Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.331
Filtrar
1.
Int J Med Sci ; 21(12): 2365-2378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310260

RESUMO

Enhancement of Connexin43 (Cx43) and ferroptosis are respectively associated with the exacerbation of myocardial ischemia-reperfusion injury (MIRI) in diabetes. Myocardial vulnerability to ischemic insult has been shown to vary during early and later phases of diabetes in experimental settings. Whether or not Connexin43 (Cx43) and ferroptosis interplay during MIRI in diabetes is unknown. We, thus, aimed to investigate whether or not the content of myocardial Cx43 may be attributable to myocardial vulnerability to MIRI at different stages of diabetes and also to explore the potential interplay between Cx43 and ferroptosis in this pathology. Age-matched control and subgroups of Streptozotocin-induced diabetic mice were subjected to MIRI induced by 30 minutes coronary artery occlusion and 2 hours reperfusion respectively at 1, 2 and 5 weeks of diabetes. Rat cardiac H9C2 cells were exposed to high glucose (HG) for 48h in the absence or presence of Cx43 gene knockdown followed by hypoxia/reoxygenation (HR) respectively for 6 and 12 hours. Post-ischemic myocardial infarct size was reduced in 1 and 2 weeks DM mice concomitant with enhanced GPX4 and reduced cardiac Cx43 and ferroptosis as compared to control. By contrast, cardiac GPX4 was significantly reduced while Cx43 increased at DM 5 weeks (D5w) which was correspondent to significant increases in ferroptosis and myocardial infarction. Post-ischemic cardiac function was improved in 1 and 2 weeks but worsened in 5w DM mice as compared with non-diabetic control. GAP19 (Cx43 inhibitor) significantly attenuated ferroptosis and reduced myocardial infarction in D5w mice. Erastin (ferroptosis activator) reversed the cardioprotective effect of GAP19. In vitro, HR significantly reduced cell viability accompanied with reduced GPX4 but elevated Cx43 expression, MDA production and ferroptosis. Cx43 gene knockdown in H9C2 resulted in a significant increase in GPX4, reduction in MDA and ferroptosis, and subsequently reduced post-hypoxic cell viability. The beneficial effects of Cx43 gene knock-down was minified or eliminated by Erastin. It is concluded that Cx43 overexpression exacerbates MIRI under diabetic conditions via promoting ferroptosis, while its down-regulation at early state of diabetes is attributable to enhanced myocardial tolerance to MIRI.


Assuntos
Conexina 43 , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ferroptose , Traumatismo por Reperfusão Miocárdica , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Ferroptose/genética , Conexina 43/metabolismo , Conexina 43/genética , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Ratos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Masculino , Técnicas de Silenciamento de Genes , Humanos , Linhagem Celular , Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo
2.
Int Immunopharmacol ; 140: 112827, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39116497

RESUMO

AIM: Hyperhomocysteine has been recognized as an independent risk factor of multiple diseases, including several eye diseases. In this study, we aim to investigate whether increased homocysteine (Hcy) is related to cataracts, and to explore whether dysregulation of mTOR-mediated autophagy and connexin expression are underlying mechanisms. METHOD: We first developed a method of liquid chromatography tandem mass spectrometry to accurately measure serum concentrations of Hcy in 287 cataract patients and 334 healthy controls. Next, we treated human lens epithelial (HLC-B3) cells with Hcy at different concentrations and durations, and then analyzed expression of autophagy-related markers and connexins, as well as phosphorylated mTOR (p-mTOR) in these cells by Western blotting. Formation of autophagic vacuoles and intracellular Ca2+ in the Hcy-treated cells were observed by fluorescence microscopy. Further, we performed a rescue experiment in the Hcy-treated HLC-B3 cells by pre-incubation with rapamycin, an mTOR inhibitor. RESULTS: The serum levels of Hcy in patients with cataracts were significantly increased compared to those in healthy controls. In cultured HLC-B3 cells, expression of autophagy related markers (LC3B and Beclin1) and connexins (Cx43 and Cx50) was inhibited by Hcy treatment in a dose- and duration-dependent manner. Accumulation of Ca2+ in the Hcy-treated lens epithelial cells was observed as a consequence of reduced connexin expression. Meanwhile, expression of p-mTOR increased, representing up-regulation of the mTOR pathway. Importantly, inhibition of autophagy and connexin expression due to hyperhomocysteine was rescued via mTOR suppression by pretreatment with rapamycin in HLC-B3 cells. CONCLUSION: Our results demonstrate that hyperhomocysteine might promote cataract development through two mTOR-mediated pathways in the lens epithelial cells: 1) dysregulation of autophagy and 2) accumulation of intracellular calcium via decreased connexin expression.


Assuntos
Autofagia , Catarata , Conexinas , Homocisteína , Cristalino , Serina-Treonina Quinases TOR , Humanos , Catarata/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Homocisteína/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Conexinas/metabolismo , Cristalino/metabolismo , Cristalino/efeitos dos fármacos , Linhagem Celular , Cálcio/metabolismo , Idoso , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Conexina 43/metabolismo , Adulto , Proteína Beclina-1/metabolismo
3.
Theriogenology ; 229: 8-15, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142068

RESUMO

Connexin 43 (Cx43) is a gap junction protein that participates in small molecule exchange between adjacent cells. It is a predominant Cx within the mammalian ovary, where is associated with proper follicle development. The expression and regulation of Cx43 in the chicken ovary is largely unknown. The aim of the present study was to examine the expression of the Cx43 gene (GJA1) and protein as well as the immunolocalization of Cx43 in the laying hen ovary in relation to follicle development, and to examine how tamoxifen (TMX; an estrogen receptor modulator) treatment affects these factors. qRT-PCR and western blotting demonstrated differences in Cx43 mRNA transcript and protein abundances in ovarian white follicles, yellowish follicles, small yellow follicles, and the largest yellow preovulatory follicles (F3-F1). In general, Cx43 was more abundant in hierarchical than prehierarchical follicles and in granulosa cells compared with theca cells. Further, the response to TMX treatment depended on the stage of follicle development and the layer of the follicular wall. Ovarian regression following TMX treatment was accompanied by an increase in Cx43 expression in most ovarian tissues, which may impact the formation and function of Cx43 hemichannels. Overall, our results showed, for the first time, the differences in Cx43 mRNA and protein levels between ovarian follicles, suggesting the potential involvement of this gap junction protein in the regulation of ovarian follicle development and function. In addition, the results indicate a possible role for estradiol in regulation of Cx43 transcription and/or translation in the chicken ovary. Understanding the contribution of Cx43 in mechanisms underlying ovarian follicle development may be of considerable importance for poultry egg production.


Assuntos
Galinhas , Conexina 43 , Regulação da Expressão Gênica , Ovário , Tamoxifeno , Animais , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Tamoxifeno/farmacologia , Galinhas/metabolismo , Ovário/metabolismo , Ovário/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
4.
Life Sci ; 355: 122988, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153595

RESUMO

Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.


Assuntos
Astrócitos , Conexina 43 , Transtorno Depressivo Maior , Plasticidade Neuronal , Humanos , Astrócitos/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Plasticidade Neuronal/fisiologia , Animais , Conexina 43/metabolismo , Transmissão Sináptica/fisiologia , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Ácido gama-Aminobutírico/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
5.
Biomed Pharmacother ; 178: 117278, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116784

RESUMO

BACKGROUND: Empagliflozin (EMPA), a selective sodium-glucose cotransporter type 2 (SGLT2) inhibitor, has been shown to reduce major adverse cardiovascular events in patients with heart failure of different etiologies, although the underlying mechanism still remains unclear. Ponatinib (PON) is a multi-tyrosine kinase inhibitor successfully used against myeloid leukemia and other human malignancies, but its cardiotoxicity remains worrisome. Cardiac connexins (Cxs) are both substrates and regulators of autophagy and responsible for proper heart function. Alteration in connexin expression and localization have been described in patients with heart failure. AIMS: To assess whether EMPA can mitigate PON-induced cardiac dysfunction by restoring the connexin 43-autophagy pathway. METHODS AND RESULTS: Male C57BL/6 mice, randomized into four treatment groups (CNTRL, PON, EMPA, PON+EMPA) for 28 days, showed increased autophagy, decreased Cx43 expression as well as Cx43 lateralization, and attenuated systo-diastolic cardiac dysfunction after treatment with EMPA and PON compared with PON alone. Compared with CNTRL (DMSO), cardiomyocyte-differentiated H9c2 (dH9c2) cells treated with PON showed significantly reduced cell viability to approximately 20 %, decreased autophagy, increased cell senescence and reduced DNA binding activity of serum response factor (SRF) to serum response elements (SRE), which were paralleled by reduction in cardiac actin expression. Moreover, PON induced a significant increase of Cx43 protein and its S368-phosphorylated form (pS368-Cx43), as well as their displacement from the plasma membrane to the perinuclear and nuclear cellular region. All these effects were reverted by EMPA. CONCLUSION: EMPA attenuates PON-induced cardiotoxicity by reducing senescence, enhancing the SRE-SRF binding and restoring the connexin 43-autophagy pathway. This effect may pave the way to use of SGLT2 inhibitors in attenuating tyrosine-kinase inhibitor cardiotoxicity.


Assuntos
Autofagia , Compostos Benzidrílicos , Cardiotoxicidade , Conexina 43 , Glucosídeos , Imidazóis , Miócitos Cardíacos , Piridazinas , Animais , Masculino , Camundongos , Ratos , Autofagia/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Cardiotoxicidade/etiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Conexina 43/metabolismo , Glucosídeos/farmacologia , Imidazóis/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
J Immunol Methods ; 533: 113741, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111361

RESUMO

Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.


Assuntos
Conexina 43 , Junções Comunicantes , Macrófagos , Animais , Humanos , Western Blotting , Comunicação Celular , Conexina 43/análise , Conexina 43/genética , Conexina 43/metabolismo , Imunofluorescência , Junções Comunicantes/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Bioconjug Chem ; 35(9): 1380-1390, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39180545

RESUMO

The crosstalk between glioma cells and astrocytes plays a crucial role in developing temozolomide (TMZ) resistance of glioblastomas, together with the existence of the BBB contributing to the unsatisfactory clinical treatment of glioblastomas. Herein, we developed a borneol-modified and gastrodin-loaded liposome (Bo-Gas-LP), with the intent of enhancing the efficacy of TMZ therapy after intranasal administration. The results showed that Bo-Gas-LP improved GL261 cells' sensitivity to TMZ and prolonged survival of GL261-bearing mice by blocking the crosstalk between astrocytes and glioblastoma cells with the decrease of Cx43. Our study showed that intranasal Bo-Gas-LP targeting the crosstalk in glioblastoma microenvironments proposed a promising targeted therapy idea to overcome the current therapeutic limitations of TMZ-resistant glioblastomas.


Assuntos
Astrócitos , Álcoois Benzílicos , Conexina 43 , Regulação para Baixo , Glucosídeos , Lipossomos , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/química , Glucosídeos/uso terapêutico , Lipossomos/química , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Camundongos , Álcoois Benzílicos/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Conexina 43/metabolismo , Linhagem Celular Tumoral , Humanos , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Camundongos Endogâmicos C57BL
8.
Biomed Pharmacother ; 179: 117290, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153433

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule that influences digestive and nervous system functions. Enteric glial cells (EGCs) are integral to the enteric nervous system and play a role in regulating gastrointestinal motility. This study explored the dual effects of exogenous H2S on EGCs and the influence of apoptosis-related pathways and ion channels in EGCs. We also administered honokiol for further interventional studies. The results revealed that low-concentration H2S increased the mitochondrial membrane potential (MMP) of EGCs, decreased the whole-cell membrane potential, downregulated BAX and caspase-3, upregulated Bcl2 expression, reduced apoptosis, and promoted cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also increased. A high concentration of H2S had the opposite effect. In addition, GFAP mRNA expression was upregulated in the test-low group, downregulated in the test-high group, and upregulated in the test-high + Hon group. Honokiol treatment increased MMP, reduced whole-cell membrane potential, inhibited BAX and caspase-3 expression, increased Bcl2 expression, decreased cell apoptosis, and increased cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also upregulated. In conclusion, our study showed that exogenous H2S can bidirectionally regulate EGC proliferation and apoptosis by affecting MMP and cell membrane potential via the Bcl2/BAX/caspase-3 pathway and modulate Cx43-mediated Ca2+ responses in EGCs to regulate colonic motility bidirectionally. Honokiol can ameliorate the damage to EGCs induced by high H2S concentrations through the Bcl2/BAX/caspase-3 pathway and improve colon motility by increasing Cx43 expression and Ca2+ concentration.


Assuntos
Apoptose , Compostos de Bifenilo , Sinalização do Cálcio , Proliferação de Células , Conexina 43 , Sulfeto de Hidrogênio , Lignanas , Neuroglia , Ratos Sprague-Dawley , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Lignanas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Ratos , Conexina 43/metabolismo , Conexina 43/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Cálcio/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Células Cultivadas , Compostos Alílicos , Fenóis
9.
Front Immunol ; 15: 1440662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136016

RESUMO

Background: Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC. Methods: C57Bl/6 mice infected with Trypanosoma cruzi underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG. Histopathology, cytokine gene expression, and distribution of total Cx43 and its phosphorylated forms Cx43S368 and Cx43S325/328/330 were investigated. Human heart samples obtained from subjects with CCC were submitted to immunofluorescence analysis. In vitro simulation of a pro-inflammatory microenvironment (IL-1ß, TNF, and IFN-γ) was performed in H9c2 cells and iPSC-derived cardiomyocytes to evaluate Cx43 distribution, action potential duration, and Lucifer Yellow dye transfer. Results: Mice chronically infected with T. cruzi exhibited impaired cardiac function associated with increased inflammation, fibrosis and upregulated IL-1ß, TNF, and IFN-γ gene expression. Confocal microscopy revealed altered total Cx43, Cx43S368 and Cx43S325/328/330 localization and phosphorylation patterns in CCC, with dispersed staining outside the intercalated disc areas, i.e., in lateral membranes and the cytoplasm. Reduced co-localization of total Cx43 and N-cadherin was observed in the intercalated discs of CCC mouse hearts compared to controls. Similar results were obtained in human CCC heart samples, which showed Cx43 distribution outside the intercalated discs. Stimulation of human iPSC-derived cardiomyocytes or H9c2 cells with IL-1ß, TNF, and IFN-γ induced alterations in Cx43 localization, reduced action potential duration and dye transfer between adjacent cells. Conclusion: Heart inflammation in CCC affects the distribution and phosphorylation pattern of Cx43, which may contribute to the generation of conduction disturbances in Chagas disease.


Assuntos
Cardiomiopatia Chagásica , Conexina 43 , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Conexina 43/metabolismo , Conexina 43/genética , Animais , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Miócitos Cardíacos/patologia , Inflamação/metabolismo , Fosforilação , Masculino , Doença Crônica , Trypanosoma cruzi , Modelos Animais de Doenças , Linhagem Celular , Citocinas/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/parasitologia , Arritmias Cardíacas/imunologia , Feminino
10.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125879

RESUMO

This study investigates whether hAFSCs can improve bladder function in partial bladder outlet obstruction (pBOO) rats by targeting specific cellular pathways. Thirty-six female rats were divided into sham and pBOO groups with and without hAFSCs single injection into the bladder wall. Cystometry, inflammation/hypoxia, collagen/fibrosis/gap junction proteins, and smooth muscle myosin/muscarinic receptors were examined at 2 and 6 weeks after pBOO or sham operation. In pBOO bladders, significant increases in peak voiding pressure and residual volume stimulated a significant upregulation of inflammatory and hypoxic factors, TGF-ß1 and Smad2/3. Collagen deposition proteins, collagen 1 and 3, were significantly increased, but bladder fibrosis markers, caveolin 1 and 3, were significantly decreased. Gap junction intercellular communication protein, connexin 43, was significantly increased, but the number of caveolae was significantly decreased. Markers for the smooth muscle phenotype, myosin heavy chain 11 and guanylate-dependent protein kinase, as well as M2 muscarinic receptors, were significantly increased in cultured detrusor cells. However, hAFSCs treatment could significantly ameliorate bladder dysfunction by inactivating the TGFß-Smad signaling pathway, reducing collagen deposition, disrupting gap junctional intercellular communication, and modifying the expressions of smooth muscle myosin and caveolae/caveolin proteins. The results support the potential value of hAFSCs-based treatment of bladder dysfunction in BOO patients.


Assuntos
Conexina 43 , Obstrução do Colo da Bexiga Urinária , Bexiga Urinária , Animais , Obstrução do Colo da Bexiga Urinária/metabolismo , Obstrução do Colo da Bexiga Urinária/patologia , Feminino , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiopatologia , Bexiga Urinária/patologia , Conexina 43/metabolismo , Transplante de Células-Tronco/métodos , Transdução de Sinais , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Colágeno/metabolismo
11.
Reprod Domest Anim ; 59(8): e14673, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086079

RESUMO

This study used the brilliant cresyl blue (BCB) staining method to group buffalo oocytes (BCB+ and BCB-) and perform in vitro maturation, in vitro fertilization and embryo culture. At the same time, molecular biology techniques were used to detect gap junction protein expression and oxidative stress-related indicators to explore the molecular mechanism of BCB staining to predict oocyte developmental potential. The techniques of buffalo oocytes to analyse their developmental potential and used immunofluorescence staining to detect the expression level of CX43 protein, DCFH-DA probe staining to detect ROS levels and qPCR to detect the expression levels of the antioxidant-related genes SOD2 and GPX1. Our results showed that the in vitro maturation rate, embryo cleavage rate and blastocyst rate of buffalo oocytes in the BCB+ group were significantly higher than those in the BCB- group and the control group (p < .05). The expression level of CX43 protein in the BCB+ group was higher than that in the BCB- group both before and after maturation (p < .05). The intensity of ROS in the BCB+ group was significantly lower than that in the BCB- group (p < .05), and the expression levels of the antioxidant-related genes SOD2 and GPX1 in the BCB+ group were significantly higher than those in the BCB- group (p < .05). Brilliant cresyl blue staining could effectively predict the developmental potential of buffalo oocytes. The results of BCB staining were positively correlated with the expression of gap junction protein and antioxidant-related genes and negatively correlated with the reactive oxygen species level, suggesting that the mechanism of BCB staining in predicting the developmental potential of buffalo oocytes might be closely related to antioxidant activity.


Assuntos
Búfalos , Conexina 43 , Técnicas de Maturação in Vitro de Oócitos , Oócitos , Oxazinas , Estresse Oxidativo , Animais , Oócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Técnicas de Maturação in Vitro de Oócitos/veterinária , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Fertilização in vitro/veterinária , Técnicas de Cultura Embrionária/veterinária , Glutationa Peroxidase GPX1 , Desenvolvimento Embrionário/fisiologia , Coloração e Rotulagem , Antioxidantes/metabolismo
12.
Dis Model Mech ; 17(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39189070

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.


Assuntos
Cardiomiopatia Hipertrófica , Conexina 43 , Sistema de Condução Cardíaco , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Conexina 43/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/genética , Células Gigantes/metabolismo , Células Gigantes/patologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Potenciais de Ação
13.
J Transl Med ; 22(1): 734, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103891

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by ß-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of ß-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS: We compared the difference of ß-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of ß-catenin in the development of AF was also explored in mice and primary cells. RESULTS: Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of ß-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, ß-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3ß (GSK-3ß) and Adenomatous Polyposis Coli (APC), which participated in the degradation of ß-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting ß-catenin expression in the AF model mice. CONCLUSIONS: Based on human atrial pathological and molecular analyses, our findings provided evidence that ß-catenin was associated with atrial fibrosis and AF progression.


Assuntos
Fibrilação Atrial , Fibrose , Átrios do Coração , Miócitos Cardíacos , beta Catenina , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fibrilação Atrial/patologia , Fibrilação Atrial/metabolismo , beta Catenina/metabolismo , Caderinas/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
14.
Sci Total Environ ; 951: 175606, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159698

RESUMO

Glyphosate (GLY) is the most universally used herbicide worldwide and its application has caused extensive pollution to the ecological environment. Increasing evidence has revealed the multi-organ toxicity of GLY in different species, but its male reproductive toxicity in avian species remains unknown. Thus, in vivo and in vitro studies were conducted to clarify this issue. Data firstly showed that chronic GLY exposure caused testicular pathological damage. Intriguingly, we identified and verified a marked down-regulation gap junction gene Connexin 43 (Cx43) in GLY-exposed rooster testis by transcriptome analysis. Cx43 generated by Sertoli cells acts as a key component of blood-testis barrier (BTB). To further investigate the cause of GLY-induced downregulation of Cx43 to disrupt BTB, we found that autophagy activation is revealed in GLY-exposed rooster testis and primary avian Sertoli cells. Moreover, GLY-induced Cx43 downregulation was significantly alleviated by ATG5 knockdown or CQ administration, respectively, demonstrating that GLY-induced autophagy activation contributed to Cx43 degradation. Mechanistically, GLY-induced autophagy activation and resultant Cx43 degradation was due to its direct interaction with ER-α. In summary, these findings demonstrate that chronic GLY exposure activates autophagy to induce Cx43 degradation, which causes BTB damage and resultant reproductive toxicity in roosters.


Assuntos
Autofagia , Barreira Hematotesticular , Galinhas , Conexina 43 , Glicina , Glifosato , Herbicidas , Animais , Masculino , Barreira Hematotesticular/efeitos dos fármacos , Conexina 43/metabolismo , Conexina 43/genética , Glicina/análogos & derivados , Glicina/toxicidade , Autofagia/efeitos dos fármacos , Herbicidas/toxicidade , Exposição Dietética , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo
15.
Lab Chip ; 24(18): 4264-4274, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39162210

RESUMO

The spread of metastatic cancer cells poses a significant challenge in cancer treatment, making innovative approaches for early detection and diagnosis essential. Dielectrophoretic impedance spectroscopy (DEPIS), a powerful tool for cell analysis, combines dielectrophoresis (DEP) and impedance spectroscopy (IS) to separate, sort, cells and analyze their dielectric properties. In this study, we developed and built out-of-plane inkjet-printed castellated arrays to map the dielectric properties of MDA-MB-231 breast cancer cell subtypes across their metastatic potential. This was realized via modulating the expression of connexin 43 (Cx43), a marker associated with poor breast cancer prognosis and increased metastasis. We employed DEP-based trapping, followed by EIS measurements on bulk cell population, for rapid capture and differentiation of the cancer cells according to their metastatic state. Our results revealed a significant correlation between the various MDA-MB-231 metastatic subtypes and their respective dielectrophoretic and dielectric properties. Notably, cells with the highest metastatic potential exhibited the highest membrane capacitance 16.88 ± 3.24 mF m-2, followed by the less metastatic cell subtypes with membrane capacitances below 14.3 ± 2.54 mF m-2. In addition, highly metastatic cells exhibited lower crossover frequency (25 ± 1 kHz) compared to the less metastatic subtypes (≥27 ± 1 kHz), an important characteristic for cell sorting. Finally, EIS measurements showed distinct double layer capacitance (CDL) values at 1 kHz between the metastatic subgroups, confirming unique dielectric and dielectrophoretic properties correlated with the metastatic state of the cell. Our findings underscore the potential of DEPIS as a non-invasive and rapid analytical tool, offering insights into cancer biology and facilitating the development of personalized therapeutic interventions tailored to distinct metastatic stages.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Eletroforese/instrumentação , Metástase Neoplásica , Espectroscopia Dielétrica/instrumentação , Conexina 43/metabolismo
16.
Int J Pharm ; 663: 124576, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39134288

RESUMO

Extracellular vesicles (EVs) have emerged as a promising drug delivery system. Connectosomes are a specialized type of EVs that contain connexins in their membranes. Connexin is a surface transmembrane protein that forms connexin hemichannels. When a connexin hemichannel on a connectosome docks with another connexin hemichannel of a target cell, they form a gap junction that allows direct intracellular delivery of therapeutic cargos from within the connectosome to the cytoplasm of the recipient cell. In the present study, we tested the feasibility of converting connectosomes into dry powders by (thin-film) freeze-drying to enable their potential storage in temperatures higher than the recommended -80 °C, while maintaining their activity. Connectosomes were isolated from a genetically engineered HeLa cell line that overexpressing connexin-43 subunit protein tagged with red fluorescence protein. To facilitate the testing of the function of the connectosomes, they were loaded with calcein green dye. Calcein green-loaded connectosomes were thin-film freeze-dried with trehalose alone or trehalose and a polyvinylpyrrolidone polymer as lyoprotectant(s) to produce amorphous powders with high glass transition temperatures (>100 °C). Thin-film freeze-drying did not significantly change the morphology and structure of the connectosomes, nor their particle size distribution. Based on data from confocal microscopy, flow cytometry, and fluorescence spectrometry, the connexin hemichannels in the connectosomes reconstituted from the thin-film freeze-dried powder remained functional, allowing the passage of calcein green through the hemichannels and the release of the calcein green from the connectosomes when the channels were opened by chelating calcium in the reconstituted medium. The function of connectosomes was assessed after one month storage at different temperatures. The connexin hemichannels in connectosomes in liquid lost their function when stored at -19.5 ± 2.2 °C or 6.0 ± 0.5 °C for a month, while those in dry powder form remained functional under the same storage conditions. Finally, using doxorubicin-loaded connectosomes, we showed that the connectosomes reconstituted from thin-film freeze-dried powder remained pharmacologically active. These findings demonstrate that (thin-film) freeze-drying represents a viable method to prepare stable and functional powders of EVs that contain connexins in their membranes.


Assuntos
Vesículas Extracelulares , Liofilização , Pós , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Células HeLa , Conexina 43/metabolismo , Trealose/química , Fluoresceínas/química , Povidona/química , Conexinas/metabolismo , Tamanho da Partícula
17.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126115

RESUMO

Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1ß), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1ß showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.


Assuntos
Condrócitos , Conexina 43 , Interleucina-1beta , Osteoartrite , Osteoblastos , Fator de Necrose Tumoral alfa , Humanos , Conexina 43/metabolismo , Conexina 43/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Líquido Sinovial/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Idoso , Pessoa de Meia-Idade , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Artropatias/metabolismo , Artropatias/patologia , Artropatias/genética
18.
Function (Oxf) ; 5(5)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984993

RESUMO

Obesity is a multifactorial metabolic disorder associated with endothelial dysfunction and increased risk of cardiovascular disease. Adipose capillary adipose endothelial cells (CaECs) plays a crucial role in lipid transport and storage. Here, we investigated the mechanisms underlying CaEC-adipocyte interaction and its impact on metabolic function. Single-cell RNA sequencing (scRNAseq) revealed an enrichment of fatty acid handling machinery in CaECs from high fat diet (HFD) mice, suggesting their specialized role in lipid metabolism. Transmission electron microscopy (TEM) confirmed direct heterocellular contact between CaECs and adipocytes. To model this, we created an in vitro co-culture transwell system to model the heterocellular contact observed with TEM. Contact between ECs and adipocytes in vitro led to upregulation of fatty acid binding protein 4 in response to lipid stimulation, hinting intercellular signaling may be important between ECs and adipocytes. We mined our and others scRNAseq datasets to examine which connexins may be present in adipose capillaries and adipocytes and consistently identified connexin 43 (Cx43) in mouse and humans. Genetic deletion of endothelial Cx43 resulted in increased epididymal fat pad (eWAT) adiposity and dyslipidemia in HFD mice. Consistent with this observation, phosphorylation of Cx43 at serine 368, which closes gap junctions, was increased in HFD mice and lipid-treated ECs. Mice resistant to this post-translational modification, Cx43S368A, were placed on an HFD and were found to have reduced eWAT adiposity and improved lipid profiles. These findings suggest Cx43-mediated heterocellular communication as a possible regulatory mechanism of adipose tissue function.


Assuntos
Adipócitos , Adiposidade , Conexina 43 , Células Endoteliais , Junções Comunicantes , Animais , Camundongos , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 43/genética , Adipócitos/metabolismo , Células Endoteliais/metabolismo , Humanos , Masculino , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Comunicação Celular , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos , Fosforilação , Técnicas de Cocultura , Tecido Adiposo/metabolismo
19.
J Reprod Immunol ; 165: 104299, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002426

RESUMO

Uterine atony is a major contributor to postpartum hemorrhage. We previously proposed the novel histological concept of postpartum acute myometritis (PAM) to elucidate the pathophysiology of uterine atony. This concept involves the infiltration of macrophages and neutrophils, as well as mast cell and complement activation in the myometrium. However, the pathological mechanism underlying uterine atony in the context of PAM remains unclear. Herein, we focused on uterine contraction-associated proteins (CAPs) including connexin 43 (Cx43), oxytocin receptors (OXR), prostaglandin receptors EP1, EP3, FP, and protease-activated receptor (PAR)-1. This follow-up study aimed to compare CAP expression between PAM and control groups. We selected 38 PAM subjects from the cases enrolled in our amniotic fluid embolism registry between 2011 and 2018. Control tissues from 10 parturients were collected during cesarean section. We stained the myometrial tissues with the following CAP markers, inflammatory cell markers, and other markers: Cx43, OXR, EP1, EP3, FP, PAR-1, C5a receptor, tryptase, neutrophil elastase, CD68, ß-actin, and Na+/K+-ATPase. The immunostaining-positive areas of Cx43, OXR, EP1, EP3, and FP standardized by ß-actin in the PAM tissue were significantly smaller than in the control group, whereas those of PAR-1 and Na+/K+-ATPase increased significantly in the PAM group. The Cx43- and OXR-positive areas correlated negatively with the immunostaining-positive cell numbers of CD68 and tryptase with halo, respectively. PAM may impair individual and synchronized myocyte contraction, leading to uterine atony refractory to uterotonics. Further cell-based studies are needed to elucidate the molecular mechanism by which inflammatory cells suppress CAP expression.


Assuntos
Conexina 43 , Miométrio , Contração Uterina , Humanos , Feminino , Gravidez , Miométrio/metabolismo , Miométrio/patologia , Miométrio/imunologia , Adulto , Conexina 43/metabolismo , Receptores de Ocitocina/metabolismo , Inércia Uterina/metabolismo , Inércia Uterina/imunologia , Inércia Uterina/patologia , Período Pós-Parto/metabolismo , Receptor PAR-1/metabolismo , Útero/metabolismo , Útero/imunologia , Útero/patologia , Doença Aguda , Seguimentos
20.
J Cardiovasc Med (Hagerstown) ; 25(9): 664-673, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949125

RESUMO

BACKGROUND AND AIMS: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling. METHODS: Male nondiabetic Sprague-Dawley rats were divided into Sham ( n  = 10), MI ( n  = 13), low-EMPA (10 mg/kg/day; n  = 13), and high-EMPA (30 mg/kg/day; n  = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed. RESULTS: Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups. CONCLUSION: EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.


Assuntos
Compostos Benzidrílicos , Modelos Animais de Doenças , Glucosídeos , Infarto do Miocárdio , Fator de Crescimento Neural , Ratos Sprague-Dawley , Transdução de Sinais , Inibidores do Transportador 2 de Sódio-Glicose , Sistema Nervoso Simpático , Remodelação Ventricular , Animais , Masculino , Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Fator de Crescimento Neural/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inibidores , Proteína GAP-43/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/tratamento farmacológico , Ratos , Antiarrítmicos/farmacologia , Conexina 43
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA