anisotropy (NQA) with DSI Studio. The quantitative analysis involved obtaining mean NQA and fractional anisotropy (FA) values for the disrupted pathways tracing the corticospinal tract (CST), and white fiber network changes over time. RESULTS: We described the baseline tractography, DifT, and white matter network changes from two patients who underwent resection of an oligodendroglioma (Case 1) and an IDH mutant astrocytoma, grade 4 (Case 2). CASE 1: There was a slight decrease in the diffusion signal of the compromised CST in the immediate postop. The NQA and FA values increased at the 1-year follow-up (0.18 vs. 0.32 and 0.35 vs. 0.44, respectively). CASE 2: There was an important decrease in the immediate postop, followed by an increase in the follow-up. In the 1-year follow-up, the patient presented with radiation necrosis and tumor recurrence, increasing NQA from 0.18 in the preop to 0.29. Fiber network analysis: whole-brain connectome comparison demonstrated no significant changes in the immediate postop. However, in the 1-year follow up there was a notorious reorganization of the fibers in both cases, showing the decreased density of connections. CONCLUSIONS: Connectome studies and DifT constitute new potential tools to predict early reorganization changes in a patient's networks, showing the brain plasticity capacity, and helping to establish timelines for the progression of the tumor and treatment-induced changes.


Assuntos
Neoplasias Encefálicas , Conectoma , Imagem de Tensor de Difusão , Estudos de Viabilidade , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Conectoma/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/cirurgia , Glioma/diagnóstico por imagem , Glioma/patologia , Masculino , Pessoa de Meia-Idade , Adulto , Córtex Motor/diagnóstico por imagem , Córtex Motor/cirurgia , Córtex Motor/fisiopatologia , Tratos Piramidais/diagnóstico por imagem , Feminino , Oligodendroglioma/cirurgia , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/patologia , Astrocitoma/cirurgia , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia
13.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38745558

RESUMO

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.


Assuntos
Nível de Alerta , Encéfalo , Cognição , Conectoma , Imageamento por Ressonância Magnética , Descanso , Humanos , Nível de Alerta/fisiologia , Cognição/fisiologia , Masculino , Feminino , Conectoma/métodos , Adulto , Descanso/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiologia , Vias Neurais/diagnóstico por imagem
14.
J Neurosci Res ; 102(5): e25341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751218

RESUMO

Pain is a multidimensional subjective experience sustained by multiple brain regions involved in different aspects of pain experience. We used brain entropy (BEN) estimated from resting-state fMRI (rsfMRI) data to investigate the neural correlates of pain experience. BEN was estimated from rs-fMRI data provided by two datasets with different age range: the Human Connectome Project-Young Adult (HCP-YA) and the Human Connectome project-Aging (HCP-A) datasets. Retrospective assessment of experienced pain intensity was retrieved from both datasets. No main effect of pain intensity was observed. The interaction between pain and age, however, was related to increased BEN in several pain-related brain regions, reflecting greater variability of spontaneous brain activity. Dividing the sample into a young adult group (YG) and a middle age-aging group (MAG) resulted in two divergent patterns of pain-BEN association: In the YG, pain intensity was related to reduced BEN in brain regions involved in the sensory processing of pain; in the MAG, pain was associated with increased BEN in areas related to both sensory and cognitive aspects of pain experience.


Assuntos
Envelhecimento , Encéfalo , Conectoma , Entropia , Imageamento por Ressonância Magnética , Dor , Humanos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Masculino , Adulto Jovem , Dor/diagnóstico por imagem , Dor/fisiopatologia , Pessoa de Meia-Idade , Conectoma/métodos , Envelhecimento/fisiologia , Idoso , Descanso/fisiologia , Estudos Retrospectivos , Fatores Etários
15.
Sci Data ; 11(1): 353, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589407

RESUMO

Diffusion-weighted MRI (dMRI) is a widely used neuroimaging modality that permits the in vivo exploration of white matter connections in the human brain. Normative structural connectomics - the application of large-scale, group-derived dMRI datasets to out-of-sample cohorts - have increasingly been leveraged to study the network correlates of focal brain interventions, insults, and other regions-of-interest (ROIs). Here, we provide a normative, whole-brain connectome in MNI space that enables researchers to interrogate fiber streamlines that are likely perturbed by given ROIs, even in the absence of subject-specific dMRI data. Assembled from multi-shell dMRI data of 985 healthy Human Connectome Project subjects using generalized Q-sampling imaging and multispectral normalization techniques, this connectome comprises ~12 million unique streamlines, the largest to date. It has already been utilized in at least 18 peer-reviewed publications, most frequently in the context of neuromodulatory interventions like deep brain stimulation and focused ultrasound. Now publicly available, this connectome will constitute a useful tool for understanding the wider impact of focal brain perturbations on white matter architecture going forward.


Assuntos
Conectoma , Substância Branca , Humanos , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem , Substância Branca/diagnóstico por imagem
16.
PLoS One ; 19(4): e0301599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557681

RESUMO

In this study, structural images of 1048 healthy subjects from the Human Connectome Project Young Adult study and 94 from ADNI-3 study were processed by an in-house tractography pipeline and analyzed together with pre-processed data of the same subjects from braingraph.org. Whole brain structural connectome features were used to build a simple correlation-based regression machine learning model to predict intelligence and age of healthy subjects. Our results showed that different forms of intelligence as well as age are predictable to a certain degree from diffusion tensor imaging detecting anatomical fiber tracts in the living human brain. Though we did not identify significant differences in the prediction capability for the investigated features depending on the imaging feature extraction method, we did find that crystallized intelligence was consistently better predictable than fluid intelligence from structural connectivity data through all datasets. Our findings suggest a practical and scalable processing and analysis framework to explore broader research topics employing brain MR imaging.


Assuntos
Conectoma , Imagem de Tensor de Difusão , Adulto Jovem , Humanos , Imagem de Tensor de Difusão/métodos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Inteligência
17.
Hum Brain Mapp ; 45(6): e26674, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38651625

RESUMO

Brain segmentation from neonatal MRI images is a very challenging task due to large changes in the shape of cerebral structures and variations in signal intensities reflecting the gestational process. In this context, there is a clear need for segmentation techniques that are robust to variations in image contrast and to the spatial configuration of anatomical structures. In this work, we evaluate the potential of synthetic learning, a contrast-independent model trained using synthetic images generated from the ground truth labels of very few subjects. We base our experiments on the dataset released by the developmental Human Connectome Project, for which high-quality images are available for more than 700 babies aged between 26 and 45 weeks postconception. First, we confirm the impressive performance of a standard UNet trained on a few volumes, but also confirm that such models learn intensity-related features specific to the training domain. We then confirm the robustness of the synthetic learning approach to variations in image contrast. However, we observe a clear influence of the age of the baby on the predictions. We improve the performance of this model by enriching the synthetic training set with realistic motion artifacts and over-segmentation of the white matter. Based on extensive visual assessment, we argue that the better performance of the model trained on real T2w data may be due to systematic errors in the ground truth. We propose an original experiment allowing us to show that learning from real data will reproduce any systematic bias affecting the training set, while synthetic models can avoid this limitation. Overall, our experiments confirm that synthetic learning is an effective solution for segmenting neonatal brain MRI. Our adapted synthetic learning approach combines key features that will be instrumental for large multisite studies and clinical applications.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Recém-Nascido , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Feminino , Masculino , Neuroimagem/métodos
18.
Neuroimage ; 292: 120604, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604537

RESUMO

Despite its widespread use, resting-state functional magnetic resonance imaging (rsfMRI) has been criticized for low test-retest reliability. To improve reliability, researchers have recommended using extended scanning durations, increased sample size, and advanced brain connectivity techniques. However, longer scanning runs and larger sample sizes may come with practical challenges and burdens, especially in rare populations. Here we tested if an advanced brain connectivity technique, dynamic causal modeling (DCM), can improve reliability of fMRI effective connectivity (EC) metrics to acceptable levels without extremely long run durations or extremely large samples. Specifically, we employed DCM for EC analysis on rsfMRI data from the Human Connectome Project. To avoid bias, we assessed four distinct DCMs and gradually increased sample sizes in a randomized manner across ten permutations. We employed pseudo true positive and pseudo false positive rates to assess the efficacy of shorter run durations (3.6, 7.2, 10.8, 14.4 min) in replicating the outcomes of the longest scanning duration (28.8 min) when the sample size was fixed at the largest (n = 160 subjects). Similarly, we assessed the efficacy of smaller sample sizes (n = 10, 20, …, 150 subjects) in replicating the outcomes of the largest sample (n = 160 subjects) when the scanning duration was fixed at the longest (28.8 min). Our results revealed that the pseudo false positive rate was below 0.05 for all the analyses. After the scanning duration reached 10.8 min, which yielded a pseudo true positive rate of 92%, further extensions in run time showed no improvements in pseudo true positive rate. Expanding the sample size led to enhanced pseudo true positive rate outcomes, with a plateau at n = 70 subjects for the targeted top one-half of the largest ECs in the reference sample, regardless of whether the longest run duration (28.8 min) or the viable run duration (10.8 min) was employed. Encouragingly, smaller sample sizes exhibited pseudo true positive rates of approximately 80% for n = 20, and 90% for n = 40 subjects. These data suggest that advanced DCM analysis may be a viable option to attain reliable metrics of EC when larger sample sizes or run times are not feasible.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Tamanho da Amostra , Conectoma/métodos , Conectoma/normas , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto , Feminino , Masculino , Descanso/fisiologia , Fatores de Tempo
19.
J Neurosci Methods ; 406: 110134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588923

RESUMO

BACKGROUND: The piglet brain has been increasingly used as an excellent surrogate for investigation of pediatric neurodevelopment, nutrition, and traumatic brain injuries. This study intends to establish a piglet brain's structural connectivity model and compare it with the adult pig, enhancing its application for structurally guided functional analysis. METHODS: In this study, diffusion-weighted (DW)-MRI data from piglets (n=11, 3-week-old) was used to establish piglet model and compare with adult pigs. We employed a data-driven independent component analysis (ICA) method to derive piglet-specific tracts. Pearson correlations and Kullback-Leibler (KL) divergences was employed to identify common tracts and unique tracts for piglet. Common tracts were then used in a blueprint connectome study to highlight differences in regions of interest (ROI). RESULTS: The data-driven approach applied to piglet brains revealed 17 common tracts, showing high similarity with adult pigs' white matter (WM) tracts, and identified 3 tracts unique to piglets and 10 negative marker tracts. Additionally, the study highlighted notable differences in 3 ROIs associated with blueprint connectome. COMPARING WITH EXISTING METHODS: This study marks a significant shift from surface-based to voxel-based methodologies in analyzing pig brain structural connectivity and generating connectome blueprints. Additionally, it sheds light on the use of the piglet model for developmental studies, offering new perspectives in this area. CONCLUSION: This study established a piglet brain tract model and conducts a comparative analysis of adult pig's and piglet's structural connectivity. These findings underscore the potential use of the piglet brain model in employing piglet model for developmental studies.


Assuntos
Conectoma , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Substância Branca/anatomia & histologia , Suínos , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Animais Recém-Nascidos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/diagnóstico por imagem , Vias Neurais/anatomia & histologia , Masculino , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imagem de Tensor de Difusão/métodos
20.
IEEE J Transl Eng Health Med ; 12: 371-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633564

RESUMO

Brain state classification by applying deep learning techniques on neuroimaging data has become a recent topic of research. However, unlike domains where the data is low dimensional or there are large number of available training samples, neuroimaging data is high dimensional and has few training samples. To tackle these issues, we present a sparse feedforward deep neural architecture for encoding and decoding the structural connectome of the human brain. We use a sparsely connected element-wise multiplication as the first hidden layer and a fixed transform layer as the output layer. The number of trainable parameters and the training time is significantly reduced compared to feedforward networks. We demonstrate superior performance of this architecture in encoding the structural connectome implicated in Alzheimer's disease (AD) and Parkinson's disease (PD) from DTI brain scans. For decoding, we propose recursive feature elimination (RFE) algorithm based on DeepLIFT, layer-wise relevance propagation (LRP), and Integrated Gradients (IG) algorithms to remove irrelevant features and thereby identify key biomarkers associated with AD and PD. We show that the proposed architecture reduces 45.1% and 47.1% of the trainable parameters compared to a feedforward DNN with an increase in accuracy by 2.6 % and 3.1% for cognitively normal (CN) vs AD and CN vs PD classification, respectively. We also show that the proposed RFE method leads to a further increase in accuracy by 2.1% and 4% for CN vs AD and CN vs PD classification, while removing approximately 90% to 95% irrelevant features. Furthermore, we argue that the biomarkers (i.e., key brain regions and connections) identified are consistent with previous literature. We show that relevancy score-based methods can yield high discriminative power and are suitable for brain decoding. We also show that the proposed approach led to a reduction in the number of trainable network parameters, an increase in classification accuracy, and a detection of brain connections and regions that were consistent with earlier studies.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Redes Neurais de Computação , Neuroimagem/métodos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA