Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 684
Filtrar
1.
J Biol Chem ; 300(3): 105695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301894

RESUMO

BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.


Assuntos
Proteínas Quinases Ativadas por AMP , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias do Endométrio , Metabolismo Energético , Fosfoproteínas Fosfatases , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/fisiopatologia , Metabolismo Energético/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Consumo de Oxigênio/genética , Regulação Neoplásica da Expressão Gênica/genética , Fosforilação/genética
2.
Physiol Genomics ; 55(11): 517-543, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661925

RESUMO

Submaximal exercise capacity is an indicator of cardiorespiratory fitness with clinical and public health implications. Submaximal exercise capacity and its response to exercise programs are characterized by heritability levels of about 40%. Using physical working capacity (power output) at a heart rate of 150 beats/min (PWC150) as an indicator of submaximal exercise capacity in subjects of the HERITAGE Family Study, we have undertaken multi-omics and in silico explorations of the underlying biology of PWC150 and its response to 20 wk of endurance training. Our goal was to illuminate the biological processes and identify panels of genes associated with human variability in intrinsic PWC150 (iPWC150) and its trainability (dPWC150). Our bioinformatics approach was based on a combination of genome-wide association, skeletal muscle gene expression, and plasma proteomics and metabolomics experiments. Genes, proteins, and metabolites showing significant associations with iPWC150 or dPWC150 were further queried for the enrichment of biological pathways. We compared genotype-phenotype associations of emerging candidate genes with reported functional consequences of gene knockouts in mouse models. We investigated the associations between DNA variants and multiple muscle and cardiovascular phenotypes measured in HERITAGE subjects. Two panels of prioritized genes of biological relevance to iPWC150 (13 genes) and dPWC150 (6 genes) were identified, supporting the hypothesis that genes and pathways associated with iPWC150 are different from those underlying dPWC150. Finally, the functions of these genes and pathways suggested that human variation in submaximal exercise capacity is mainly driven by skeletal muscle morphology and metabolism and red blood cell oxygen-carrying capacity.NEW & NOTEWORTHY Multi-omics and in silico explorations of the genes and underlying biology of submaximal exercise capacity and its response to 20 wk of endurance training were undertaken. Prioritized genes were identified: 13 genes for variation in submaximal exercise capacity in the sedentary state and 5 genes for the response level to endurance training, with no overlap between them. Genes and pathways associated with submaximal exercise capacity in the sedentary state are different from those underlying trainability.


Assuntos
Exercício Físico , Estudo de Associação Genômica Ampla , Camundongos , Animais , Humanos , Exercício Físico/fisiologia , Fenótipo , Genoma , Biologia , Resistência Física/genética , Consumo de Oxigênio/genética
3.
Physiol Genomics ; 55(10): 440-451, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37575066

RESUMO

Low cardiorespiratory fitness, measured as maximal oxygen uptake (V̇o2max), is associated with all-cause mortality and disease-specific morbidity and mortality and is estimated to have a large genetic component (∼60%). However, the underlying mechanisms explaining the associations are not known, and no association study has assessed shared genetics between directly measured V̇o2max and disease. We believe that identifying the mechanisms explaining how low V̇o2max is related to increased disease risk can contribute to prevention and therapy. We used a phenome-wide association study approach to test for shared genetics. A total of 64,479 participants from the Trøndelag Health Study (HUNT) were included. Genetic variants previously linked to V̇o2max were tested for association with diseases related to the cardiovascular system, diabetes, dementia, mental disorders, and cancer as well as clinical measurements and biomarkers from HUNT. In the total population, three single-nucleotide polymorphisms (SNPs) in and near the follicle-stimulating hormone receptor gene (FSHR) were found to be associated (false discovery rate < 0.05) with serum creatinine levels and one intronic SNP in the Rap-associating DIL domain gene (RADIL) with diabetes type 1 with neurological manifestations. In males, four intronic SNPs in the PBX/knotted homeobox 2 gene (PKNOX2) were found to be associated with endocarditis. None of the association tests in the female population reached overall statistical significance; the associations with the lowest P values included other cardiac conduction disorders, subdural hemorrhage, and myocarditis. The results might suggest shared genetics between V̇o2max and disease. However, further effort should be put into investigating the potential shared genetics between inborn V̇o2max and disease in larger cohorts to increase statistical power.NEW & NOTEWORTHY To our knowledge, this is the first genetic association study exploring how genes linked to cardiorespiratory fitness (CRF) relate to disease risk. By investigating shared genetics, we found indications that genetic variants linked to directly measured CRF also affect the level of blood creatinine, risk of diabetes, and endocarditis. Less certain findings showed that genetic variants of high CRF might cause lower body mass index, healthier HDL cholesterol, and lower resting heart rate.


Assuntos
Consumo de Oxigênio , Oxigênio , Masculino , Humanos , Feminino , Estudos de Associação Genética , Consumo de Oxigênio/genética
4.
Physiol Genomics ; 55(8): 338-344, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335021

RESUMO

Maximal aerobic exercise capacity [maximal oxygen consumption (V̇o2max)] is one of the strongest predictors of morbidity and mortality. Aerobic exercise training can increase V̇o2max, but inter-individual variability is marked and unexplained physiologically. The mechanisms underlying this variability have major clinical implications for extending human healthspan. Here, we report a novel transcriptome signature related to ΔV̇o2max with exercise training detected in whole blood RNA. We used RNA-Seq to characterize transcriptomic signatures of ΔV̇o2max in healthy women who completed a 16-wk randomized controlled trial comparing supervised, higher versus lower aerobic exercise training volume and intensity (4 training groups, fully crossed). We found significant baseline gene expression differences in subjects who responded to aerobic exercise training with robust versus little/no ΔV̇o2max, and differentially expressed genes/transcripts were mostly related to inflammatory signaling and mitochondrial function/protein translation. Baseline gene expression signatures associated with robust versus little/no ΔV̇o2max were also modulated by exercise training in a dose-dependent manner, and they predicted ΔV̇o2max in this and a separate dataset. Collectively, our data demonstrate the potential utility of using whole blood transcriptomics to study the biology of inter-individual variability in responsiveness to the same exercise training stimulus.


Assuntos
Treino Aeróbico , Transcriptoma , Humanos , Feminino , Transcriptoma/genética , Exercício Físico/fisiologia , Tolerância ao Exercício , Consumo de Oxigênio/genética
5.
Genes (Basel) ; 14(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37372345

RESUMO

Background: The training of elite skiers follows a systematic seasonal periodization with a preparation period, when anaerobic muscle strength, aerobic capacity, and cardio-metabolic recovery are specifically conditioned to provide extra capacity for developing ski-specific physical fitness in the subsequent competition period. We hypothesized that periodization-induced alterations in muscle and metabolic performance demonstrate important variability, which in part is explained by gene-associated factors in association with sex and age. Methods: A total of 34 elite skiers (20.4 ± 3.1 years, 19 women, 15 men) underwent exhaustive cardiopulmonary exercise and isokinetic strength testing before and after the preparation and subsequent competition periods of the World Cup skiing seasons 2015-2018. Biometric data were recorded, and frequent polymorphisms in five fitness genes, ACE-I/D (rs1799752), TNC (rs2104772), ACTN3 (rs1815739), and PTK2 (rs7460, rs7843014), were determined with specific PCR reactions on collected DNA. Relative percentage changes of cardio-pulmonary and skeletal muscle metabolism and performance over the two seasonal periods were calculated for 160 data points and subjected to analysis of variance (ANOVA) to identify hypothesized and novel associations between performance alterations and the five respective genotypes and determine the influence of age × sex. A threshold of 0.1 for the effect size (h2) was deemed appropriate to identify relevant associations and motivate a post hoc test to localize effects. Results: The preparation and competition periods produced antidromic functional changes, the extent of which varied with increasing importance for anaerobic strength, aerobic performance, cardio-metabolic efficiency, and cardio-metabolic/muscle recovery. Only peak RER (-14%), but not anaerobic strength and peak aerobic performance, and parameters characterizing cardio-metabolic efficiency, differed between the first and last studied skiing seasons because improvements over the preparation period were mostly lost over the competition period. A number of functional parameters demonstrated associations of variability in periodic changes with a given genotype, and this was considerably influenced by athlete "age", but not "sex". This concerned age-dependent associations between periodic changes in muscle-related parameters, such as anaerobic strength for low and high angular velocities of extension and flexion and blood lactate concentration, with rs1799752 and rs2104772, whose gene products relate to sarcopenia. By contrast, the variance in period-dependent changes in body mass and peak VO2 with rs1799752 and rs2104772, respectively, was independent of age. Likely, the variance in periodic changes in the reliance of aerobic performance on lactate, oxygen uptake, and heart rate was associated with rs1815739 independent of age. These associations manifested at the post hoc level in genotype-associated differences in critical performance parameters. ACTN3 T-allele carriers demonstrated, compared to non-carriers, largely different periodic changes in the muscle-associated parameters of aerobic metabolism during exhaustive exercise, including blood lactate and respiration exchange ratio. The homozygous T-allele carriers of rs2104772 demonstrated the largest changes in extension strength at low angular velocity during the preparation period. Conclusions: Physiological characteristics of performance in skiing athletes undergo training period-dependent seasonal alterations the extent of which is largest for muscle metabolism-related parameters. Genotype associations for the variability in changes of aerobic metabolism-associated power output during exhaustive exercise and anaerobic peak power over the preparation and competition period motivate personalized training regimes. This may help to predict and maximize the benefit of physical conditioning of elite skiers based on chronological characteristics and the polymorphisms of the ACTN3, ACE, and TNC genes investigated here.


Assuntos
Força Muscular , Consumo de Oxigênio , Masculino , Humanos , Feminino , Estações do Ano , Consumo de Oxigênio/genética , Força Muscular/genética , Músculo Esquelético/fisiologia , Ácido Láctico , Actinina
6.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835102

RESUMO

Voltage-Dependent Anion-selective Channel isoform 1 (VDAC1) is the most abundant isoform of the outer mitochondrial membrane (OMM) porins and the principal gate for ions and metabolites to and from the organelle. VDAC1 is also involved in a number of additional functions, such as the regulation of apoptosis. Although the protein is not directly involved in mitochondrial respiration, its deletion in yeast triggers a complete rewiring of the whole cell metabolism, with the inactivation of the main mitochondrial functions. In this work, we analyzed in detail the impact of VDAC1 knockout on mitochondrial respiration in the near-haploid human cell line HAP1. Results indicate that, despite the presence of other VDAC isoforms in the cell, the inactivation of VDAC1 correlates with a dramatic impairment in oxygen consumption and a re-organization of the relative contributions of the electron transport chain (ETC) enzymes. Precisely, in VDAC1 knockout HAP1 cells, the complex I-linked respiration (N-pathway) is increased by drawing resources from respiratory reserves. Overall, the data reported here strengthen the key role of VDAC1 as a general regulator of mitochondrial metabolism.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Consumo de Oxigênio , Canal de Ânion 1 Dependente de Voltagem , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Consumo de Oxigênio/genética , Porinas/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
7.
N Engl J Med ; 387(15): 1395-1403, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36239646

RESUMO

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the ß subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Assuntos
Doenças Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Fosforilação Oxidativa , Consumo de Oxigênio , Humanos , Masculino , Trifosfato de Adenosina/metabolismo , Doenças em Gêmeos/genética , Doenças em Gêmeos/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/congênito , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Gêmeos Monozigóticos/genética
8.
Med Sci Sports Exerc ; 54(9): 1534-1545, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482759

RESUMO

PURPOSE: Low cardiorespiratory fitness (CRF) is a major risk factor for cardiovascular disease (CVD) and a stronger predictor of CVD morbidity and mortality than established risk factors. The genetic component of CRF, quantified as peak oxygen uptake (V̇O 2peak ), is estimated to be ~60%. Unfortunately, current studies on genetic markers for CRF have been limited by small sample sizes and using estimated CRF. To overcome these limitations, we performed a large-scale systematic screening for genetic variants associated with V̇O 2peak . METHODS: A genome-wide association study was performed with BOLT-LMM including directly measured V̇O 2peak from 4525 participants in the HUNT3 Fitness study and 14 million single-nucleotide polymorphisms (SNP). For validation, similar analyses were performed in the United Kingdom Biobank (UKB), where CRF was assessed through a submaximal bicycle test, including ~60,000 participants and ~60 million SNP. Functional mapping and annotation of the genome-wide association study results was conducted using FUMA. RESULTS: In HUNT, two genome-wide significant SNP associated with V̇O 2peak were identified in the total population, two in males, and 35 in females. Two SNP in the female population showed nominally significant association in the UKB. One of the replicated SNP is located in PIK3R5 , shown to be of importance for cardiac function and CVD. Bioinformatic analyses of the total and male population revealed candidate SNP in PPP3CA , previously associated with CRF. CONCLUSIONS: We identified 38 novel SNP associated with V̇O 2peak in HUNT. Two SNP were nominally replicated in UKB. Several interesting genes emerged from the functional analyses, among them one previously reported to be associated with CVD and another with CRF.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Doenças Cardiovasculares/genética , Teste de Esforço/métodos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Consumo de Oxigênio/genética , Aptidão Física
9.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163298

RESUMO

Nischarin (Nisch) is a cytosolic scaffolding protein that harbors tumor-suppressor-like characteristics. Previous studies have shown that Nisch functions as a scaffolding protein and regulates multiple biological activities. In the current study, we prepared a complete Nisch knockout model, for the first time, by deletion of exons 5 and 6. This knockout model was confirmed by Qrt-PCR and Western blotting with products from mouse embryonic fibroblast (MEF) cells. Embryos and adult mice of knockouts are significantly smaller than their wild-type counterparts. Deletion of Nisch enhanced cell migration, as demonstrated by wound type and transwell migration assays. Since the animals were small in size, we investigated Nisch's effect on metabolism by conducting several assays using the Seahorse analyzer system. These data indicate that Nisch null cells have lower oxygen consumption rates, lower ATP production, and lower levels of proton leak. We examined the expression of 15 genes involved in lipid and fat metabolism, as well as cell growth, and noted a significant increase in expression for many genes in Nischarin null animals. In summary, our results show that Nischarin plays an important physiological role in metabolic homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores de Imidazolinas/metabolismo , Consumo de Oxigênio/genética , Trifosfato de Adenosina/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Respiração Celular , Fibroblastos , Expressão Gênica/genética , Receptores de Imidazolinas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Consumo de Oxigênio/fisiologia
10.
Mol Cell Biochem ; 477(2): 345-361, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34716860

RESUMO

The relative contribution of mitochondrial respiration and subsequent energy production in malignant cells has remained controversial to date. Enhanced aerobic glycolysis and impaired mitochondrial respiration have gained more attention in the metabolic study of cancer. In contrast to the popular concept, mitochondria of cancer cells oxidize a diverse array of metabolic fuels to generate a majority of the cellular energy by respiration. Several mitochondrial respiratory chain (MRC) subunits' expressions are critical for the growth, metastasis, and cancer cell invasion. Also, the assembly factors, which regulate the integration of individual MRC complexes into native super-complexes, are upregulated in cancer. Moreover, a series of anti-cancer drugs function by inhibiting respiration and ATP production. In this review, we have specified the roles of mitochondrial fuels, MRC subunits, and super-complex assembly factors that promote active respiration across different cancer types and discussed the potential roles of MRC inhibitor drugs in controlling cancer.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Consumo de Oxigênio/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oxirredução , Consumo de Oxigênio/genética
11.
Mitochondrion ; 62: 13-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656796

RESUMO

Leigh syndrome (LS) is one of the most common mitochondrial diseases in children, for which at least 90 causative genes have been identified. However, many LS patients have no genetic diagnosis, indicating that more disease-related genes remain to be identified. In this study, we identified a novel variant, m.3955G > A, in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) in two unrelated LS patients, manifesting as infancy-onset frequent seizures, neurodegeneration, elevated lactate levels, and bilateral symmetrical lesions in the brainstem, basal ganglia, and thalamus. Transfer of the mutant mtDNA with m.3955G > A into cybrids disturbed the MT-ND1 expression and CI assembly, followed by remarkable mitochondrial dysfunction, reactive oxygen species production, and mitochondrial membrane potential reduction. Our findings demonstrated the pathogenicity of the novel m.3955G > A variant, and extend the spectrum of pathogenic mtDNA variants.


Assuntos
Predisposição Genética para Doença , Doença de Leigh/genética , Potencial da Membrana Mitocondrial/fisiologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Transporte de Elétrons/genética , Feminino , Humanos , Lactente , Masculino , Potencial da Membrana Mitocondrial/genética , Modelos Moleculares , Mutação , Consumo de Oxigênio/genética , Linhagem , Conformação Proteica , Espécies Reativas de Oxigênio
12.
Cell Mol Biol (Noisy-le-grand) ; 68(10): 90-93, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114266

RESUMO

In the present study, the effect of ACE rs1799752 polymorphism on maximal oxygen consumption (VO2max) in ice hockey players was analyzed. For this reason, 21 male National Ice Hockey players, aged between 18-25, were recruited for the study. The conventional polymerase chain reaction (PCR) was used on the genotype rs1799752 polymorphism. The VO2max values were calculated by using the 20m Shuttle Run tests. The numbers and percentages of the II, ID and DD genotypes were 9 (%43), 7 (%33), and 5 (%24), respectively. The allelic distribution for I and D alleles was found to be 25 (60%) and 17 (40%), respectively. The mean VO2max of all the athletes was calculated as 47.52 ml. The mean VO2max of the II, ID, and DD genotypes were 49.74ml, 47.34 ml, and 46.43 ml, respectively. We found that the oxygen utilization capacity increased from the DD genotype to the II genotype. However, this increase was not statistically significant (p> 0.05). In order to confirm our findings, it is recommended that larger prospective studies depending on the effect of the relevant polymorphisms needed to be carried out.


Assuntos
Hóquei , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem , Angiotensinas/genética , Genótipo , Consumo de Oxigênio/genética , Peptidil Dipeptidase A/genética , Estudos Prospectivos
13.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943907

RESUMO

Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.


Assuntos
Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Neuroblastoma/genética , Neuroglobina/genética , Proteína Sequestossoma-1/genética , Trifosfato de Adenosina/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mitocôndrias/genética , Neuroblastoma/patologia , Consumo de Oxigênio/genética , Proteoma/genética
14.
Front Endocrinol (Lausanne) ; 12: 770145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690937

RESUMO

Background: Schizophrenia (SCZ) is a severe psychiatric disease affected by genetic factors and environmental contributors, and premorbid abnormality of glucose metabolism is one of the SCZ characteristics supposed to contribute to the disease's pathological process. Transmembrane protein 108 (Tmem108) is a susceptible gene associated with multiple psychiatric diseases, including SCZ. Moreover, Tmem108 mutant mice exhibit SCZ-like behaviors in the measurement of sensorimotor gating. However, it is unknown whether Tmem108 regulates glucose metabolism homeostasis while it involves SCZ pathophysiological process. Results: In this research, we found that Tmem108 mutant mice exhibited glucose intolerance, insulin resistance, and disturbed metabolic homeostasis. Food and oxygen consumption decreased, and urine production increased, accompanied by weak fatigue resistance in the mutant mice. Simultaneously, the glucose metabolic pathway was enhanced, and lipid metabolism decreased in the mutant mice, consistent with the elevated respiratory exchange ratio (RER). Furthermore, metformin attenuated plasma glucose levels and improved sensorimotor gating in Tmem108 mutant mice. Conclusions: Hyperglycemia occurs more often in SCZ patients than in control, implying that these two diseases share common biological mechanisms, here we demonstrate that the Tmem108 mutant may represent such a comorbid mechanism.


Assuntos
Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Homeostase/genética , Resistência à Insulina/genética , Esquizofrenia/genética , Proteínas de Transporte Vesicular/genética , Animais , Ingestão de Alimentos/genética , Intolerância à Glucose/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Consumo de Oxigênio/genética
15.
Nat Commun ; 12(1): 5948, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642330

RESUMO

Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.


Assuntos
Proteínas de Ligação a DNA/genética , Exercício Físico/fisiologia , Glucose/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , Adulto , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Metabolismo Energético/genética , Voluntários Saudáveis , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Consumo de Oxigênio/genética , Fosforilação , Condicionamento Físico Animal , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
16.
Mol Neurodegener ; 16(1): 62, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488832

RESUMO

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. RESULTS: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. CONCLUSIONS: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a 'Warburg like' endophenotype that is observable in young females decades prior to clinically manifest AD.


Assuntos
Aerobiose , Apolipoproteína E4/fisiologia , Glucose/metabolismo , Glicólise , Sintomas Prodrômicos , Adolescente , Adulto , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E4/genética , Astrócitos/metabolismo , Sequência de Bases , Química Encefálica , Células Cultivadas , Diagnóstico Precoce , Metabolismo Energético , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Introdução de Genes , Humanos , Metabolômica , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio/genética , Caracteres Sexuais , Análise de Célula Única , Adulto Jovem
17.
Cell Commun Signal ; 19(1): 98, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563205

RESUMO

BACKGROUND: The calcium (Ca2+)/calmodulin (CAM)-activated kinase kinase 2 (CAMKK2)-signaling regulates several physiological processes, for example, glucose metabolism and energy homeostasis, underlying the pathogenesis of metabolic diseases. CAMKK2 exerts its biological function through several downstream kinases, therefore, it is expected that depending on the cell-type-specific kinome profile, the metabolic effects of CAMKK2 and its underlying mechanism may differ. Identification of the cell-type-specific differences in CAMKK2-mediated glucose metabolism will lead to unravelling the organ/tissue-specific role of CAMKK2 in energy metabolism. Therefore, the objective of this study was to understand the cell-type-specific regulation of glucose metabolism, specifically, respiration under CAMKK2 deleted conditions in transformed human embryonic kidney-derived HEK293 and hepatoma-derived HepG2 cells. METHODS: Cellular respiration was measured in terms of oxygen consumption rate (OCR). OCR and succinate dehydrogenase (SDH) enzyme activity were measured following the addition of substrates. In addition, transcription and proteomic and analyses of the electron transport system (ETS)-associated proteins, including mitochondrial SDH protein complex (complex-II: CII) subunits, specifically SDH subunit B (SDHB), were performed using standard molecular biology techniques. The metabolic effect of the altered SDHB protein content in the mitochondria was further evaluated by cell-type-specific knockdown or overexpression of SDHB. RESULTS: CAMKK2 deletion suppressed cellular respiration in both cell types, shifting metabolic phenotype to aerobic glycolysis causing the Warburg effect. However, isolated mitochondria exhibited a cell-type-specific enhancement or dampening of the respiratory kinetics under CAMKK2 deletion conditions. This was mediated in part by the cell-type-specific effect of CAMKK2 loss-of-function on transcription, translation, post-translational modification (PTM), and megacomplex assembly of nuclear-encoded mitochondrial SDH enzyme complex subunits, specifically SDHB. The cell-type-specific increase or decrease in SDHs protein levels, specifically SDHB, under CAMKK2 deletion condition resulted in an increased or decreased enzymatic activity and CII-mediated respiration. This metabolic phenotype was reversed by cell-type-specific knockdown or overexpression of SDHB in respective CAMKK2 deleted cell types. CAMKK2 loss-of-function also affected the overall assembly of mitochondrial supercomplex involving ETS-associated proteins in a cell-type-specific manner, which correlated with differences in mitochondrial bioenergetics. CONCLUSION: This study provided novel insight into CAMKK2-mediated cell-type-specific differential regulation of mitochondrial function, facilitated by the differential expression, PTMs, and assembly of SDHs into megacomplex structures. Video Abstract.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Mitocôndrias/genética , Complexos Multiproteicos/genética , Succinato Desidrogenase/genética , Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica/genética , Células HEK293 , Células Hep G2 , Homeostase/genética , Humanos , Mitocôndrias/metabolismo , Consumo de Oxigênio/genética , Processamento de Proteína Pós-Traducional/genética , Proteômica
18.
Scand J Med Sci Sports ; 31(11): 2083-2091, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333829

RESUMO

OBJECTIVES: High cardiorespiratory fitness (CRF) levels reduce the risk of developing cardiovascular disease (CVD) during adulthood. However, little is known about the molecular mechanisms underlying the health benefits of high CRF levels at the early stage of life. This study aimed to analyze the whole-blood transcriptome profile of fit children with overweight/obesity (OW/OB) compared to unfit children with OW/OB. DESIGN: 27 children with OW/OB (10.14 ± 1.3 years, 59% boys) from the ActiveBrains project were evaluated. VO2 peak was assessed using a gas analyzer, and participants were categorized into fit or unfit according to the CVD risk-related cut-points. Whole-blood transcriptome profile (RNA sequencing) was analyzed. Differential gene expression analysis was performed using the limma R/Bioconductor software package (analyses adjusted by sex and maturational status), and pathways' enrichment analysis was performed with DAVID. In addition, in silico validation data mining was performed using the PHENOPEDIA database. RESULTS: 256 genes were differentially expressed in fit children with OW/OB compared to unfit children with OW/OB after adjusting by sex and maturational status (FDR < 0.05). Enriched pathway analysis identified gene pathways related to inflammation (eg, dopaminergic and GABAergic synapse pathways). Interestingly, in silico validation data mining detected a set of the differentially expressed genes to be related to CVD, metabolic syndrome, hypertension, inflammation, and asthma. CONCLUSION: The distinct pattern of whole-blood gene expression in fit children with OW/OB reveals genes and gene pathways that might play a role in reducing CVD risk factors later in life.


Assuntos
Aptidão Cardiorrespiratória , Consumo de Oxigênio/genética , Obesidade Infantil/genética , Criança , Estudos Transversais , Feminino , Expressão Gênica , Humanos , Masculino
19.
Respir Med ; 187: 106567, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411906

RESUMO

INTRODUCTION: Sleep-disordered breathing (SDB) is common in children with PWS. In the current study, we aimed to evaluate the severity of SDB in patients with PWS using polysomnography (PSG), and assess the effect of the underlying genetic mechanism on PSG parameters. METHODS: Children with PWS, referred to our sleep laboratory between March 2016 and January 2020 were enrolled. PSG parameters, demographic data, body mass index (BMI), and symptoms related to SDB were recorded. The effect of non-invasive ventilation strategies and the outcome of therapy on PSG parameters were evaluated. RESULTS: In our study, 64.5% of the patients had severe sleep apnea syndrome (total apnea hypopnea index (AHI) ≥10 events/hour). 22.6% had significantly high (>5 events/hour) central sleep apnea. Patients with a deletion had significantly lower initial and mean SaO2, longer sleep time SaO2 under 90%, oxygen desaturation % and total AHI when compared to those with uniparental disomy. PSG parameters were similar between patients who did or didn't receive growth hormone treatment. CONCLUSION: The majority of the PWS patients had severe sleep apnea syndrome characterized mainly by hypopneas which were accompanied by central apneas. There was a more severe impact on oxygen parameters and total AHI in patients with deletions.


Assuntos
Cromossomos Humanos Par 15/genética , Deleção de Genes , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , Síndromes da Apneia do Sono/etiologia , Síndromes da Apneia do Sono/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Consumo de Oxigênio/genética , Gravidade do Paciente , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/metabolismo
20.
Commun Biol ; 4(1): 826, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211098

RESUMO

Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Expressão Gênica , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/deficiência , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA