Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690726

RESUMO

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Assuntos
Substituição de Aminoácidos , Miopatias Distais , Prolina , Animais , Camundongos , Humanos , Prolina/genética , Prolina/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Mutação de Sentido Incorreto , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/química , Feminino , Masculino , Camundongos Transgênicos , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
2.
Nat Commun ; 15(1): 339, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184690

RESUMO

Prune belly syndrome (PBS), also known as Eagle-Barret syndrome, is a rare, multi-system congenital myopathy primarily affecting males. Phenotypically, PBS cases manifest three cardinal pathological features: urinary tract dilation with poorly contractile smooth muscle, wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, and intra-abdominal undescended testes. Genetically, PBS is poorly understood. After performing whole exome sequencing in PBS patients, we identify one compound heterozygous variant in the PIEZO1 gene. PIEZO1 is a cation-selective channel activated by various mechanical forces and widely expressed throughout the lower urinary tract. Here we conduct an extensive functional analysis of the PIEZO1 PBS variants that reveal loss-of-function characteristics in the pressure-induced normalized open probability (NPo) of the channel, while no change is observed in single-channel currents. Furthermore, Yoda1, a PIEZO1 activator, can rescue the NPo defect of the PBS mutant channels. Thus, PIEZO1 mutations may be causal for PBS and the in vitro cellular pathophysiological phenotype could be rescued by the small molecule, Yoda1. Activation of PIEZO1 might provide a promising means of treating PBS and other related bladder dysfunctional states.


Assuntos
Síndrome do Abdome em Ameixa Seca , Masculino , Humanos , Síndrome do Abdome em Ameixa Seca/genética , Mutação , Contração Muscular/genética , Músculo Esquelético , Músculo Liso , Canais Iônicos/genética
3.
Sci Rep ; 13(1): 22679, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114601

RESUMO

Nexilin (NEXN) plays a crucial role in stabilizing the sarcomeric Z-disk of striated muscle fibers and, when mutated, leads to dilated cardiomyopathy in humans. Due to its early neonatal lethality in mice, the detailed impact of the constitutive homozygous NEXN knockout on heart and skeletal muscle morphology and function is insufficiently investigated. Here, we characterized a constitutive homozygous CRISPR/Cas9-mediated nexn knockout zebrafish model. We found that Nexn deficient embryos developed significantly reduced cardiac contractility and under stressed conditions also impaired skeletal muscle organization whereas skeletal muscle function seemed not to be affected. Remarkably, in contrast to nexn morphants, CRISPR/Cas9 nexn-/- knockout embryos showed a milder phenotype without the development of a pronounced pericardial edema or blood congestion. nexn-specific expression analysis as well as whole transcriptome profiling suggest some degree of compensatory mechanisms. Transcripts of numerous essential sarcomeric proteins were massively induced and may mediate a sarcomere stabilizing function in nexn-/- knockout embryos. Our findings demonstrate the successful generation and characterization of a constitutive homozygous nexn knockout line enabling the detailed investigation of the role of nexn on heart and skeletal muscle development and function as well as to assess putative compensatory mechanisms induced by the loss of Nexn.


Assuntos
Proteínas dos Microfilamentos , Peixe-Zebra , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas dos Microfilamentos/metabolismo , Sistemas CRISPR-Cas , Contração Muscular/genética , Músculo Esquelético/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
S D Med ; 76(9): 404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37738491

RESUMO

INTRODUCTION: Muscles facilitate most animal behavior, from eating to fleeing. However, to generate the variation in behavior necessary for survival, different muscles must perform differently. For instance, sprinting requires multiple rapid muscle contractions, whereas biting may require fewer contractions but greater force. METHODS: Here, a transcriptomic approach was utilized to identify genes associated with variation in muscle contractile physiology among different muscles from the same individual. Differential gene expression was measured between a leg and jaw muscle of Anolis lizards (A. chlorocyanus, A. cybotes, A. osa, A. sagrei) known to differ in muscle contractile physiology and performance. For each individual, one muscle was used to measure muscle contractile physiology, including Vmax (the muscle contraction velocity at zero force), V40 (the muscle contraction velocity at 40% force), power ratio (a measure of the trade-off between force and velocity), and twitch time (the amount of time it takes to create and dissipate tension at 50% force). The contralateral muscle was used to extract RNA for transcriptomic sequencing. Weighted Gene Co-Expression Analysis (WGCNA) was performed to cluster differentially expressed genes into groups, or modules with color designations, based on an eigengene. Modules were correlated to physiologic metrics and analyzed for function with gene ontology (GO term) analysis. RESULTS: Using the transcriptomic data, clear clustering of muscle type was found indicating there were no specific differences among the four species. Several contractile metrics were significantly different between the jaw and leg: twitch time, V40, and power ratio. Expression of genes clustered in GO terms related to muscle contraction and extracellular matrix was negatively correlated with slower twitch times but positively correlated to power ratio and V40. Conversely, genes related to the GO terms related to aerobic respiration were downregulated in muscles with higher power ratio and V40 and over-expressed with slower twitch times. CONCLUSIONS: Determining the molecular mechanisms that underlie variation in muscle contractile physiology can begin to explain how organisms are able to optimize behavior under variable conditions. Key areas of difference between gene expression of the jaw and leg included muscle contraction, energy synthesis, and extracellular structures. Modules relating to aerobic respiration are strongly correlated with slower twitch time likely due to slower utilization of ATP. Modules relating to muscle contraction and extracellular structure are negatively correlated with slower twitch time and positively correlated with V40 and power ratio indicating the increased need for structural components to increase and transmit force for greater power.


Assuntos
Lagartos , Animais , Lagartos/genética , Contração Muscular/genética , Músculos , Expressão Gênica
5.
Trends Biochem Sci ; 48(11): 927-936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709636

RESUMO

The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).


Assuntos
Exercício Físico , Músculo Esquelético , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia , Transcriptoma , Contração Muscular/genética , Proteoma
6.
J Steroid Biochem Mol Biol ; 224: 106160, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931328

RESUMO

Myometrial contraction is stringently controlled throughout pregnancy and parturition. Progesterone signaling, effecting through the progesterone receptor (PR), is pivotal in modulating uterine activity. Evidence has shown that two major PR isoforms, PR-A and PR-B, have distinct activities on gene regulation, and the ratio between these isoforms determines the contractility of the myometrium at different gestational stages. Herein, we focus on the regulation of PR activity in the myometrium, especially the differential actions of the two PR isoforms, which maintain uterine quiescence during pregnancy and regulate the switch to a contractile state at the onset of labor. To demonstrate the PR regulatory network and its mechanisms of actions on myometrial activity, we summarized the findings into three parts: Regulation of PR Expression and Isoform Levels, Progesterone Receptor Interacting Factors, and Biological Processes Regulated by Myometrial Progesterone Receptor Isoforms. Recent genomic and epigenomic data, from human specimens and mouse models, are recruited to support the existing knowledge and offer new insights and future directions in myometrial biology.


Assuntos
Contração Muscular , Miométrio , Parto , Gravidez , Receptores de Progesterona , Animais , Feminino , Humanos , Camundongos , Gravidez/genética , Gravidez/metabolismo , Miométrio/metabolismo , Parto/genética , Parto/metabolismo , Progesterona/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Contração Muscular/genética
7.
Am J Pathol ; 192(11): 1592-1603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985479

RESUMO

Appropriate coordination of smooth muscle contraction and relaxation is essential for normal colonic motility. The impact of perturbed motility ranges from moderate, in conditions such as colitis, to potentially fatal in the case of pseudo-obstruction. The mechanisms underlying aberrant motility and the extent to which they can be targeted pharmacologically are incompletely understood. This study identified colonic smooth muscle as a major site of expression of neuropilin 2 (Nrp2) in mice and humans. Mice with inducible smooth muscle-specific knockout of Nrp2 had an increase in evoked contraction of colonic rings in response to carbachol at 1 and 4 weeks following initiation of deletion. KCl-induced contractions were also increased at 4 weeks. Colonic motility was similarly enhanced, as evidenced by faster bead expulsion in Nrp2-deleted mice versus Nrp2-intact controls. In length-tension analysis of the distal colon, passive tension was similar in Nrp2-deficient and Nrp2-intact mice, but at low strains, active stiffness was greater in Nrp2-deficient animals. Consistent with the findings in conditional Nrp2 mice, Nrp2-null mice showed increased contractility in response to carbachol and KCl. Evaluation of selected proteins implicated in smooth muscle contraction revealed no significant differences in the level of α-smooth muscle actin, myosin light chain, calponin, or RhoA. Together, these findings identify Nrp2 as a novel regulator of colonic contractility that may be targetable in conditions characterized by dysmotility.


Assuntos
Colo , Motilidade Gastrointestinal , Contração Muscular , Músculo Liso , Neuropilina-2 , Animais , Humanos , Camundongos , Carbacol/farmacologia , Colo/metabolismo , Colo/fisiologia , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/genética
8.
PLoS One ; 17(7): e0270820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802750

RESUMO

Class II myosin complexes are responsible for muscle contraction as well as other non-sarcomeric contractile functions in cells. Myosin heavy chain molecules form the core of these structures, while light chain molecules regulate their stability and function. MYL9 is a light chain isoform that is thought to regulate non-sarcomeric myosin. However, whether this in only in specific cell types or in all cells remains unclear. To address this, we generated MYL9 deficient mice. These mice die soon after birth with abnormalities in multiple organs. All mice exhibited a distended bladder, shortening of the small intestine and alveolar overdistension in the lung. The Myl9 allele in these mice included a LacZ reporter knockin that allowed for mapping of Myl9 gene expression. Using this reporter, we show that MYL9 expression is restricted to the muscularis propria of the small intestine and bladder, as well as in the smooth muscle layer of the bronchi in the lung and major bladder vessels in all organs. This suggests that MYL9 is important for the function of smooth muscle cells in these organs. Smooth muscle dysfunction is therefore likely to be the cause of the abnormalities observed in the intestine, bladder and lung of MYL9 deficient mice and the resulting neonatal lethality.


Assuntos
Músculo Liso , Bexiga Urinária , Animais , Camundongos , Intestinos , Pulmão/metabolismo , Contração Muscular/genética , Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Bexiga Urinária/metabolismo
9.
Diabetes ; 71(10): 2197-2208, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35876633

RESUMO

Diabetic bladder dysfunction (DBD) is the most common complication in diabetes. Myogenic abnormalities are common in DBD; however, the underlying mechanisms leading to these remain unclear. To understand the importance of smooth muscle insulin receptor (IR)-mediated signaling in the pathogenesis of DBD, we conditionally deleted it to achieve either heterozygous (SMIR+/-) or homozygous (SMIR-/-) deletion in smooth muscle cells. Despite impaired glucose and insulin tolerance seen with SMIR-/- mice, both SMIR+/- and SMIR-/- mice exhibited normal blood glucose and plasma insulin levels. Interestingly, these mice had abnormal voiding phenotypes, that included urinary frequency and small voids, and bladder smooth muscle (BSM) had significantly diminished contraction force. Morphology revealed a dilated bladder with thinner BSM layer, and BSM bundles were disorganized with penetrating interstitial tissue. Deletion of IR elevated FoxO and decreased mTOR protein expression, which further decreased the expression of Chrm3, P2x1, Sm22, and Cav1.2, crucial functional proteins for BSM contraction. Furthermore, we determined the expression of adiponectin in BSM, and deletion of IR in BSM inhibited adiponectin-mediated signaling. In summary, disruption of IR-mediated signaling in BSM caused abnormalities in proliferation and differentiation, leading to diminished BSM contractility and a voiding dysfunction phenotype that recapitulates human DBD.


Assuntos
Diabetes Mellitus , Insulinas , Adiponectina/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Insulinas/metabolismo , Camundongos , Contração Muscular/genética , Músculo Liso/metabolismo , Músculo Liso/patologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor Muscarínico M3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Bexiga Urinária/metabolismo
10.
Physiol Genomics ; 54(8): 305-315, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723223

RESUMO

Skeletal muscle is adaptable to a direct stimulus of exercise-induced muscle damage (EIMD). Local muscle gene networks and systemic circulatory factors respond to EIMD within days, mediating anti-inflammation and cellular proliferation. Here we show in humans that local EIMD of one muscle group is associated with a systemic response of gene networks that regulate muscle structure and cellular development in nonlocal homologous muscle not directly altered by EIMD. In the nondominant knee extensors of seven males, EIMD was induced through voluntary contractions against an electric motor that lengthened muscles. Neuromuscular assessments, vastus lateralis muscle biopsies, and blood draws occurred 2 days prior and 1 and 2 days after the EIMD intervention. From the muscle and blood plasma samples, RNA-Seq measured transcriptome changes of differential expression using bioinformatic analyses. Relative to the time of the EIMD intervention, local muscle that was mechanically damaged had 475 genes differentially expressed, as compared with 33 genes in the nonlocal homologous muscle. Gene and network analysis showed that activity of the local muscle was related to structural maintenance, repair, and energetic processes, whereas gene and network activities of the nonlocal muscle (that was not directly modified by the EIMD) were related to muscle cell development, stress response, and structural maintenance. Altered expression of two novel miRNAs related to the EIMD response supported that systemic factors were active. Together, these results indicate that the expression of genes and gene networks that control muscle contractile structure can be modified in response to nonlocal EIMD in humans.


Assuntos
Exercício Físico , Transcriptoma , Exercício Físico/fisiologia , Humanos , Masculino , Contração Muscular/genética , Músculo Esquelético/metabolismo , Transcriptoma/genética
11.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35024765

RESUMO

Protein lysine acetylation is a post-translational modification that regulates protein structure and function. It is targeted to proteins by lysine acetyltransferases (KATs) or removed by lysine deacetylases. This work identifies a role for the KAT enzyme general control of amino acid synthesis protein 5 (GCN5; KAT2A) in regulating muscle integrity by inhibiting DNA binding of the transcription factor/repressor Yin Yang 1 (YY1). Here we report that a muscle-specific mouse knockout of GCN5 (Gcn5skm-/-) reduces the expression of key structural muscle proteins, including dystrophin, resulting in myopathy. GCN5 was found to acetylate YY1 at two residues (K392 and K393), disrupting the interaction between the YY1 zinc finger region and DNA. These findings were supported by human data, including an observed negative correlation between YY1 gene expression and muscle fiber diameter. Collectively, GCN5 positively regulates muscle integrity through maintenance of structural protein expression via acetylation-dependent inhibition of YY1. This work implicates the role of protein acetylation in the regulation of muscle health and for consideration in the design of novel therapeutic strategies to support healthy muscle during myopathy or aging.


Assuntos
Distrofina/genética , Músculos/metabolismo , Fator de Transcrição YY1/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Envelhecimento/metabolismo , Animais , DNA/metabolismo , Distrofina/metabolismo , Regulação da Expressão Gênica , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculos/patologia , Músculos/ultraestrutura , Atrofia Muscular/patologia , Distrofias Musculares/patologia , Transcriptoma/genética , Fatores de Transcrição de p300-CBP/deficiência
12.
Sci Rep ; 12(1): 1425, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082386

RESUMO

We hypothesized that body mass index (BMI) dependent changes in myocardial gene expression and energy-related metabolites underlie the biphasic association between BMI and mortality (the obesity paradox) in cardiac surgery. We performed transcriptome profiling and measured a panel of 144 metabolites in 53 and 55, respectively, myocardial biopsies from a cohort of sixty-six adult patients undergoing coronary artery bypass grafting (registration: NCT02908009). The initial analysis identified 239 transcripts with biphasic BMI dependence. 120 displayed u-shape and 119 n-shape expression patterns. The identified local minima or maxima peaked at BMI 28-29. Based on these results and to best fit the WHO classification, we grouped the patients into three groups: BMI < 25, 25 ≤ BMI ≤ 32, and BMI > 32. The analysis indicated that protein translation-related pathways were downregulated in 25 ≤ BMI ≤ 32 compared with BMI < 25 patients. Muscle contraction transcripts were upregulated in 25 ≤ BMI ≤ 32 patients, and cholesterol synthesis and innate immunity transcripts were upregulated in the BMI > 32 group. Transcripts involved in translation, muscle contraction and lipid metabolism also formed distinct correlation networks with biphasic dependence on BMI. Metabolite analysis identified acylcarnitines and ribose-5-phosphate increasing in the BMI > 32 group and α-ketoglutarate increasing in the BMI < 25 group. Molecular differences in the myocardium mirror the biphasic relationship between BMI and mortality.


Assuntos
Ponte de Artéria Coronária/métodos , Doença da Artéria Coronariana/genética , Miocárdio/metabolismo , Obesidade/genética , RNA Mensageiro/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Carnitina/análogos & derivados , Carnitina/metabolismo , Estudos de Casos e Controles , Colesterol/biossíntese , Estudos de Coortes , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/cirurgia , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Ácidos Cetoglutáricos/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Metaboloma , Pessoa de Meia-Idade , Contração Muscular/genética , Miocárdio/patologia , Obesidade/metabolismo , Obesidade/mortalidade , Obesidade/cirurgia , RNA Mensageiro/classificação , RNA Mensageiro/metabolismo , Fatores de Risco , Análise de Sobrevida , Fatores de Tempo
13.
J Cell Physiol ; 237(2): 1498-1508, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34698372

RESUMO

Asthma is a chronic respiratory disease produced by an aberrant immune response that originates with breathing difficulties and cough, through airway remodeling. The above pathophysiological events of asthma emerge the regulators of effectors, like epigenetics, which include microRNAs (miRNAs) who perform post-transcriptional regulation, controlling diverse pathways in respiratory diseases. The objective of the study was to determine how miR-185-5p regulates the secretion of periostin by airway structural cells, and smooth muscle cells contraction, both related to airway remodeling in asthma. We used miR-185-5p mimic and inhibitors in bronchial smooth muscle cells (BSMCs) and small airway epithelial cells (SAECs) from healthy subjects. Gene expression and protein levels of periostin (POSTN), CDC42, and RHOA were analyzed by RT-PCR and ELISA/Western blot, respectively. BSMC contractility was analyzed using cell-embedded collagen gels and measurement of intracellular calcium was performed using Fura-2. Additionally, miR-185-5p and periostin expression were evaluated in sputum from healthy and asthmatics. From these experiments, we observed that miR-185-5p modulation regulates periostin mRNA and protein in BSMCs and SAECs. A tendency for diminished miR-185-5p expression and higher periostin levels was seen in sputum cells from asthmatics compared to healthy, with an inverse correlation observed between POSTN and miR-185-5p. Inhibition of miR-185-5p produced higher BSMCs contraction induced by histamine. Calcium mobilization was not modified by miR-185-5p, showing that miR-185-5p role in BSMC contractility is performed by regulating CDC42 and RhoA pro-contractile factors instead. In conclusion, miR-185-5p is a modulator of periostin secretion by airway structural cells and of smooth muscle contraction, which can be related to asthma pathophysiology, and thus, might be a promising therapeutic target.


Assuntos
Asma , MicroRNAs , Remodelação das Vias Aéreas/genética , Asma/metabolismo , Cálcio/metabolismo , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Contração Muscular/genética , Miócitos de Músculo Liso/metabolismo
14.
Hum Mol Genet ; 31(9): 1417-1429, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34761268

RESUMO

The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Actinina/genética , Actinina/metabolismo , Idoso , Animais , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
15.
Genes (Basel) ; 14(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36672743

RESUMO

Tropomyosin (TPM) is a contractile protein responsible for muscle contraction through its actin-binding activity. The complete sequence of TPM in Haliotis discus hannai (Hdh-TPM) was 2160 bp, encoding 284 amino acids, and contained a TPM signature motif and a TPM domain. Gene ontology (GO) analysis based on the amino acid sequence predicted Hdh-TPM to have an actin-binding function in the cytoskeleton. The 3D analysis predicted the Hdh-TPM to have a coiled-coil α-helical structure. Phylogenetically, Hdh-TPM formed a cluster with other TPM/TPM1 proteins during analysis. The tissue-specific mRNA expression analysis found the higher expression of Hdh-TPM in the heart and muscles; however, during embryonic and larval development (ELD), the higher expression was found in the trochophore larvae and veliger larvae. Hdh-TPM expression was upregulated in fast-growing abalone. Increasing thermal stress over a long period decreased Hdh-TPM expression. Long-term starvation (>1 week) reduced the mRNA expression of Hdh-TPM in muscle; however, the mRNA expression of Hdh-TPM was significantly higher in the mantle, which may indicate overexpression. This study is the first comprehensive study to characterize the Hdh-TPM gene in Pacific abalone and to report the expression of Hdh-TPM in different organs, and during ELD, different growth patterns, thermal stress, seasonal changes, and starvation.


Assuntos
Gastrópodes , Tropomiosina , Animais , Tropomiosina/genética , Tropomiosina/química , Tropomiosina/metabolismo , Actinas/metabolismo , Gastrópodes/genética , Gastrópodes/metabolismo , Contração Muscular/genética , RNA Mensageiro/metabolismo
16.
Med Sci (Paris) ; 38 Hors série n° 1: 46-48, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36649637

RESUMO

The RYR1 gene encodes the ryanodine-receptor 1, a key protein in the excitation-contraction coupling that takes place in muscle fibers. This receptor is the main channel responsible for calcium release from the endoplasmic reticulum [1]. A number of clinical phenotypes are linked to various mutations in this large gene as shown in a compilation established by ORPHANET (see table). In this work we describe two distinct, somewhat misleading, phenotypes in relation to pathogenic variants in this gene.


Title: La grande variabilité phénotypique des mutations du gène RYR1. Abstract: Le gène RYR1 (Ryanodine-Receptor-1) code pour une protéine-clé dans le processus de couplage excitation-contraction de la fibre musculaire. Ce récepteur est le principal canal de libération du calcium à partir du réticulum endoplasmique [1]. Un certain nombre de phénotypes cliniques sont imputables aux mutations de ce gène de grande taille comme rappelé dans la liste établie par ORPHANET (voir Encadré). Nous décrivons, dans ce travail, deux phénotypes distincts, et trompeurs à certains égards, en rapport avec des mutations de ce gène.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Músculo Esquelético/fisiologia , Contração Muscular/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Mutação , Cálcio/metabolismo
17.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943776

RESUMO

Specific proteins and processes have been identified in post-myocardial infarction (MI) pathological remodeling, but a comprehensive understanding of the complete molecular evolution is lacking. We generated microarray data from swine heart biopsies at baseline and 6, 30, and 45 days after infarction to feed machine-learning algorithms. We cross-validated the results using available clinical and experimental information. MI progression was accompanied by the regulation of adipogenesis, fatty acid metabolism, and epithelial-mesenchymal transition. The infarct core region was enriched in processes related to muscle contraction and membrane depolarization. Angiogenesis was among the first morphogenic responses detected as being sustained over time, but other processes suggesting post-ischemic recapitulation of embryogenic processes were also observed. Finally, protein-triggering analysis established the key genes mediating each process at each time point, as well as the complete adverse remodeling response. We modeled the behaviors of these genes, generating a description of the integrative mechanism of action for MI progression. This mechanistic analysis overlapped at different time points; the common pathways between the source proteins and cardiac remodeling involved IGF1R, RAF1, KPCA, JUN, and PTN11 as modulators. Thus, our data delineate a structured and comprehensive picture of the molecular remodeling process, identify new potential biomarkers or therapeutic targets, and establish therapeutic windows during disease progression.


Assuntos
Adipogenia/genética , Transição Epitelial-Mesenquimal/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Algoritmos , Animais , Biópsia , Aprendizado Profundo , Modelos Animais de Doenças , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Análise em Microsséries , Modelos Moleculares , Contração Muscular/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-raf/genética , Receptor IGF Tipo 1/genética , Suínos/genética
18.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943936

RESUMO

Myosinopathies are defined as a group of muscle disorders characterized by mutations in genes encoding myosin heavy chains. Their exact molecular and cellular mechanisms remain unclear. In the present study, we have focused our attention on a MYH1-related E321G amino acid substitution within the head region of the type IIx skeletal myosin heavy chain, associated with clinical signs of atrophy, inflammation and/or profound rhabdomyolysis, known as equine myosin heavy chain myopathy. We performed Mant-ATP chase experiments together with force measurements on isolated IIx myofibres from control horses (MYH1E321G-/-) and Quarter Horses homozygous (MYH1E321G+/+) or heterozygous (MYH1E321G+/-) for the E321G mutation. The single residue replacement did not affect the relaxed conformations of myosin molecules. Nevertheless, it significantly increased its active behaviour as proven by the higher maximal force production and Ca2+ sensitivity for MYH1E321G+/+ in comparison with MYH1E321G+/- and MYH1E321G-/- horses. Altogether, these findings indicate that, in the presence of the E321G mutation, a molecular and cellular hyper-contractile phenotype occurs which could contribute to the development of the myosin heavy chain myopathy.


Assuntos
Cavalos/genética , Contração Muscular/genética , Doenças Musculares/genética , Cadeias Pesadas de Miosina/genética , Substituição de Aminoácidos/genética , Animais , Regulação da Expressão Gênica/genética , Heterozigoto , Homozigoto , Contração Muscular/fisiologia , Doenças Musculares/patologia , Doenças Musculares/veterinária , Mutação/genética , Miofibrilas/genética , Miofibrilas/metabolismo
19.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638939

RESUMO

The adipokine leptin, which is best-known for its role in the control of metabolic function, is also a master regulator of cardiovascular function. While leptin has been approved for the treatment of metabolic disorders in patients with congenital generalized lipodystrophy (CGL), the effects of chronic leptin deficiency and the treatment on vascular contractility remain unknown. Herein, we investigated the effects of leptin deficiency and treatment (0.3 mg/day/7 days) on aortic contractility in male Berardinelli-Seip 2 gene deficient mice (gBscl2-/-, model of CGL) and their wild-type control (gBscl2+/+), as well as in mice with selective deficiency in endothelial leptin receptor (LepREC-/-). Lipodystrophy selectively increased vascular adrenergic contractility via NO-independent mechanisms and induced hypertrophic vascular remodeling. Leptin treatment and Nox1 inhibition blunted adrenergic hypercontractility in gBscl2-/- mice, however, leptin failed to rescue vascular media thickness. Selective deficiency in endothelial leptin receptor did not alter baseline adrenergic contractility but abolished leptin-mediated reduction in adrenergic contractility, supporting the contribution of endothelium-dependent mechanisms. These data reveal a new direct role for endothelial leptin receptors in the control of vascular contractility and homeostasis, and present leptin as a safe therapy for the treatment of vascular disease in CGL.


Assuntos
Adrenérgicos/metabolismo , Aorta Torácica/metabolismo , Endotélio Vascular/metabolismo , Leptina/metabolismo , Lipodistrofia Generalizada Congênita/metabolismo , Contração Muscular/genética , Músculo Liso Vascular/metabolismo , Transdução de Sinais/genética , Adrenérgicos/administração & dosagem , Adrenérgicos/efeitos adversos , Animais , Modelos Animais de Doenças , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Leptina/administração & dosagem , Leptina/efeitos adversos , Lipodistrofia Generalizada Congênita/tratamento farmacológico , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Resultado do Tratamento
20.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685676

RESUMO

Long non-coding RNAs (lncRNAs) play key roles in Angiotensin II (AngII) signaling but their role in chondrogenic transformation of vascular smooth muscle cells (VSMCs) is unknown. We describe a novel AngII-induced lncRNA Alivec (Angiotensin II-induced lncRNA in VSMCs eliciting chondrogenic phenotype) implicated in VSMC chondrogenesis. In rat VSMCs, Alivec and the nearby gene Acan, a chondrogenic marker, were induced by growth factors AngII and PDGF and the inflammatory cytokine TNF-α. AngII co-regulated Alivec and Acan through the activation of AngII type1 receptor signaling and Sox9, a master transcriptional regulator of chondrogenesis. Alivec knockdown with GapmeR antisense-oligonucleotides attenuated the expression of AngII-induced chondrogenic marker genes, including Acan, and inhibited the chondrogenic phenotype of VSMCs. Conversely, Alivec overexpression upregulated these genes and promoted chondrogenic transformation. RNA-pulldown coupled to mass-spectrometry identified Tropomyosin-3-alpha and hnRNPA2B1 proteins as Alivec-binding proteins in VSMCs. Furthermore, male rats with AngII-driven hypertension showed increased aortic expression of Alivec and Acan. A putative human ortholog ALIVEC, was induced by AngII in human VSMCs, and this locus was found to harbor the quantitative trait loci affecting blood pressure. Together, these findings suggest that AngII-regulated lncRNA Alivec functions, at least in part, to mediate the AngII-induced chondrogenic transformation of VSMCs implicated in vascular dysfunction and hypertension.


Assuntos
Angiotensina II/farmacologia , Condrogênese/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Animais , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Condrogênese/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Masculino , Contração Muscular/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fenótipo , Locos de Características Quantitativas/genética , RNA Longo não Codificante/genética , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Fatores de Transcrição SOX9/metabolismo , Tropomiosina/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA